
CUDA

Fluid simulation

Lattice Boltzmann Models

Cellular Automata

Please excuse my layout of slides for
the remaining part of the talk!

Fluid Simulation

� Navier Stokes equations for
incompressible fluids

� Well known technique from computer
graphics

� Stable fluids, Jos Stam, Siggraph ’99

� Can take arbitrary large time steps

� Finite difference approximations results
in grid computations similar to LBM

SDK fluids

DEMO

SDK fluids

Not 100% identical to the following
method…

Navier-Stokes (again)

∂u
∂t

= −(u ⋅∇)u − 1
ρ

∇p − ν∇2u + f

 ∇ ⋅ u = 0

Projection operator

� Define a projection operator PPPP that projects a

vector field w onto divergence-free
component u.

� PPPP w = PPPP u + PPPP (∇∇∇∇p)
� Since by definition PPPP w =PPPP u = u then PPPP (∇∇∇∇p)=0

� And then

� Break it down [Stam 2000]:

� Add forces

� Advect

� Diffuse

� Solve for pressure

� Subtract pressure gradient

Algorithm

Algorithm

From: Stam J. Stable Fluids. Siggraph 1999.

Algorithm

� Break it down [Stam 2000]:

� Add forces:

Source: Mark Harris / GPGPU tutorial@Siggraph 04

∂u
∂ t

= − (u ⋅ ∇)u − 1
ρ

∇ p − ν ∇ 2 u + f

External Force

Add Forces

 w1
= u(x,t) + f (x,t)∆t

Source: Mark Harris / GPGPU tutorial@Siggraph 04

Explicit Euler integration

� Break it down [Stam 2000]:

� Add forces:

� Advect:

Algorithm

Source: Mark Harris / GPGPU tutorial@Siggraph 04

∂u
∂ t

= − (u ⋅ ∇)u − 1
ρ

∇ p − ν ∇ 2 u + f

Advection

Advection

� Advection:

� quantities in a fluid are carried along by
its velocity

� Want velocity at position x
at new time t + ∆t

� Follow velocity field back in time
from x : (x - w1∆t)

� Like tracing particles!

� Simple in a fragment program

u(x, t+∆t)

u(x’ , t)

Path of fluid

Trace back in time

 w2
(x) = w

1
(x − w

1
∆t)

Source: Mark Harris / GPGPU tutorial@Siggraph 04

Algorithm

� Break it down [Stam 2000]:

� Add forces:

� Advect:

� Diffuse:

Source: Mark Harris / GPGPU tutorial@Siggraph 04

∂ u
∂ t

= − (u ⋅ ∇) u − 1
ρ

∇ p − ν ∇ 2 u + f

Diffusion
(viscosity)

� Implicit

� Stable for large timesteps

Numerical integration

),(),()(

),(),(),(

),(
),(),(

2

)(

2
2

2
2

22

2
2222

3

txwhtxwhI

htxwhtxwhtxw

htxw
h

txwhtxw

dt

dw

=+∇−

⇒+∇+=+

⇒+∇=−+=

43421
xw

ν
ν

ν

Viscous Diffusion

� Solution by Jacobi iteration

I − ν∆t∇2()w3

= w
2

Source: Mark Harris / GPGPU tutorial@Siggraph 04

� Break it down [Stam 2000]:

� Add forces:

� Advect:

� Diffuse:

� Solve for pressure:

Algorithm

 ∇
2 p = ∇ ⋅ w

3

Source: Mark Harris / GPGPU tutorial@Siggraph 04

Poisson-Pressure Solution

� Poisson Equation

� Jacobi, Gauss-Seidel, Multigrid, etc.

� Jacobi easy on GPU, the rest are trickier

 ∇
2 p = ∇ ⋅ w

3

Source: Mark Harris / GPGPU tutorial@Siggraph 04

� Break it down [Stam 2000]:

� Add forces:

� Advect:

� Diffuse:

� Solve for pressure:

� Subtract pressure
gradient:

Algorithm

 u(x,t + ∆t) = w
3

− ∇p

Source: Mark Harris / GPGPU tutorial@Siggraph 04

Subtract Pressure Gradient

� Last computation of the time step

� u is now a divergence-free velocity field

 u(x,t + ∆t) = w
3

− ∇p

Source: Mark Harris / GPGPU tutorial@Siggraph 04

Implementation

Cg code.

But we “convert” to Cuda on the fly…

Pseudocode of timestep

Textures

Advection

 w2
(x) = w

1
(x − w

1
∆t)

Diffusion

I − ν∆t∇2()w3

= w
2

Divergence

Gradient subtraction

Partial differential equations

� Finite difference discretizations lead
to “lattice formulations”

� Like the Jacobi iteration program

� Similar in implementation to cellular
automata

Lattice Boltzmann Models

Speculations…

Implementing Lattice
Boltzmann Computation
on Graphics Hardware

Wei Li, Xiaoming Wei, and Arie Kaufman.

The Visual Computer 19(7-8) 2003.

Hardware-near paper

Extrapolate…

movie

� The LBM consists of a regular grid and a set of packet
distribution values.

� Each packet distribution fqi corresponds to a velocity
direction vector eqi shooting from a node to its
neighbor.

LBM

� Every step is easy to program
� Initially read fi from global memory but

store in shared memory

� Iterate and write out densities, velocities…

� Write out only for visualization or external
boundary update

LBM in Cuda

Two papers from the same authors!

Speedup

Cellular automata

Informal definition

Cellular automaton

� A regular grid of cells, each in one of
a finite number of states.

� The grid can be in any finite number
of dimensions.

� Time is also discrete

� The state of a cell at time t is a function
of the states of a finite number of cells
(called its neighborhood) at time t − 1.

Adapted from wikipedia

Rich behaviour
from simple functions

� Example, exclusive or

Courtesy Prof. Bastien Chopard

CA in CUDA: format

� If the number of possible states per
cell corresponds to 232

� integer

� No bool type on GPUs (at present)

� Chars available

� Represent multiple cell per primitive for
best performance

Exclusive OR

Implementation considerations

CA in CUDA: global memory

� Read from and write to global memory after
each iteration

� Simple and easy

� Inefficient with respect to memory bandwidth

� Kernel

� Read neighbours’ states

� Compute four-way exclusive or

� Write result at node

CA in CUDA: textures

� Read states from a texture and write
to global memory after each iteration

� Cache hits reduces memory bandwidth

� BUT

� Currently no write-to-texture support

� Write to global memory and copy to
CUDA array

� For simple kernels the cop outweighs the
cache gain

CA in CUDA: shared memory

� Read states from global memory once into
shared memory and write to global memory
after each iteration
� Reduces bandwidth

� Kernel
� Read current cell state into shared memory

� Block border cells read also border cell state
� Watch out for bank conflicts!

� Synchronize threads

� Compute four-way exclusive or from shared mem.

� Write result at node (from register)

In my experience…

� For 256x256 grid

� Shared memory version ~5 times faster
as global memory version in a specific
2D registration problem

Cuda profiler

Iterate in kernel

� If you are only interested in the result
after ‘n’ iterations

� Iterate in kernel

� to remove CPU overhead

� Only border cells need to read/write
global memory in each iteration

� Communication between blocks

� Rest of shared mem. is already known

That was it

Thank you for coming

