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Abstract Cellular automata (CA) and lattice Boltzmann (LB) methods provide a
natural modeling framework to describe and study many physical systems composed
of interacting components. The reason of this success is the close relation between
theses methods and a mesoscopic abstraction of many natural phenomena. The the-
oretical basis of the CA and LB approaches are introduced and their potential is
illustrated for several applications in physics, biophysics, environmental sciences,
traffic models and multiscale modeling.

1 Introduction

As we can observe everyday, nature is made of a large number of interacting parts,
distributed over space and evolving in time. In many cases we are interested in
describing a natural system at a scale which is much larger than its elementary
constituents. Then, often, the behavior of these parts can be reduced to a set of
rather simple rules, without affecting the behavior of the whole. For instance, when
modeling a fluid flow at a macroscopic scale, one does not have to account for the
detailed miscroscopic interactions between the atoms of that fluid. Instead we can
assume the existence of abstract “fluid elements” interacting in such a way as to
conserve mass and momentum.

Cellular Automata (CA) can be thought of as a mathematical abstraction of the
physical world, an abstraction in which time is discrete and space is made of little
blocks, or cells. These cells are organized as a regular lattice, in such a way as
to fully cover the spatial domain of interest. In such an approach, spatio-temporal
physical quantities are introduced as numerical values associated with each cell.
These quantities are called the states of the cells. Formally, the definition of a CA
also assumes that these sates can only take a finite number of discrete values. On
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2 CA and LB modeling of physical systems

the other hand, lattice Boltzmann (LB) methods are more flexible and allow cells to
have real-valued quantities.

CA have been proposed in the late 1940s by J. von Neumann and S. Ulam [6] as
an abstraction of a biological system, in order to study the algorithmic mechanisms
leading to self-reproduction of living organisms. Since then, the CA approach has
been applied to a wide range of problems and is an acknowledge modeling tech-
niques [58, 65, 48, 9, 16, 32, 22, 61, 66]. Moreover it is still a quite active field
of research: international conferences (e.g ACRI) and dedicated journals (e.g. J. of
Cellular Automata) describe current developments.

LB methods developed later, in the 1990’s, as an extension of the concept of
lattice gas automata (LGA), are a family of CA designed to describe hydrodynam-
ical processes in terms of a discrete kinetic model. LB is now recognized as an
alternative way to simulate on a computer complex fluid flows or other complex
systems such as reaction-diffusion and advection-diffusion phenomena, as well as
wave propagation in complicated geometries [9, 63, 54, 56]. LB methods are also an
important research topic and two international conferences (DSFD and ICMMES)
are places to disseminate new results in this field.

A key conceptual ingredient of CA is that they are not meant to be a space-
time discretization of the partial differential equation (PDE) representing a given
physical process. Instead, CA implement a mesoscopic model of this process, in
terms of behavioral rules mimicking the physical interactions and translating them
into a fully discrete universe. Concretely, CA evolution rules are transition functions
which change synchronously the state of each cell according to its value and those
of the adjacent cells.

In other words, CA are based on an idealized, virtual microscopic version of the
real world. Statistical physics teaches us that the macroscopic behavior of many
systems depends very little on the details of the microsopic interactions between the
elementary constituents. This suggests that, in view of modeling efficiency, one can
consider a new, fictitious microscopic universe whose numerical implementation is
easy and fast, as long as this fictitious system has the same macroscopic behavior as
the real one. The recipe to achieve this goal is to build a model with the right conser-
vation laws and symmetries. These properties are indeed those which are preserved
at all scales of description.

The above principles make the design of CA models quite intuitive and natural.
Rule-based interactions are often easier to understand and discuss than a PDE, espe-
cially for researchers outside mathematics or physics. Since the level of description
of a CA model is mesoscopic, the rules are close to the underlying physical inter-
action and it is rather easy to add new features to a model and to describe systems
for which no PDE apply. On the other hand, CA and LB models heavily rely on
computer simulations to derive results.

The diagram in Fig. 1 sketches the solution process of a CA-LB approach com-
pare to that of the more traditional PDE approach.
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Fig. 1 The solution process, from problem to numerical results for either a PDE (top) or a CA
(bottom) approach. In this figure we use fluid dynamics to illustrate the point. In an appropriate
limit, fluid dynamics can be either described by the Navier-Stokes equations or by a discrete model
of interacting particles. This corresponds to two different languages to represent the same physical
problem.

2 Definition of a cellular automata

In order to give a definition of a cellular automaton, we first present a simple exam-
ple. Although it is very basic, the rule we discuss here exhibits a surprisingly rich
behavior. It has been proposed initially by Edward Fredkin in the 1970s [3] and is
defined on a two-dimensional square lattice.

Each site of the lattice is a cell which is labeled by its position r = (i, j) where
i and j are the row and column indices. A function ψ(r, t) is associated with the
lattice to describe the state of each cell r at iteration t. This quantity ψ can be either
0 or 1.

The cellular automata rule specifies how the states ψ(r, t +1) are to be computed
from the states at iteration t. We start from an initial condition at time t = 0 with a
given configuration of the values ψr, t = 0) on the lattice. The state at time t = 1 is
obtained as follows

(1) Each site r computes the sum of the values ψ(r′,0) on the four nearest neighbor
sites r′ at north, west, south and east. The system is supposed to be periodic in
both i and j directions (like on a torus) so that this calculation is well defined for
all sites.

(2) If this sum is even, the new state ψ(r, t = 1) is 0 (white) and, else, it is 1 (black).

The same rule (steps 1 and 2) is repeated over to find the states at time t = 2,3,4, ....
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From a mathematical point of view, this parity rule can be expressed by the
following relation

ψ(i, j, t +1) = ψ(i+1, j, t)⊕ψ(i−1, j, t)⊕ψ(i, j +1, t)⊕ψ(i, j−1, t) (1)

where the symbol⊕ stands for the exclusive OR logical operation. It is also the sum
modulo 2: 1⊕1 = 0⊕0 = 0 and 1⊕0 = 0⊕1 = 1.

When this rule is iterated, very nice geometric patterns are observed, as shown in
figure 2. This property of producing complex patterns starting from a simple rule is
generic of many cellular automata rules. Here, complexity results from some spatial
organization which builds up as the rule is iterated. The various contributions of
successive iterations combine together in a specific way. The spatial patterns that
are observed reflect how the terms are combined algebraically.

Based on this example we now give a definition of a cellular automata. Formally
a cellular automata is a tuple (A,Ψ ,R,N ) where

(i) A is a regular lattice of cells covering a portion of a d-dimensional space.
(ii) Ψ(r, t) = {Ψ1(r, t),Ψ2(r, t), ...,Ψm(r, t)} is a set of m Boolean variables attached

to each site r of the lattice and giving the local state of the cells at time t.
(iii) R is a set of rules, R = {R1,R2, ...,Rm}, which specifies the time evolution of the

states Ψ(r, t) in the following way

Ψj(r, t +δt) = R j(Ψ(r, t),Ψ(r+v1, t),Ψ(r+v2, t), ...,Ψ(r+vq, t)) (2)

where r+vk designate the cells belonging to the neighborhood N of cell r and
δt is the duration of one time step.

In the above definition, the rule R is identical for all sites and is applied simul-
taneously to each of them, leading to a synchronous dynamics. As the number of
configurations of the neighborhood is finite, it is common to pre-compute all the
values of R in a lookup table. Otherwise, an algebraic expression can be used and
evaluated at each iteration, for each cell, as in eq. (1).

It is important to notice that the rule is homogeneous, that is it cannot depend ex-
plicitly on the cell position r. However, spatial (or even temporal) inhomogeneities
can be introduced anyway by having some Ψj(r) systematically 1 in some given
locations of the lattice to mark particular cells on which a different rule applies.
Boundary cells are a typical example of spatial inhomogeneities. Similarly, it is
easy to alternate between two rules by having a bit which is 1 at even time steps and
0 at odd time steps. Finally, memory states can be included by simply copying the
current state into a “past state” during the update.

The neighborhood N of each cell (i.e. the spatial region around each cell used
to compute the next state) is usually made of its adjacent cells. It is often restricted
to the nearest or next to nearest neighbors, to keep the complexity of the rule rea-
sonable. For a two-dimensional cellular automaton, two neighborhoods are often
considered, as illustrated in fig. 3: the von Neumann neighborhood which consists
of a central cell (the one which is to be updated) and its four geographical neighbors
North, West, South and East. The Moore neighborhood contains, in addition, the
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t=0 t=31 t=43

t=75 t=248 t=292

t=357 t=358 t=359

t=360 t=511 t=571

Fig. 2 Several snapshot of the parity rule on a 196× 196 periodic lattice. The upper left image
correspond to an initial configuration make up of a square of 27×34 cells in state 1.

second nearest neighbor North-East, North-West, South-East and South-East, that
is a total of nine cells. See [9] for more details. In practice, when simulating a given
cellular automata rule, one cannot deal with an infinite lattice. The system must be
finite and have boundaries. Clearly, a site belonging to the lattice boundary does not
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(b)(a)

Fig. 3 (a) Von Neumann and (b) Moore neighborhoods. The shaded region indicates the central
cell which is updated according to the state of the cells located within the domain marked with the
bold line.

have the same neighborhood as other internal sites. In order to define the behavior of
these sites, a different evolution rule can be considered, which sees the appropriate
neighborhood. This means that the information of being or not a boundary cell is
coded at the site, using a particular value of Ψj, for a chosen j. Depending on this
information, a different rule is selected. Following this approach, it is possible to
define several types of boundaries, all with a different behavior.

Instead of having a different rule at the limits of the system, another possibility
is to extend the neighborhood for the sites at the boundary . For instance, a very
common solution is to assume periodic (or cyclic) boundary conditions, that is one
supposes that the lattice is embedded in a torus-like topology. In the case of a two-
dimensional lattice, this means that the left and right sides are connected, and so are
the upper and lower sides.

Other possible types of boundary conditions are illustrated in figure 4, for a one-
dimensional lattice. We assume that the lattice is augmented by a set of virtual cells
beyond its limits. A fixed boundary is defined so that the neighborhood is completed
with cells having a pre-assigned value. An adiabatic boundary condition (or zero-
gradient) is obtained by duplicating the value of the site to the extra virtual cells. A
reflecting boundary amounts to copying the value of the other neighbor in the virtual
cell.

b a b

periodic

1 a

fixed

a a

adiabatic

b a b

reflection

Fig. 4 Various types of boundary conditions obtained by extending the neighborhood. The shaded
block represents a virtual cell which is added at the extremity of the lattice (left extremity, here) to
complete the neighborhood.
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According to our definition, a cellular automaton is deterministic. The rule is
some well defined function and a given initial configuration will always evolve iden-
tically. However, it may be very convenient for some applications to have a certain
degree of randomness in the rule. For instance, it may be desirable that a rule selects
one outcome among several possible states, with a probability p. Cellular automata
whose updating rule is driven by some external probabilities are called probabilistic
cellular automata. On the other hand, those which strictly comply with the definition
given above, are referred to as deterministic cellular automata.

3 Cellular Automata and complex systems

3.1 Game of life and Langton ant

Complex systems are now an important domain in sciences. They are systems made
of many interacting constituents which often exhibit spatio-temporal patterns and
collective behaviors.

A standard and successful methodology in research has been to isolate phenom-
ena from each other and to study them independently. This leads to a deep under-
standing of the phenomena themselves but also leads to a compartmentalized view
of nature. The real world is made of interacting processes and these interactions
brings new phenomena that are not present in the individual constituents. Therefore,
the whole is more that the sum of its parts and new scientific tools and concepts may
be required to analyze complex systems.

CAs offer such a possibility by being themselves simple, fully discrete complex
systems. In this section, we introduce two CA, the so-called game of life and the
Langton’s ant model. Both illustrates interesting aspects of complex systems.

3.1.1 The Game of Life

In 1970, the mathematician John Conway proposed the now famous game of
life [21] CA. The motivation was to find a simple rule leading complex behaviors
in a system of fictitious one-cell organisms evolving in a fully discrete universe.
The game of life rule is defined on a two-dimensional square lattice in which each
spatial cell can be either occupied by a living organism (state one) or empty (state
zero). The updating rule of the game of life is as follows: an empty cell surrounded
by exactly three living cells gets alive; a living cell surrounded by less than two or
more than three neighbors dies of isolation or overcrowdness. Here, the surround-
ing cells corresponds to a Moore neighborhood. composed of the four nearest cells
(north, south, east and west), plus the four second nearest neighbors, along the diag-
onals. It turns out that the game of life automaton has an unexpectedly rich behavior.
Complex structures emerge out of a primitive “soup” and evolve so as to develop
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some new skills (see fig 5). For instance a particular spatial assembly of cells has

t t+10 t+20

Fig. 5 The game of life automaton. Black dots represents living cells whereas dead cells are white.
The figure shows the evolution of a random initial configuration and the formation of spatial struc-
tures, with possibly some emerging functionalities.

the property to move across the lattice. Such an object, called glider, can be seen as
higher level organism because it is composed of several simple elementary cells. Its
detailed structure is shown in fig. 6. Thus, by assembling in a clever way cells that

Fig. 6 The detailed structure of a glider, over two consecutive iterations. A glider is an assembly
of cells that has a higher functionality than its constituent, namely the capability to move in space
by changing its internal structure in a periodic way.

are unable to move, it is possible to produce, at a larger scale, a new capability. This
is a signature of complex systems. Of course, more complex objects can be build,
such a as for instance glider guns which are arrangements of cell producing gliders
rhythmically.

The game of life is a cellular automata capable of universal computations: it is
always possible to find an initial configuration of the cellular space reproducing
the behavior of any electronic gate and, thus, to mimic any computation process.
Although this observation has little practical interest, it is very important from a
theoretical point of view since it assesses the ability of CAs to be a non restrictive
computational technique. As an illustration of this fact the game of life has been
used to compute prime numbers.
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3.1.2 Langton’s Ant

As we have just discussed, CAs exemplify the fact that a collective behavior can
emerge out of the sum of many, simply interacting, components. Even if the basic
and local interactions are perfectly known, it is possible that the global behavior
obeys new laws that are not obviously extrapolated from the individual properties.
The Langton’s ant model further illustrate this aspect.

The ant rule is a cellular automata invented by Chris Langton [53] and Greg
Turk which models the behavior of a hypothetical animal (ant) having a very simple
algorithm of motion. The ant moves on a square lattice whose sites are either white
or gray. When the ant enters a white cell, it turns 90 degrees to the left and paints the
cell in gray. Similarly, if it enters a gray cell, it paints it in white and turn 90 degree
to the right. This is illustrated in Fig. 7

Fig. 7 The Langton’s ant rule.

It turns out that the motion of this ant exhibits a very complex behavior. Suppose
the ant starts in a completely white space. After a series of about 500 steps where
it essentially keeps returning to its initial position, it enters a chaotic phase during
which its motion is unpredictable. Then, after about 10000 steps of this very irreg-
ular motion, the ant suddenly performs a very regular motion which brings it far
away from where it started.

Figure 8 illustrates the ant motion. The path the ant creates to escape the chaotic
initial region has been called a highway [47]. Although this highway is oriented at
45 degrees with respect to the lattice direction, it is traveled by the ant in a way
which makes very much think of a sewing machine: the pattern is a sequence of 104
steps which are repeated indefinitely.

The Langton ant is a good example of a cellular automata whose rule is very
simple and yet generates a complex behavior which seems beyond our understand-
ing. Somehow, this fact is typical of the cellular automata approach: although we do
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t=6900 t=10431 t=12000

Fig. 8 The Langton’s ant rule. The motion of a single ant starts with a chaotic phase of about
10000 time steps, followed by the formation of a highway. The figure shows the state of each lattice
cell (gray or white) and the ant position (marked by the black dot). In the initial condition all cells
are white and the ant is located in the middle of the image.

know everything about the fundamental laws governing a system (because we set
up the rules ourselves!), we are often unable to explain its macroscopic behavior.

There is anyway a global property of the ant motion: the ant visits an unbounded
region of space, whatever the initial space texture is (configuration of gray and white
cells).

The proof (due to Bunimovitch and Troubetzkoy) goes as follows: supposed the
region the ant visits is bounded. Then, it contains a finite number of cells. Since the
number of iteration is infinite, there is a domain of cells that are visited infinitely
often. Moreover, due to the rule of motion, a cell is either entered horizontally (we
call it a H cell) or vertically (we call it a V cell). Since the ant turns by 90 degrees
after each step, a H cell is surrounded by four V cells and conversely. As a conse-
quence, the H and V cells tile the lattice in a fixed checkerboard pattern. Now, we
consider the upper rightmost cell of the domain, that is a cell whose right and upper
neighbor is not visited. This cell exists if the trajectory is bounded. If this cell is
an H cell (and be so for ever), it has to be entered horizontally from left and exited
vertically downward and, consequently be gray. However, after the ant has left, the
cell is white and there is a contradiction. The same contradiction appears if the cell
is a V cell. Therefore, the ant trajectory is not bounded.

Beyond the technical aspect of this proof, it is interesting to realize that its con-
clusion is based on symmetry properties of the rule. Although we are not able to
predict the detailed motion of the ant analytically (the only way is to perform the
simulation), we have learned something about the global behavior of the system: the
ant goes to infinity. This observation illustrates the fact that, often, global features
are related to symmetries more than to details.
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Let us now consider the case where several ants coexists on the lattice. The rule
defined in Fig. 7 is only valid for a single ant. We can be generalized for situations
where up to four ants enter the same site at the same time, from different sides.

To describe mathematically the ant motion, we introduce ni(r, t), a Boolean vari-
able representing the presence (ni = 1) or the absence (ni = 0) of an ant entering site
r at time t along lattice direction ci, where c1, c2, c3 and c4 stand for direction right,
up, left and down, respectively. If the color µ(r, t) of the site is gray (µ = 0), all en-
tering ants turn 90 degrees to the right. On the other hand, if the site is white(µ = 1),
they all turn 90 degrees to the left. The color of each cell is modified after one or
more ants have gone through. Here, we chose to switch µ → 1− µ only when an
odd number of ant are present.

t=2600 t=4900 t=8564

Fig. 9 Motion of several Langton’s ants. Gray and white indicate the colors of the cells at the
current time. Ant locations are marked by the black dots. At the initial time, all cells are white
and a few ants are randomly distributed in the central region, with random directions of motion.
The first highway appears much earlier than when the ant is alone. In addition the highway can
be used by other ants to travel much faster. However, the “highway builder” is usually prevented
from continuing its construction as soon as it is reached by the following ants. For instance, the
highway heading north-west after 4900 steps get destroyed. A new highway emerges later on from
the rest, as we see from the snapshot at time t = 8564.

When several ant travel simultaneously on the lattice, cooperative and destructive
behaviors are observed. First, the erratic motion of several ants favors the formation
of a local arrangement of colors allowing the creation of a highway. One has to
wait much less time before the first highway appears. Second, once a highway is
being created, other ants may use it to travel very fast (they do not have to follow
the complicated pattern of the highway builder). In this way, the term “highway”
is very appropriate. Third, a destructive effect occurs as the second ant gets to the
highway builder. It breaks the pattern and several situations may be observed. For
instance, both ants may enter a new chaotic motion; or the highway is traveled in the
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other direction (note that the rule is time reversal invariant) and destroyed. Figure 9
illustrates the multi-ant behavior.

The problem of an unbounded trajectory pauses again with this generalized mo-
tion. The assumption of Bunimovitch-Troubetzkoy’s proof no longer holds in this
case because a cell may be both an H or a V cell. Indeed, two different ants may
enter a same cell one vertically and the other horizontally. Actually, the theorem of
an unbounded motion is wrong in several cases where two ants are present. Periodic
motions may occur when the initial positions are well chosen.

For instance, when the relative location of the second ant with respect to the
first one is (∆x,∆y) = (2,3), the two ants returns to their initial position after 478
iterations of the rule (provided they started in an uniformly white substrate, with the
same direction of motion). A very complicated periodic behavior is observed when
(∆x,∆y) = (1,24): the two ant start a chaotic-like motion for several thousands of
steps. Then, one ant builds a highway and escape from the central region. After a
while, the second ant finds the entrance of the highway and rapidly catches the first
one. After the two ants meet, they start undoing their previous paths and return to
their original position. This complete cycle takes about 30000 iterations.

More generally, it is found empirically that, when ∆x + ∆y is odd and the ants
enter their site with the same initial direction , the two-ant motion is likely to be
periodic. However, this is not a rule and the configuration (∆x,∆y) = (1,0) yields
an unbounded motion, a diamond pattern of increasing diameter which is traveled
in the same direction by the two ants.

It turns out that the periodic behavior of a two-ant configuration is not so surpris-
ing. The rule we defined is reversible in time, provided that there is never more than
one ant at the same site. Time reversal symmetry means that if the direction of mo-
tion of all ants are reversed, they will move backward through their own sequence
of steps, with an opposite direction of motion. Therefore, if at some point of their
motion the two ants cross each other (on a lattice link, not on a site), the first ant
will go through the past of the second one, and vice versa. They will return to the
initial situation (the two ants being exchanged) and build a new pattern, symmetrical
to the first one, due to the inversion of the directions of motion. The whole process
then cycles for ever. Periodic trajectories are therefore related to the probability that
the two ants will, at a some time, cross each other in a suitable way. The conditions
for this to happen are fulfilled when the ants sit on a different sublattice (black or
white sites on the checkerboard) and exit two adjacent sites against each other. This
explain why a periodic motion is likely to occur when ∆x+∆y is odd.

An interesting conclusion is that, again, it is a symmetry of the rule (time reversal
invariance) that allows us to draw conclusion on the global behavior. We do not
know the details of periodic motions but we know that they are possible.
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3.2 Cellular automata as simple dynamical systems

CA can also be seen as simple prototype of dynamical systems. In physics, the
time evolution of physical quantities is often governed by nonlinear equations. Due
to the nonlinearities, solution of these dynamical systems can be very complex.
In particular, the solution of these equation can be strongly sensitive to the initial
conditions, leading to what is called a chaotic behavior. Similar complications can
occur in discrete dynamical systems. Models based on cellular automata provide an
alternative approach to study the behavior of dynamical systems. By virtue of their
discrete nature, the numerical studies are free of rounding approximations and thus
lead to exact results. Also, exhaustive searches in the space of possible rule can be
considered for simple CA.

Crudely speaking, two classes of problem can be posed. First, given a cellular
automaton rule, predicts its properties. Second, find a cellular automaton rule that
will have some prescribed properties. These two closely related problems are usually
difficult to solve as we have seen on simple examples.

The simplest cellular automata rules are one-dimensional ones for which each
site has only two possible states and the rule involves only the nearest-neighbors
sites. They are easily programmable on a personal computer and offer a nice “toy
model” to start the study of cellular automata.

A systematic study of these rules was undertaken by S. Wolfram in 1983 [64, 65].
Each cell at location r has, at a given time, two possible states s(r) = 0 or s(r) = 1.
The state s at time t +1 depends only on the triplet (s(r−1),s(r),s(r +1) at time t:

s(r, t +1) = Φ(s(r−1, t),s(r, t),s(r +1, t)) (3)

Thus to each possible values of the triplet (s(r− 1),s(r),s(r + 1), one associates a
value αk = 0 or 1 according to the following list:

111︸︷︷︸
α7

110︸︷︷︸
α6

101︸︷︷︸
α5

100︸︷︷︸
α4

011︸︷︷︸
α3

010︸︷︷︸
α2

001︸︷︷︸
α1

000︸︷︷︸
α0

(4)

Each possible cellular automata rule R is characterized by the values α0, ...,α7.
There are clearly 256 possible choices. Each rule can be identified by an index NR

computed as follows

NR =
7

∑
i=0

2(i)
αi (5)

which corresponds to the binary representation α7α6α5α4α3α2α1α0
Giving a rule and an initial state, one can study the time evolution of the system.

Some results can be deduced analytically using algebraic techniques, but most of
the conclusions follow from numerical iterations of the rules. One can start from a
simple initial state (i.e. only one cell in the state 1) or with a typical random initial
state. According to their behavior, the different rules have been grouped in four
different classes.
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(1) Class 1. These cellular automata evolve after a finite number of time steps
from almost all initial states to a unique homogeneous state (all the sites have the
same value). The set of exceptional initial configurations which behave differ-
ently is of measure zero when the number of cells N goes to infinity. A example
is given by the rule 40 (see figure 10(a)). From the point of view of dynamical
systems, these automata evolve towards a simple limit point in the phase space.

(2) Class 2. A pattern consisting of separated periodic regions is produced from
almost all the initial states. The simple structures generated are either stable or
periodic with small periods. An example is given by the rule 56 (see figure 10(b))
Here again, some particular initial states (set of measure zero) can lead to un-
bounded growth. The evolution of these automata is analogous to the evolution
of some continuous dynamical systems to limit cycles.

(3) Class 3. These cellular automata evolve from almost all initial states to
chaotic, aperiodic patterns. An example is given by the rule 18 (see figure 10(c)).
Small changes in the initial conditions almost always lead to increasingly large
changes in the later stages. The evolution of these automata is analogous to the
evolution of some continuous dynamical systems to strange attractors.

(4) Class 4. For these cellular automata, persistent complex structures are formed
for a large class of initial states. An example is given by the rule 110 (see fig-
ure 10 (d)). The behavior of such cellular automata can generally be determined
only by explicit simulation of their time evolution.

(a) (b) (c) (d)

Fig. 10 Example of the four Wolfram rules with a random initial configuration. Horizontal lines
correspond to consecutive iterations. The initial state is the uppermost line. (a) Rule 40 belonging
to class 1 reaches very quickly a fixed point (stable configuration). (b) Rule 56 of class 2 reaches a
pattern composed of stripes which move from left to right. (c) Rule 18 is in class 3 and exhibits a
self-similar pattern. (d) Rule 110 is an example of a class 4 cellular automaton. Its behavior is not
predictable and as a consequence, we observe a rupture in the pattern, on the left part.

The “toy rules” considered by Wolfram, although very simple in construction, are
capable of very complex behavior. The validity of this classification is not restricted
to the simple rules described above but is somehow generic for more complicated
rules. For example, one can consider rules for which each cell can have k different
states and involve a neighborhood of raduis ` (thus the rule depends on the values
of 2`+1 cells). In this case, the number of possible rules is k(k(2`+1)). Several cases
have been studied in the literature and the different rules can be classified in one
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of the four above classes. Many of the class 4 cellular automata (starting with k =
2, ` = 2) have the property of computational universality and initial configurations
can specify arbitrary algorithmic procedures.

However the above “phenomenological” classification suffers drawbacks, the
most serious of which is its non-decidability. See [31] for more details.

3.3 Competition, cooperation, contamination

In this section we briefly describe a few CA rules that are very simple and mimic
very natural interactions: competition between adjacent cells, cooperation between
them or contamination of neighbors. All these ideas can be implemented within
a discrete universe, with cells having only a few possible states. Other models of
cooperation-competition are discussed in [20].

3.3.1 Cooperation models:

For instance, in a simple cooperation models, a cell may want to evolve by copying
the behavior of the majority of its neighbors. If the possible states are 0 or 1, then
clearly an all 0’s configuration or an all 1’s configuration are both stable. But what
happens if the initial configuration contains cells that are 1 with probability p and
0 with probability 1− p. It is likely that such a system will evolve to one of the
two stable configuration. It would be very nice if the all 1’s configuration is reached
whenever p > 1/2 and the all 0’s configuration would be the final stage of the case
p < 1/2. Then, we would have build a system with only local calculation that is able
to solve a global problem: deciding if the initial density of cells in state 1 is larger or
smaller than 1/2. This problem is known as the density task and, in general, a simple
majority rule is not able to give a reliable answer. See [52] for more details.

From the point of view of modeling physical systems, a slight variant of the
majority rule produces interesting patterns. The twisted majority rule proposed by
G. Vichniac [60] is defined on a two-dimensional lattice where each cell considers
its Moore neighborhood. The evolution rule first computes the sum of the cells in
state 1. This sum can be any value between 0 and 9. The new state s(t +1) of each
cell is then determined from this local sum, according to the following table

sum(t) 0 1 2 3 4 5 6 7 8 9
s(t +1) 0 0 0 0 1 0 1 1 1 1 (6)

As opposed to the plain majority rule, here, the two middle entries of the table have
been swapped. Therefore, when there is a slight majority of 1 around a cell, it turns
to 0. Conversely, if there is a slight majority of 0, the cell becomes 1.

Surprisingly enough this rule describes the interface motion between two phases,
as illustrated in fig. 11. It is observed that the normal velocity of the interface is pro-
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portional to its local curvature, as required by several physical theories. Of course,
due to its discrete and local nature, the rule cannot detect the curvature of the inter-
face directly. However, as the the rule is iterated, local information is propagated to
the nearest neighbors and the radius of curvature emerges as a collective effect.

(a) (b) (c)

Fig. 11 Evolution of the twisted majority rule. The inherent “surface tension” present in the rule
tends to separate the red phases s = 1 from the blue phase s = 0. The snapshots (a), (b) and (c)
correspond to t = 0, t = 72 and t = 270 iterations, respectively. The other colors indicate how
“capes” have been eroded and “bays” filled: light blue shows the blue regions that have been
eroded during the last few iterations and yellow marks the red regions that have been filled.

3.3.2 Competition models:

In some sense, the twisted majority rule corresponds to a cooperative behavior be-
tween the cells. A quite different situation can be obtained if the cells obey a com-
petitive dynamics. For instance we may imagine that the cells compete for some
resources at the expense of their nearest neighbors. A winner is a cell of state 1 and
a looser a cell of state 0. No two winner cells can be neighbor and any looser cell
must have at least one winner neighbor (otherwise nothing would have prevented it
to win).

This problem has a direct application in biology, to study cells differentiation. It
has been observed in the development of the drosophila that about 25% of the cells
forming the embryo are evolving to the state of neuroblast, while the remaining 75%
does not. How can we explain this differentiation and the observed fraction since, at
the beginning of the process all cells can be assumed equivalent? A possible mech-
anism [42] is that some competition takes place between the adjacent biological
cells. In other word, each cell produces some substance S but the production rate is
inhibited by the amount of S already present in the neighboring cells. Differentiation
occurs when a cell reaches a level of S above a given threshold.

Following this interpretation we can consider the following CA model of compe-
tition. First, we consider a hexagonal lattice, which is a reasonable approximation of
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the cell arrangement observed in the drosophila embryo. We assume that the values
of S can be 0 (inhibited) or 1 (active) in each lattice cell.

• A S = 0 cell will grow (i.e. turn to S = 1) with probability pgrowth provided that
all its neighbors are 0. Otherwise, it stays inhibited.

• A cell in state S = 1 will decay (i.e. turn to S = 0) with probability panihil if
it is surrounded by at least one active cell. If the active cell is isolated (all the
neighbors are in state 0) it remains in state 1.

The evolution stops (stationary process) when no S = 1 cell feels any more inhibi-
tion from its neighbors and when all S = 0 cells are inhibited by their neighborhood.
Then, with our biological interpretation, cells with S = 1 are those which will dif-
ferentiate.

Fig. 12 The hexagonal lattice used for the competition-inhibition CA rule. Black cells are cells of
state 1 (winners) and white cells are cells of state 0 (loosers). The two possible final states with a
fully regular structure are illustrated with density 1/3 and 1/7 of winner, respectively.

What is the expected fraction of these S = 1 cells in the final configuration?
Clearly, from figure 12, the maximum value is 1/3. According to the inhibition con-
dition we imposed, this is the close-packed situation on the hexagonal lattice. On
the other hand, the minimal value is 1/7, corresponding to a situation where the lat-
tice is partitioned in blocks with one active cell surrounded by 6 inhibited cells. In
practice we do not expect any of these two limits to occur spontaneously after the
automaton evolution. On the contrary, we observe clusters of close-packed active
cells surrounded by defects, i.e. regions of low density of active cells.

As illustrated in Fig. 13, CA simulations show indeed that the final fraction s of
active cells is a mix of the two limiting situations of figure 12

.23≤ s≤ .24

almost irrespectively of the values chosen for panihil and pgrowth.
This is exactly the value expected from the biological observations made on the

drosophila embryo. Thus, cell differentiation can be explained by a geometrical
competition without having to specify the inhibitory couplings between adjacent
cell and the production rate (i.e. the values of panihil and pgrowth): the result is quite
robust against any possible choices.
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(b)(a)

Fig. 13 Final configuration of the competition CA model. (a) A typical situation with about 23%
of active cells, obtained with almost any value of panihil and pgrowth. (b) Configuration obtained
with panihil = 1 and pgrowth = .8 and yielding a fraction of 28% of active cells; one clearly sees the
close-packed regions and the defects.

3.3.3 Contamination models:

Finally, after cooperation and competition dynamics, we can also consider a con-
tamination process. To make the model more interesting we consider cells with at
least three possible states. Theses states are: the resting state, the excited state and
the refractory state.

The resting state is a stable state of the system. But a resting state can respond to a
local perturbation and become excited. Then, the excited state evolves to a refractory
state where it no longer influences its neighbors and, finally, returns to the resting
state.

The Greenberg–Hasting model is an example of a cellular automata model with
a contamination mechanism. It is also called a model for an excitable media in the
context of reactive systems and chemical waves.

The Greenberg–Hasting model can be defined as follows: the state ψ(r, t) of site
r at time t takes its value in the set {0,1,2, ...,n−1}. The state ψ = 0 is the resting
state. The states ψ = 1, ...,n/2 (n is assumed to be even) correspond to excited
states. The rest, ψ = n/2+1, ...,n−1 are the refractory states. The cellular automata
evolution rule is the following:

1. If ψ(r, t) is excited or refractory, then ψ(r, t +1) = ψ(r, t)+1 mod n.
2. If ψ(r, t) = 0 (resting state) it remains so, unless there are at least k excited sites

in the Moore neighborhood of site r. In this case ψ(r, t +1) = 1.

The n states play the role of a clock: an excited state evolves through the sequence
of all possible states until it returns to 0, which corresponds to a stable situation.

The behavior of this rule is quite sensitive to the value of n and the excitation
threshold k. Figure 14 shows the evolution of this CA for a given set of the parame-
ters n and k. The simulation is started with a uniform configuration of resting states,
perturbed by some excited sites randomly distributed over the system. Note that if
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the concentration of perturbation is low enough, excitation dies out rapidly and the
system returns to the rest state. Increasing the number of perturbed states leads to
the formation of traveling waves and self-sustained oscillations may appear in the
form of ring or spiral waves.

t=5 t=20 t=250

Fig. 14 Excitable medium: evolution of a configuration with 5% of excited states φ = 1, and 95%
of resting states (black), for n = 8 and k = 3.

The Greenberg–Hasting model has some similarity with the “tube-worms” rule
proposed by Toffoli and Margolus [58]. This rule is intended to model the Belousov–
Zhabotinsky reaction and is as follows. The state of each site is either 0 (refractory)
or 1 (excited) and a local timer (whose value is 3, 2, 1 or 0) controls the refractory
period. Each iteration of the rule can be expressed by the following sequence of
operations: (i) where the timer is zero, the state is excited; (ii) the timer is decreased
by 1 unless it is 0; (iii) a site becomes refractory whenever the timer is equal to 2;
(iv) the timer is reset to 3 for the excited sites which have two, or more than four,
excited sites in their Moore neighborhood.

Figure 15 shows a simulation of this automaton, starting from a random initial
configuration of the timers and the excited states. We observe the formation of spiral
pairs of excitations. Note that this rule is very sensitive to small modifications (in
particular to the order of operations (i) to (iv)).

Another rule which is also similar to Greenberg-Hasting and Margolus-Toffoli
tube-worm models is the so-called forest-fire model. This rule describes the prop-
agation of a fire or, in a different context, may also be used to mimic contagion in
case of an epidemic. Here we describe the case of a forest-fire rule. The forest-fire
rule is a probabilistic CA defined on a two-dimensional square lattice. Initially, each
site is occupied by either a tree, a burning tree or is empty. The state of the sys-
tem is parallel updated according to the following rule: (1) a burning tree becomes
an empty site; (2) a green tree becomes a burning tree if at least one of its nearest
neighbors is burning; (3) at an empty site, a tree grows with probability p; (4) A
tree without a burning neighbor becomes a burning tree with probability f (so as
to mimic an effect of lightning). Figure 16 illustrates the behavior of this rule, in a
two-dimensional situation.
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Fig. 15 The tube-worms rule for an excitable media.

Fig. 16 The forest fire rule: green sites correspond to a grown tree, black pixels represent burned
sites and the yellow color indicates a burning tree. The snapshots given here represents three situ-
ations after a few hundred iterations. The parameters of the rule are p = 0.3 and f = 6×10−5.

3.4 Traffic models

Cellular automata models for road traffic have received a great deal of interest during
the past few years (see [68, 62, 14, 49, 45] for instance).

CA models for a single lane car motions are quite simple. The road is represented
as a line of cells, each of them being occupied or not by a vehicle. All cars travel
in the same direction (say to the right). Their positions are updated synchronously.
During the motion, each car can be at rest or jump to the nearest neighbor site, along
the direction of motion. The rule is simply that a car moves only if its destination
cell is empty. This means that the drivers do not know whether the car in front will
move or will be blocked by another car. Therefore, the state si of each cell at location
i is entirely determined by the occupancy of the cell itself and that of its two nearest
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neighbors si−1 and si+1. The motion rule can be summarized by the following table,
where all eight possible configurations (si−1sisi+1)t → (si)t+1 are given

(111)︸ ︷︷ ︸
1

(110)︸ ︷︷ ︸
0

(101)︸ ︷︷ ︸
1

(100)︸ ︷︷ ︸
1

(011)︸ ︷︷ ︸
1

(010)︸ ︷︷ ︸
0

(001)︸ ︷︷ ︸
0

(000)︸ ︷︷ ︸
0

(7)

This cellular automaton rule turns out to be Wolfram rule 184 [64, 68]. It is illus-
trated in fig. 17

time t

time t+1

Fig. 17 Illustration of the basic traffic rule: car with a free cell in front can move. The other ones
stay at rest.

This simple dynamics captures an interesting feature of real car motion: traffic
congestion. Suppose we have a low car density ρ in the system, for instance some-
thing like

. . .0010000010010000010 . . . (8)

This is a free traffic regime in which all the cars are able to move. The average
velocity < v > defined as the number of motions divided by the number of cars is
then

< v f ree >= 1 (9)

On the other hand, in a high density configuration such as

. . .110101110101101110 . . . (10)

only 6 cars over 12 will move and < v >= 1/2. This is a partially jammed regime.
In this case, since a car needs a hole to move to, we expect that the number of

moving cars simply equals the number of empty cells [68]. Thus, the number of
motions is L(1−ρ), where L is the number of cells. Since the total number of car is
ρL, the average velocity in the jammed phase is

< v jam >=
1−ρ

ρ
(11)

From the above relations we can compute the so-called fundamental flow diagram,
i.e. the relation between the flow of cars ρ < v > as a function of the car density
ρ: for ρ ≤ 1/2, we use the free regime expression and ρ < v >= ρ . For densities
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ρ > 1/2, we use the jammed expression and ρ < v >= 1−ρ . The resulting diagram
is shown in figure 18. As in real traffic, we observe that the flow of car reaches a
maximum value before decreasing.
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Fig. 18 Traffic flow diagram. Left: for the simple CA traffic rule. Right: for a urban CA traffic
model, for a configuration of streets as shown in Fig. 19.

A richer version of the above CA traffic model is due to Nagel and Schrecken-
berg [46]. The cars may have several possible velocities u = 0,1,2, ...,umax. Let ui
be the velocity of car i and di the distance, along the road, separating cars i and i+1.
The updating rule is:

• The cars accelerate when possible: ui→ u′i = ui +1, if ui < umax.
• The cars slow down when required: u′i→ u′′i = di−1, if u′i ≥ di.
• The cars have a random behavior: u′′i → u′′′i = u′′i −1, with probability pi if u′′i > 0.
• Finally the cars move u′′′i sites ahead.

This rule captures some important behaviors of real traffic on a highway: velocity
fluctuations due to a non-deterministic behavior of the drivers, and “stop-and-go”
waves observed in high density traffic regime.

Note that a street network can also be described using a CA. A possible approach
is to couple several 1D CA model at each road intersection using a roundabout [14,
10]. This is illustrated in Fig. 19 for a Manhattan-like configuration of streets.

We refer the reader to recent literature for the new developments of this topic.
See for instance [35, 36].
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(a) (b)

Fig. 19 Traffic configuration after 600 iterations, for a car density of 30%. Situation (a) corre-
sponds to a situation where junctions are modeled as roundabouts, whereas image (b) mimics the
presence of traffic lights. In the second case, car queues are more likely to form and the global
mobility is less than in the first case, as shown in the right part of Fig. 18.

4 A simple model for a gas of particles

The HPP rule is a simple example of an important class of cellular automata models:
lattice gas automata (LGA). The basic ingredient of such models are point particles
that move on a lattice, according to appropriate rules so as to mimic a fully discrete
“molecular dynamics.”

This model is mostly interesting for pedagogical reasons as it illustrates many
important features of LGA and lattice Boltzmann (LB) models in a simple way.
However, HPP is of little practical interest because its physical behavior has many
flaws (see for instance Fig. 22) that are cured in more sophisticated models, such as
the famous FHP model [19] which has been shown to reproduce the Navier-Stokes
equations.

The HPP lattice gas automata is defined on a two-dimensional square lattice.
Particles can move along the main directions of the lattice, as shown in figure 20.
The model limits to 1 the number of particles entering a given site with a given
direction of motion. This is the exclusion principle which is common in most LGA
(LGA models without exclusion principle are called multiparticle models [9]).

With at most one particle per site and direction, four bits of information at each
site are enough to describe the system during its evolution. For instance, if at itera-
tion t site r has the following state s(r, t) = (1011), it means that three particles are
entering the site along direction 1,3 and 4, respectively.

The cellular automata rule describing the evolution of s(r, t) is often split in two
steps: collision and propagation (or streaming. The collision phase specifies how the
particles entering the same site will interact and change their trajectories. During
the propagation phase, the particles actually move to the nearest neighbor site they
are traveling to. This decomposition into two phases is a quite convenient way to
partition the space so that the collision rule is purely local.
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Fig. 20 Example of a configuration of HPP particles

Figure 21 illustrates the HPP rules. According to our Boolean representation of
the particles at each site, the collision rules for the two-particle head on collisions
are expressed as

(1010)→ (0101) (0101)→ (1010) (12)

All other configurations are unchanged by the collision process.
After the collision, the propagation phase moves information to the nearest neigh-

bors: the first bit of the state variable is shifted to the east neighbor cell, the second
bit to the north and so on. This gives the new state of the system, at time t +1. Re-
member that both collision and propagation are applied simultaneously to all lattice
site.

The aim of the HPP rule is to reproduce some aspect of the real interactions
between particles, namely that momentum and particle number are conserved during
a collision. From figure 21, it is easy checked that these properties are obeyed: a pair
of zero momentum particles along a given direction is transformed into another pair
of zero momentum along the perpendicular axis.

It is easy to express the HPP model in a mathematical form. For this purpose, the
so-called occupation number ni(r, t) are introduced for each lattice site r and each
time step t. The index i labels the lattice directions (or the possible velocities of the
particles). In the HPP model, the lattice has four directions (north, west, south and
east) and i runs from 1 to 4.

By definition and due to the exclusion principle, the ni’s are Boolean variables

ni(r, t) =
{

1 if a particle is entering site r at time t along lattice direction i
0 otherwise

From this definition it is clear that, for HPP, the ni’s are simply the components of
the state s introduced above

s = (n1,n2,n3,n4)
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(a)

(b)

(c)

time t time t+1

Fig. 21 The HPP rule: (a) a single particle has a ballistic motion until it experiences a collision;
(b) and (c) the two non-trivial collisions of the HPP model: two particles experiencing a head on
collision are deflected in the perpendicular direction. In the other situations, the motion is ballistic,
that is the particles are transparent to each other when they cross the same site.

In a LGA model, the microdynamics can be naturally expressed in terms of the
occupation numbers ni as

ni(r+viδt , t +δt) = ni(r, t)+Ωi(n(r, t)) (13)

where vi is a vector denoting the speed of the particle in the ith lattice direction and
δt is the duration of the time step. The function Ω is called the collision term and
it describes the interaction of the particles which meet at the same time and same
location.

Note that another way to express eq. (13) is through the so-called collision and
propagation operators C and P

n(t +δt) = PCn(t) (14)
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where n(t) describe the set of values ni(r, t) for all i and r. The quantities C and P
act over the entire lattice. They are defined as

(Pn)i(r) = ni(r−viδt) (Cn)i(r) = ni(r)+Ωi

More specifically, for the HPP model, it can be shown [9] that the collision and
propagation phase can be expressed as

ni(r+viδt , t +δt) = ni−nini+2(1−ni+1)(1−ni+3)+ni+1ni+3(1−ni)(1−ni+2)
(15)

In this equation, the values i+m are wrap onto the values 1 to 4 and the right-hand
term is computed at position r and time t. From this relation, it is easy to show that,
for any values of ni,

4

∑
i=1

ni(r+viδt , t +δt) =
4

∑
i=1

ni(r, t) (16)

which expresses the conservation of the number of particle during the collision and
the propagation. Similarly, it can be shown (v1 =−v3 and v2 =−v4) that

4

∑
i=1

ni(r+viδt , t +δt)vi =
4

∑
i=1

ni(r, t)vi (17)

which reflects that momentum is conserved.
The behavior of the HPP model is illustrated in fig. 22. From this simulation it is

clear that some spatially anisotropic behavior builds up during the time evolution of
the rule. A square lattice is actually too poor to represent correctly a fluid system.
The FHP model [19, 9], in essence similar to the HPP one, is based of a hexagonal
lattice and also includes three-particle collision rules.

Fig. 22 Time evolution of a HPP gas with a density wave. (a) The initial state is a homogeneous
gas with a higher density of particles in the middle region (dark area) (b) After several iterations,
the initial perturbation propagates as a wave across the system. As can be observed, there is a clear
lack of isotropy is this propagation.
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5 Lattice Boltzmann models

Historically Lattice Boltzmann (LB) developed as an extension of the CA-fluids
described in the previous section. Another approach is to derive LB models from a
discretization of the classical continuous Boltzmann equation [26, 51].

Here we stick to the historical approach as it better illustrates the close relation
between the numerical scheme and the underlying discrete physical model of in-
teracting particles. The main conceptual difference between LGA and LB models
is that in the latter the cell state is no longer Boolean variables ni but a real-valued
quantity fi for each lattice directions i. Instead of describing the presence or absence
of a particle, the interpretation of fi is the density distribution function of particles
traveling in lattice directions i.

From a practical point of view, the advantages of suppressing the Boolean con-
straint are several: less statistical noise, more numerical accuracy and, importantly,
more flexibility to choose the lattice topology, the collision operator and boundary
conditions. Thus, for many applications, the LB approach is preferred to the LGA
one. On the other hand, LB models do not integrate local fluctuations that are natu-
rally present in a LGA and that can have relevant physical effects [9].

Several textbooks exist which describe in great details the LB approach [7, 54,
9, 63, 56]. The method has been used extensively in the literature to simulate com-
plex flows and other physical processes [9]. For hydrodynamics, the LB method is
now recognized as a serious competitor to the more traditional approaches based on
the computer solution of the Navier-Stokes partial differential equations. Among the
advantages of the LB method over more traditional numerical schemes, we can men-
tion its simplicity, its flexibility to describe complex flows, its local nature (no need
to solve a Poisson equation). Another feature of the LB method is its extended range
of validity when the Knudsen number is not negligible (e.g. in microflows) [2].

5.1 General principles

5.1.1 Definitions

The key quantities to define a LB model are the density distributions fi(r, t) and the
“molecular velocities” vi, for i = 0 . . .z, where z is the lattice coordination number
of the chosen lattice topology and z + 1 is the number of discrete velocities. The
quantity fi then denotes the number of particles entering lattice site r at time t with
discrete velocity vi. Note that vi is a vector so that molecular velocities have a norm
and a direction. For instance, a common choice of velocities in 2D problem is

v0 = (0,0) v1 = v(1,0) v2 = v(1,1) v3 = v(0,1) v4 = v(−1,1)
v5 = v(−1,0) v6 = v(−1,−1) v7 = v(0,−1) v8 = v(1,−1)

(18)
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In these expressions, v is a velocity norm defined as v = δr/δt , with δr being the
lattice spacing and δt the duration of the time step. Both δr and δt can be expressed
in any desired unit system.

From the fi’s and the vi’s we can define the standard physical quantities such as
particle density ρ , particle current ρu, by taking various moments of the distribution

ρ(r, t) = ∑
i

fi(r, t) ρ(r, t)u(r, t) = ∑
i

fi(r, t)vi (19)

The intuitive interpretation of these relations is obvious: the number of particle at
point r and time t is the sum of all particles coming with all velocities; and the total
momentum is the sum of momentum carried by each fi.

In hydrodynamics, it is also important to define higher moments, such as the
momentum tensor

Παβ = ∑
i

fi(r, t)viα viβ

where Greek subscript label spatial coordinates. The tensor Παβ describes the
amount of α-momentum transported along the β -axis.

Following our particle interpretation, we can say that, in a LB model, all particles
entering the same site at the same time from different directions (i.e. particles with
different molecular velocities vi) collide. As a consequence a new distribution of
particles results. Then, during the next time step δt , the particles emerging from the
collision move to a new lattice site, according to their new speed. Therefore, the
dynamic of a LB model is the alternation of collision and propagation phases.

This is illustrated in figs. 23 and 24, for two different lattice topologies in two
dimensions (hexagonal and square lattices). In accordance with figs. 23 and 24, the

Collision Propagation

Fig. 23 Illustration of the collision and propagation phases in a LB model defined on a 2D hexago-
nal lattice, with 6 possible velocities. The arrows represent the particles, their directions correspond
to the vi and their length is proportional fi.

LB dynamics can be written as a collision phase

f out
i (r, t) = f in

i (r, t)+Ωi
(

f in(r, t)
)

(20)

and a propagation1 phase

1 Propagation is often termed streaming in the literature.
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Collision Propagation

Fig. 24 Illustration of the collision and propagation phases in a LB model defined on a 2D square
lattice with 8 velocities.

f in
i (r+δtvi, t +δt) = f out

i (r, t) (21)

where Ω , the collision term is a model specific function describing the outcome of
the particle collision. When subscript i is omitted, Ω denote the all set of Ωi. Below
we will discuss its form. Here we add an upper-script in or out to the distribution
function fi to distinguish the pre-collision distribution f in

i from the post-collision
ones f out

i . When no upper-script is used, we define that f = f in. Therefore, by com-
bining eqs (20) and (21), a LB model can also be expressed as

fi(r+δtvi, t +δt) = fi(r, t)+Ωi ( f (r, t)) (22)

Conservation laws play an important role in building a LB model. When some
physical quantities are known to be conserved in a given phenomena, this conserva-
tion must be reflected exactly by the dynamics of the corresponding LB equation.
For instance, if the number of particle ρ is conserved in the collision process, we
must have

z

∑
i=0

f out
i (r, t) =

z

∑
i=0

f in
i (r, t)

for all r and all t.
From eq. (22), this means that the collision term must obey

z

∑
i=0

Ωi = 0 (23)

Similarly, if momentum is also conserved (as in a fluid), we must have

z

∑
i=0

vi f out
i (r, t) =

z

∑
i=0

vi f in
i (r, t)

and then
z

∑
i=0

viΩi = 0 (24)
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5.1.2 Lattice properties

As we have seen, propagation moves particles with velocity vi from on lattice site
to a neighbor one. As a consequence r + δtvi must also be a point of the lattice.
Thus there is a tight connection between the spatial lattice and the discrete set of
molecular velocities.

In the LB framework, the choice of velocity vi (and consequently the correspond-
ing spatial lattice) is commonly labeled as DdQq, where d is the spatial dimension
(d = 2 for a two-dimensional problem) and q is the number of discrete velocities (or
quantities).

When q is odd, it is assumed that the model includes a rest speed v0 = 0. Then
velocities vi are labeled from i = 0 to q−1 and q = z+1, z being the lattice coordina-
tion number. When q is even, the model contains no rest speed and the velocities vi
are labeled from i = 1 to i = q and q = z. For instance, the D2Q9 lattice corresponds
the velocities given in eq. (18) and illustrated in fig. 25. A D2Q8 lattice is the same,
but without v0. To build a proper LB model, the vi should be carefully chosen. In
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Fig. 25 The D2Q9 lattice with 9 velocities, corresponding to a square lattice, including diagonals.
Note that v0 = (0,0) is not shown on the figure. The right panel shows the ratio of the weights
associated with every direction: the diagaonal directions should have a weight four times smaller
than the main directions in order to ensure the isotropy of the fourth order tensor.

addition to the fact that r + δtvi must correspond to a lattice site, the molecular ve-
locities must have enough symmetry and isotropy properties. In short, tensors built
by summing the velocity components should have enough rotational invariance to
represent the physical process under consideration. To achieve this goal, it is often
necessary to add weights wi to velocity vector vi, as suggested in the right panel of
Fig. 25. In practice it is required that

∑
i

wi = 1 ∑
i

wivi = 0 ∑
i

wiviα viβ = c2
s δαβ (25)
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where δαβ is the Kronecker symbol and cs a coefficient to be determined. For a
D2Q5 lattice v0 = 0, v1 = (v,0), v2 = (0,v), v3 = (−v,0) and v4 = (0,−v), the above
set of conditions is easily fulfilled by choosing w1 = w2 = w3 = w4 = (1−w0)/4 > 0
and c2

s = v2(1−w0)/2 because vi and vi+1 are orthogonal 2D vectors.
Conditions (25) are sufficient to model diffusion processes or wave propaga-

tion [9]. However, to model non-thermal hydrodynamic flows, they are not enough
and must be supplemented by conditions on the third, fourth and five order tensors
that can be built out of the vi’s. These conditions reads

∑
i

wiviα viβ viγ = 0

∑
i

wiviα viβ viγ viδ = c4
s
(
δαβ δγδ +δαγ δβδ +δαδ δβγ

)
∑

i
wiviα viβ viγ viδ viε = 0 (26)

For thermo-hydrodynamic models, even higher order conditions must be con-
sidered, forcing us to add more discrete velocities to the system [51]. We refer the
reader to LB textbooks to better understand the origin and meaning of these isotropy
conditions. Here we shall just accept them as a requirement on a proper choice of
velocity sets. They can be satisfied for a D2Q9 model by taking

w0 = 4/9 w1 = w3 = w5 = w7 = 1/9 w2 = w4 = w6 = w8 = 1/36

for which one gets c2
s /v2 = 1/3.

Three-dimensional models, such as the well known D3Q19 model, can also be
constructed to satisfy eqs. (25) and (26). In the D3Q19 model, the velocity vectors
are defined as

v0 = 0
v1 = v(−1,0,0) v2 = v(0,−1,0) v3 = v(0,0,−1)

v4 = v(−1,−1,0) v5 = v(−1,1,0) v6 = v(−1,0,−1)
v7 = v(−1,0,1) v8 = v(0,−1,−1) v9 = v(0,−1,1)

v10 = v(1,0,0) v11 = v(0,1,0) v12 = v(0,0,1)
v13 = v(1,1,0) v14 = v(1,−1,0) v15 = v(1,0,1)

v16 = v(1,0,−1) v17 = v(0,1,1) v15 = v(0,1,−1) (27)

and the lattice properties are

c2
s /v2 = 1/3 w0 = 1/3 wslow = 1/18 w f ast = 1/36

where wslow concerns the vi of norm v and w f ast the vi of norm
√

2v.
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5.2 Lattice BGK models

We now return to the LB equation (22)

fi(r+δtvi, t +δt) = fi(r, t)+Ωi ( f (r, t)) (28)

and consider a special family of collision terms: the so-called single relaxation time
models, also termed lattice BGK models (LBGK) for its correspondence with the
BGK form of the continuous Boltzmann equation [4].

Although more sophisticated models exist [17, 40, 8], the LBGK is still the most
popular version of a LB model. It reads

fi(r+δtvi, t +δt) = fi(r, t)+
1
τ

(
f eq
i − fi

)
(29)

where f eq is called the local equilibrium distribution; it is a given function which
depends on the phenomena that we want to model (note that when we refer to all fi
or all f eq

i , we drop the subscript i). The quantity τ is the so-called relaxation time.
It is a parameter of the model which is actually related to the transport coefficient
of the model: viscosity for a fluid model, diffusion constant in case of a diffusion
model.

In eq. (29) it is important to note that the local equilibrium distribution f eq de-
pends on space and time only through the conserved quantities. This is a common
assumption of statistical physics. In a hydrodynamic process, where both mass and
momentum are conserved, f eq will then be a function of ρ and u.

Thus, in eq. (29), to compute fi(r + δtvi, t + δt) from the fi(r, t) one first has to
compute ρ = ∑ fi and u = (1/ρ)∑ fivi before computing f eq

i (ρ,u). Then, only, fi
can be updated.

It is beyond the scope of this article to show the equivalence between the LB
model and the differential equations representing the corresponding physical phe-
nomena. This derivation requires rather heavy mathematical calculations and can be
found in several textbooks. See for instance [9, 13, 39] for a derivation based on
the so-called multiscale Chapman-Enskog formalism. Or, see [34] for a derivation
based on the asymptotic expansion. Here we will simply give the important results,
without demonstration.

5.2.1 LBGK Fluid models

A first central ingredient of LB models is to properly enforce the physical con-
servation laws in the collision term. Hydrodynamics is characterized by mass and
momentum conservation which, in the differential equation language, are expressed
by the continuity and Navier-Stokes equations.

From eq. (23) and (24), conservation laws impose conditions on f eq
i when a

LBGK model is considered, namely
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∑
i

f eq
i = ∑

i
fi = ρ ∑

i
vi f eq

i = ∑
i

vi fi = ρu (30)

In addition, in order to recover a hydrodynamic behavior, one imposes that Π
eq
αβ

, the
second moment of f eq, which is the non-dissipative part of the momentum tensor,
has the standard Euler form

Π
eq
αβ

= ∑
i

f eq
i viα viβ = pδαβ +ρuα uβ (31)

where p is the pressure.
Using eq. (25) and (26) it is easy to show that the following expression for f eq

satisfies the conservation laws (30)

f eq
i = f eq

i (ρ,u) = ρwi(1+
viα uα

c2
s

+
1

2c4
s

Qiαβ uα uβ ) (32)

where the Qi’s are tensors whose spatial components are

Qiαβ = viα viβ − c2
s δαβ (33)

Note that in this equation and in what follows, we use Einstein summation con-
vention over repeated Greek indices

viα uα = ∑
α=x,y,z

viα uα

and
Qiαβ uα uβ ≡ ∑

α,β∈{x,y,z}
Qiαβ uα uβ

Note that f eq
i can also be interpreted as a discretization of the Maxwell-Boltzmann

distribution function of statistical physics.
We can also check that the second moment of eq. (32) gives the correct expres-

sion for the Euler momentum tensor (31), provided that the pressure is related to the
density ρ through an ideal gas relation

p = ρc2
s

From this expression. we can interpret the lattice parameter cs as the speed of sound.
The fact that, in a LB model, the pressure is directly obtained from thze density

is an important observation. It means that in a LB fluid model, there is no need to
solve a (non-local) Poisson equation for the pressure, as is the case when solving
Navier-Stokes equations.

Using expression (32) for f eq, the behavior of the LB model (29) can be analyzed
mathematically with, for instance a Chapman-Enskog method. Several important
results are obtained.

It is found that, to order δ 2
t and δ 2

r , and for small Mach number (u� cs), the LB
dynamics implies that ρ and u obey the continuity equation
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∂tρ +∂α ρuα = 0 (34)

and the Navier-Stokes equation

∂tu+(u ·∇)u =− 1
ρ

∇p+ν∇
2u (35)

with a kinematic viscosity ν depending on the relaxation time τ as

ν = c2
s δt(τ−1/2)

The last question we want to address here is how to obtain the expression of f in
terms of the hydrodynamic quantities. It is easy to obtain ρ and u from the fi, using
eq. (19). But the inverse relations, expressing fi as a function of ρ and u is more
difficult. There are z + 1 variables fi and only 1 + d hydrodynamic quantities in d
dimensions. However, in the hydrodynamic limit, it turns out that the derivatives of
u are precisely the missing piece of information.

The first step is to split the density distributions fi as

fi = f eq
i + f neq

i assuming f neq
i � f eq

i

where f eq
i , by its definition (32) is already a function of ρ and u

f eq
i = f eq

i (ρ,u) = ρwi(1+
vi ·u

c2
s

+
1

2c4
s

Qiαβ uα uβ ) (36)

The Chapman-Enskog expansion then gives

f neq
i =−δtτ

wi

c2
s

ρQiαβ ∂α uβ =−δtτ
wi

c2
s

ρQiαβ Sαβ (37)

where Sαβ = (1/2)(∂α uβ +∂β uα) is the so-called strain rate tensor. As we can see
from this relation, the derivatives of u are part of the LB variables.

By taking the second moment of eq. (37) we obtain Π
neq
αβ

, the non-equilibrium
part of the momentum tensor. Due to the lattice properties (25) and (26),

Π
neq
αβ

= ∑
i

viα viβ f neq
i =−2δtτc2

s ρSαβ (38)

Thus, the strain rate tensor can be directly obtained from f neq = f − f eq, without
the need of computing finite differences.

Therefore, with eqs. (19), (36) and (37) we have established relation that allows
us to translate the hydrodynamic quantities to LB quantities and vice-versa ρ

u
Sαβ

↔ ( fi) (39)
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They are valid in the hydrodynamic regime, with u� cs and for δt → 0 and δr→ 0.
In order to illustrate the LBGK method, Fig. 26 shows an example of a LB fluid

simulation, the flow past an obstacle.

Fig. 26 Several stages (from left to right and top to bottom) of the evolution of a flow past an
obstacle, using a D2Q9 LBGK fluid model.

5.3 Diffusion and reaction-diffusion LBGK models

It is actually very easy to devise a LBGK model to describe other physical processes.
The basic equation remains the same, namely

fi(r+δtvi, t +δt) = fi(r, t)+
1
τ

(
f eq
i − fi

)
(40)

What changes is the expression for f eq and also the isotropy requirements of the
lattice. For instance, for a diffusion model, eq. (25) is sufficient because diffusion
does not involve fourth order isotropy constraints. In 2D, a D2Q4 lattice (having
wi = 1/4, c2

s /v2 = 1/2) is enough to model a diffusion process and, in 3D, a D3Q6
lattice (wi = 1/6, c2

s /v2 = 1/2) has enough isotropy.

5.3.1 Diffusion:

To build the local equilibrium distribution corresponding to a diffusion model, we
notice that only the density ρ = ∑ fi is conserved in the process. Then, it is found
that
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f eq
i = wiρ (41)

produces the diffusion equation

∂tρ = D∇
2
ρ

where

D = c2
s δt

(
τ− 1

2

)
is the diffusion coefficient. Also, it is found that the particle current j = −D∇ρ

can be computed from the non-equilibrium part of the distribution function, f neq =
f − f eq =−τδtwiviα ∂α ρ as

j =
(

1− 1
2τ

)
∑

i
vi f neq

i =
(

1− 1
2τ

)
∑

i
vi fi

Advection-diffusion processes

∂tρ +∂α ρuα = D∇
2
ρ

where u(r, t) is a given velocity field, can be modeled by adding an additional term
to the local equilibrium (41)

f eq
i = wiρ(1+

1
c2

s
u ·vi) (42)

If u is the solution of a fluid flow, it is appropriate to add a term wiρ(1/(2c4
s ))Qiαβ uα uβ

to eq. (42). See [15, 55, 11, 23, 50] for more details.

5.3.2 Reaction-diffusion:

In order to simulate a reaction-diffusion process

∂tρ = D∇
2
ρ +R(ρ)

where R is any reaction term, the LB diffusion model can be modified as

fi(r+δtvi, t +δt) = fi(r, t)+
1
τ
( f eq

i − fi)+δtwiR(ρ) (43)

For instance, the reaction A+B→C where C is some inert product can be simulated
by two sets of equations (43), one for species A and one for species B. The reaction
term is chosen as R =−kρA ρB . Fig. 27 shows the evolution of the concentrations of
both species when they are initially mixed.

Another example of a reaction-diffusion process is show is fig. 28. See [12] for
more details.
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Fig. 27 A reaction-diffusion model simulating the A + B→ C reaction. The left panel shows an
early stage and the right panel a later stage of the reaction process. Red denotes regions very rich
in A, yellow indicates regions where A dominates over B. Similarly, green regions are those very
rich is B and blue those where B is slightly more abundant than A.

x=0

A B

direction of the moving front

Fig. 28 A reaction-diffusion model simulating the formation of Liesegang bands in a A + B→C
process, where C can precipitate and forms bands at positions that have interesting geometrical
properties.

5.4 Wave propagation:

Finally, wave propagation can also be described by a LBGK model [9, 13]. In this
case we have to choose τ = 1/2 which ensure the time reversibility of the LB dy-
namics [9], a required symmetry of the wave equation.

Wave processes have two conserved quantities, ρ = ∑ fi which can be any scalar
quantity obeying a wave process, and its current j = ∑ fivi. However, as opposed to
flow and diffusion models, the fi are no longer positive quantities and they oscillate
between a minimal negative value and a maximum positive one.

The appropriate form of the local equilibrium is found to be

f eq
i = wiρ +wi

j ·vi

c2
s
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f eq
0 = w0ρ (44)

In the continuous limit, eq. (40) with eq. (44) yield

∂tρ +∂β jβ = 0

∂t jα − c2
s ∂α ρ = 0 (45)

When combined, these two equations give the wave equation

∂
2
t ρ− c2

s ∇
2
ρ = 0 (46)

The rest population f0 allows us to adjust the speed of the wave from place to
place by having the value of w0 depend of spatial location r or time t.

As for the diffusion case, a second order isotropy is enough for the wave equa-
tion. Therefore D2Q5 and D3Q7 lattices are appropriate. For other topologies it is
important to use the same weight wi = w for all non-zero velocities. It means that
the second order isotropy condition now reads

∑
i≥1

viα viβ = zc2
maxδαβ (47)

for some coefficient cmax and for z the lattice coordination number. For D2Q5 and
D3Q7, it easy to show that c2

max/v2 = 2/z.
When wi = w, we conclude form the condition

1 = ∑
i≥0

wi = w0 + zw

that
w =

1−w0

z
(48)

Therefore
∑
i≥1

wiviα viβ = (1−w0)c2
maxδαβ (49)

and we obtain
c2

s = (1−w0)c2
max (50)

A consequence of this relation is that we must impose w0 < 1. Note that this way of
adjusting cs is only possible for processes which do not require fourth order isotropy.
For a fluid model, there is however a way to adjust the speed of sound [1, 67, 13].

The numerical stability of the LBGK wave model is guaranteed because a quan-
tity, termed energy,

E =
w
w0

f 2
0 + ∑

i≥1
f 2
i (51)

is conserved during the collision step
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Eout =
w
w0

(
f out
0
)2 + ∑

i≥1

(
f out
i
)2 =

w
w0

(
f in
0
)2 + ∑

i≥1

(
f in
i
)2 = E in (52)

The proof of this condition also requires that wi = w for i 6= 0. When (w/w0)≥ 0, the
numerical stability of the model is guaranteed because, with E given, the fi cannot
diverge to ±∞.

With 0≤ w0 < 1 we obtain from (50) that the speed of the wave is such that

0 < cs ≤ cmax

the maximum speed being achieved with w0 = 0 i.e. without a rest population f0.
The refraction index is defined as

n =
cmax

cs

Using eqs. (48) and (50) when then obtain

w =
1
z

c2
s

c2
max

=
1

n2z
w0 = 1− c2

s

c2
max

=
n2−1

n2 (53)

With the above value of wi and the fact that τ = 1/2, the LBGK wave model can
also be written as

f out
i =

2
n2z

ρ +
2

zc2
max

vi · j− fi

f out
0 = 2

n2−1
n2 ρ− f0 (54)

Fig. 29 illustrates this model with a D2Q5 lattice. A plane wave is produced on
the left side of the domain and propagates to the right where it penetrates in a lens
shaped media with slower propagation speed.

Fig. 29 LB model simulating the propagation of a wave in a lens. The colors represent the energy
E.
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Note that in [9, 13, 43] the above model is investigated for its capability to model
deformable elastic solids. Fig. 30 illustrates an application of the wave model to
describe a fracture process.

Fig. 30 Fracture process in a LB model for an elastic solid body.

Finally note that the LBGK wave model is also known in the literature as the
Transmission Line Matrix model [28] and has been derived in several different con-
texts [59].

5.5 Boundary conditions

Boundary conditions are an important aspect of a LB model. It is not an easy ques-
tion to properly specify the values of the distributions fi at the limit of the compu-
tational domain. Clearly, to apply the collision phase, all fi must be defined. But
at a boundary cell, the propagation phase does not provide any information from
outside the domain. This is illustrated in fig. 31. These unknown distributions must
be specified according to the desired behavior of the system at the boundary.

Following this procedure, the time evolution of a LB model can then be repre-
sented by the following loop in a computer program

for t=0 to tmax
boundary
observation
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Collision Propagation

Fig. 31 At the boundary of the domain, the density distribution coming from outside the system
are not known. Specific boundary conditions must be used to define them.

collision
propagation

endfor

Note that here we have introduced a new operation, termed observation in the LB
execution loop. This is were measurement can be done on the system. It is important
to remember that fi actually denotes f in so that the theoretical results showing the
correspondence between LB and physical quantities are only valid after the propa-
gation step and before collision. Obviously, quantities such as ρ that are conserved
during the collision can be measure after collision too. But, in hydrodynamics, this
is not the case of the strain rate Sαβ .

In what follow we focus the discussion on simple hydrodynamical LB models.
In practice, the way to impose a boundary condition is to use the correspondence
expressed in eq. (39) to build the missing fi from the desired values of the fluid
variables at the boundary.

A standard situation is shown in Fig. 32, for a D2Q9 lattice. The density dis-
tributions f2, f3 and f4 must be determined before applying the collision operator.
Assuming that the y-axis is vertical and pointing upwards, we have the following
relations (in lattice units where v = 1)

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

ρuy = f2 + f3 + f4− f6− f7− f8 (55)

From these equations, we get

ρ−ρuy = f0 + f1 + f5 +2( f6 + f7 + f8) (56)

The right-hand side of this equation is fully know.
In case u = (ux,uy) is specified at the boundary (velocity boundary condition),

we can compute ρ consistently [33]

ρ =
f0 + f1 + f5 +2( f6 + f7 + f8)

1−uy
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Fig. 32 For a flat wall at the lower boundary of a D2Q9 lattice, the distributions f2, f3 and f4 are
unknown and must be computed according to the desired boundary condition.

Once ρ and u are known, f eq
i (ρ,u) is also known for all i, due to eq. (36). Then, we

can certainly compute f neq
i = fi− f eq

i for i ∈ {0,1,5,6,7,8}.
From these quantities we can now compute f neq

i for the missing directions i =
2,3,4 by imposing that their non-equilibrium part obeys eq. (37), which tells us that
f neq
i = f neq

opp(i), where j = opp(i) is the index such that v j =−vi.
Unfortunately, there is no guarantee that this choice of the non-equilibrium

parts of the distributions is globally consistent. For instance we may well find that
∑i f neq

i 6= 0 which is inconsistent with eq. (55). The solution to this problem is a
regularization step, in which the f neq

i are redistributed over all directions. This step
can be explained as follows: first we compute

Π
neq
αβ

= ∑
i

viα viβ f neq
i

from the f neq
i obtained above. Second, by combining eq. (37) and (38) we get

f neq
i = −δtτ

wi

c2
s

ρQiαβ Sαβ

=
wi

2c4
s

Qiαβ Π
neq
αβ

(57)

This equation allows us to recompute all f neq
i (i = 0, . . . ,z) from the previous ones.

All the fi are then redefined to their regularized value

fi = f eq
i + f neq

i i = 0, . . . ,z

This terminates the calculation of the boundary condition for u imposed at the
wall and guarantees the proper values of ρ and u at the wall since ∑i wiQiαβ =
∑i wiviQiαβ = 0
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If, instead of u, ρ is the prescribed quantity at the boundary (pressure boundary
condition), we can determine the consistent flow speed uy from eq. 56

uy = 1− f0 + f1 + f5 +2( f6 + f7 + f8)
ρ

By choosing for instance ux = 0 we then obtain f eq
i , for all i. Then, the same reg-

ularization procedure as explained above can be used to compute all the fi at the
wall.

We refer the reader to [69, 41] for a detailed discussion of the above on-site
boundary condition and to [5, 25, 38, 37] for a discussion of boundary conditions
that are not located on lattice sites, or moving boundary conditions.

However, another simple solution to specify a boundary condition is to exploit
the mesoscopic interpretation of the fi as particles traveling with velocity vi. Follow-
ing this idea, a very popular way to impose a boundary with zero velocity (no-slip
condition) is to bounce back the particles from where they came. This is illustrated
in fig. 33 (b). Using such a bounce back condition actually means a redefinition of

(a) (b)

Fig. 33 Boundary conditions based on the particle interpretation of the LB method. The white
arrows represent f in and the black ones indicate f out . (a) A free slip condition (specular reflection).
(b) The bounce back rule to create a no-slip boundary condition on a wall.

the collision operator of the LB model on the boundary cells

f out
i = f in

opp(i)

where opp(i) is the direction such that vi =−vopp(i)
In addition to the bounce back rule, periodic boundary condition can be used

when appropriate. For instance, when simulating the flow in a straight tube, on can
sometimes say that the particles leaving the tube through the outlet are re-injected
in the inlet. In such a situation it is also convenient to add a body force F to create
and maintain the flow in the tube. The LBGK fluid model can then be modified as
follows

fi(r+δtvi, t +δt) = fi(r, t)+
1
τ

(
f eq
i − fi

)
+wi

δt

c2
s

ρvi ·F (58)
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in order to reproduce a Navier-Stokes equation with external force

∂tu+(u ·∇)u =− 1
ρ

∇p+ν∇
2u+F (59)

Note that this way of adding a body force on a LBGK fluid model is only possible
is F is constant in space and time. For a more general body force, refer to [24].

5.6 Examples of LB modeling

The LB method has been used in many cases, from sediment transport to blood flow
and clotting processes, to shallow water flow, just to mention a few applications.
For the sake of illustration we show in this section the result of some simulations
obtained with a LB model for complex flows, without detailed explanations. More
examples and on-line animations can be found on the web2,3 and in a vast body of
literature on LB models.

By coupling an advection-diffusion LB model for a temperature field with a fluid
LB model with gravity force, it is possible to model a thermal fluid in the Boussi-
nesq approximation and, in particular, the well-known Rayleigh-Benard convection
(instability that appears when a fluid is heated from below). This is illustrated in
Fig. 34.

Fig. 34 A lattice Boltzmann simulation of a Rayleigh-Benard convection.

An interesting capability of the LB fluid models is to consider multicomponent
flows. In short, two-fluid models are implemented with, in addition, a repulsive
coupling between them. Several ways exist to create the separation of the compo-
nents [44, 57]. Fig. 35 shows a simulation of the Rayleigh-Taylor instability which
occurs when a heavy fluid layer is on top of a lighter one. Fig. 36 represents the
evolution of droplets in suspension in another fluid subject to a shear flow.

Fig. 37 illustrates a two-component system (gas+liquid), in a porous media, with
a buoyancy force field. Bubbles of gas are produced at the lower part of the system
and they rise inside a porous media.

2 http://cui.unige.ch/∼chopard/CA/Animations/root.html
3 http://www.lbmethod.org
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Fig. 35 Rayleigh-Taylor instability with two immiscible LB fluids. The blue fluid is more heavy
than the black one.

Fig. 36 Evolution of bubbles in a shear flow.

6 Conclusions

In this article we have presented the concepts underlying the CA and LB approaches.
We have developed the ideas using a mesoscopic level of description. Physical sys-
tems are represented by idealized entities evolving on a discrete space-time universe.
Implementing the correct conservation laws and symmetry in this virtual discrete
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Fig. 37 Bubbles rising in a fluid inside a porous media.

mesoscopic universe ensures that the observed macroscopic behavior of the system
is close enough to that of the corresponding physical system.

The clear relation that exists between the model and the real process makes CA
and LB methods very intuitive. As such they offer a new language to describe phys-
ical systems (as illustrated in fig. 1) which has proven quite powerful in interdisci-
plinary research.

The simplicity and flexibility of the approach makes it very appropriate to de-
scribe many complex systems for which more traditional numerical methods are
difficult to apply.

CA are by definition fully discrete numerical models. Usually they have only a
few possible states per cell and they can be implemented very efficiently on low cost
dedicated hardware. Since CA models only require integer values, their numerical
implementation is exact. No numerical instabilities or truncation error affect the
simulation.

LB model offer a higher level of abstraction and consider real-valued vari-
ables. They offer much more flexibility than CA to implement a given interaction
rule. However, they can be numerically unstable. LB methods are now acknowl-
edged as a powerful way to simulate hydrodynamics and specifically complex flu-
ids in time dependent regimes. The reader interested to use the LB method can
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learn more in the several textbooks mentioned earlier and by exploring the website
www.lbmethod.org.

A current challenging issue in computational science is multiscale, multiscience
modeling. Many real life problems cover a wide range of spatial and temporal scales
and include different processes. Biomedical applications are a good example where
physical processes (e.g. hemodynamics) interact with a much slower biological ones
at a microsopic scale (e.g tissue modifications). Often, scales can be separated in the
sense that the full system can be represented as several coupled submodels, each of
them corresponding to a given scale and a given process.

Coupling different CA and LB models together is possible and has been inves-
tigated recently [30, 29] using the concept of CxA (Complex Automata) A CxA is
a graph whose nodes are CA or LB models and the edges implement the coupling
strategies. A software framework [27] offers a way to realize such a graph of sub-
models and to simulated challenging biomedical applications [18].
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