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Examples of models and methods

I N-body systems, molecular dynamics

I Mathematical equations : ODE, PDE

I Monte-Carlo methods (equilibrium, dynamic, kinetic)

I Cellular Automata and Lattice Boltzmann method

I multi-agent systems

I Discrete event simulations

I Complex network

I L-systems.......



What is a model ?

Many definitions :

I Simplifying abstraction of reality

I containing only the essential elements with respect to the
problem

I A mathematical or rule-based representation of a phenomena
I But a model may also be :

I A fit of data
I An animal (medical study)
I ...



What is a good model ?

A Einstein :

Everything should be made as simple as possible, but not
simnpler

I In silico simulations : understand, predict and control a process

I Allows scientists to formulate new questions that can be
addressed experimentally or theoretically

I Adapt the model to the problem



Discrete Event Simulations
Do ants find the shortest path between nest and food ?
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Magritte’s apple

I A model is only a model, not reality



Magritte’s apple

I A model is only a model, not reality



Same reality, different models, different languages

Hydrodynamics

∂tu + (u · ∇)u = −1

ρ
∇p + ν∇2u

phenomenon → PDE→ discretization → numerical solution



From PDEs to virual universe

One defines a discret universe as an abstraction of the real world

phenomenon → computer model

Collision Propagation



Multi-Agent Model

I Set of bacteria moving in space with concetration ρ(x , y) of
nutrient

I Let ρi (t) be the concentration seen by bacteria bi at time t

I if ρi (t) ≥ ρi (t − δt), the bacteria move straight with
probability 0.9

I if ρi (t) < ρi (t − δt), the bacteria move straight with
probability 0.5

I Otherwise it makes a random turn

I Movie

file:///home/bastien/Desktop/Movie/bacteria.avi


Beyond the physical space : complex network

A model of opinion propagation in a social network

(Lino Velasquez, UNIGE)



Voter model : time evolution



L-systems F → F [+F ]F [−F ]F , β = 25o.
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Code for 3 iterations



Cellular Automata

B. Chopard et M. Droz : Cellular Automata Modeling of Physical
Systems, Cambridge University Press, 1998.

B. Chopard, Cellular Automata and lattice Boltzmann modeling of
physical systems, Handbook of Natural Computing, Rozenberg,
Grzegorz ; Bäck, Thomas ; Kok, Joost N. (Eds.) Springer, pp.

287–331, 2013



Definition

What is a Cellular Automata ?

I Mathematical abstraction of the real world, modeling
framework

I Fictitious Universe in which everything is discrete

I But, it is also a mathematical object, new paradigm for
computation

I Elucidate some links between complex systems, universal
computations, algorithmic complexity, intractability.



Example : the Parity Rule

I Square lattice (chessboard)

I Possible states sij = 0, 1

I Rule : each cell sums up the states of its 4 neighbors (north,
east, south and west).

I If the sum is even, the new state is sij = 0 ; otherwise sij = 1

Generate “complex” patterns out of a simple initial condition.



Pattern generated by the Parity Rule

t=0 t=31 t=43

t=75 t=248 t=292

t=357 t=358 t=359

t=360 t=511 t=571



CA Definition

I Discrete space A : regular lattice of cells/sites in d dimensions.

I Discrete time

I Possible states for the cells : discrete set S

I Local, homogeneous evolution rule Φ (defined for a
neighborhood N ).

I Synchronous (parallel) updating of the cells

I Tuple : < A,S ,N ,Φ >



Neighborhood

I von Newmann

I Moore

I Margolus

I ...

ll lr

ul ur

(b)(a)



Boundary conditions

I periodic

I fixed

I reflexive

I ....

b a b

periodic

1 a

fixed

a a

adiabatic

b a b

reflection



Generalization

I Stochastic CA

I Asynchronous update : loss of parallelism, but avoid
oscillations

I Non-uniform CA



Implementation of the evolution rule

m states per cells, k neighbors.

I On-the-fly calculation

I Lookup table

I Finite number of possible universes : mmk
possible rules where

m is the number of states per cell and k the number of
neighbors.



Historical notes

I Origin of the CA’s (1940s) : John von Neumann and S. Ulam

I Design a better computer with self-repair and self-correction
mechanisms

I Simpler problem : find the logical mechanisms for
self-reproduction :

I Before the discovery of DNA : find an algorithmic way
(transcription and translation)

I Formalization in a fully discrete world

I Automaton with 29 states, arrangement of thousands of cells
which can self-reproduce

I Universal computer



Langton’s CA

I Simplified version (8 states).

I Not a universal computer

I Structures with their own fabrication recipe

I Using a reading and transformation mechanism



Langton’s CA : basic cell replication



Langton’s Automaton : spatial and temporal evolution



Langton’s CA : some conclusions

I Not a biological model, but an algorithmic abstraction

I Reproduction can be seen from a mechanistic point of view
(Energy and matter are needed)

I No need of a hierarchical structure in which the more
compicated builds the less complicated

I Evolving Hardware.



CA as a mathematical abstraction of reality

I Several levels of reality : macroscopic, mesoscopic and
microscopic.

I The macroscopic behavior depends very little on the details of
the microscopic interactions.

I Only “symmetries” or conservation laws survive. The
challenge is to find them.

I Consider a fictitious world, particularly easy to simulate on a
(parallel) computer with the desired macroscopic behavior.



A Caricature of reality

t=4 t=10 t=54

What is this ?



The real thing

Wilson Bentley, 1902



Snowflakes model

I Very rich reality, many different shapes

I Complicated true microscopic description

I Yet a simple growth mechanism can capture some essential
features

• A vapor molecule solidifies (→ice) if one and only one
already solidified molecule is in its vicinity
• Growth is constrained by 60o angles



Examples of CA rules
Cooperation models : annealing rule

I Growth model in physics : droplet, interface, etc
I Biased majority rule : (almost copy what the neighbors do)

Rule :

sumij(t) 0 1 2 3 4 5 6 7 8 9

sij(t + 1) 0 0 0 0 1 0 1 1 1 1

The rule sees the curvature radius of domains



Cells differentiation in drosophila

In the embryo all the cells are identical. Then during evolution they
differentiate

I slightly less than 25% become neural cells (neuroblasts)

I the rest becomes body cells (epidermioblasts).

Biological mechanisms :

I Cells produce a substance S (protein) which leads to
differentiation when a threshold S0 is reached.

I Neighboring cells inhibit the local S production.



CA model for a competition/inhibition process

I Hexagonal lattice

I The values of S can be 0 (inhibited) or 1 (active) in each
lattice cell.

I A S = 0 cell will grow (i.e. turn to S = 1) with probability
pgrow provided that all its neighbors are 0. Otherwise, it stays
inhibited.

I A cell in state S = 1 will decay (i.e. turn to S = 0) with
probability pdecay if it is surrounded by at least one active cell.
If the active cell is isolated (all the neighbors are in state 0) it
remains in state 1.



Differentiation : results

(b)(a)

The two limit solutions with density 1/3 and 1/7, respectively.

I CA produces situations with about 23% of active cells, for
almost any value of panihil and pgrowth.

I Model robust to the lack of details, but need for hexagonal
cells



Excitable Media, contagion models

I 3 states : (1) normal (resting), (2) excited (contagious), (3)
refractory (immuned)

1. excited → refractory
2. refractory→ normal
3. normal → excited, if there exists excited neighbors (otherwise,

normal → normal).



Greenberg-Hastings Model

I s ∈ {0, 1, 2, ..., n − 1}
I normal : s = 0 ; excited s = 1, 2, ..., n/2 ; the remaining states

are refractory

I contamination if at least k contaminated neighbors.

t=5 t=110

t=115 t=120



Belousov-Zhabotinski (tube worm)

The state of each site is either 0 or 1 ; a local timer with values 0,
1, 2 or 3 controls the 0 period.

(i) where the timer is zero, the
state is excited ;

(ii) the timer is reset to 3 for the
excited sites which have two, or
more than four, excited sites in
their Moore neighborhood.

(iii) the timer is decreased by 1
unless it is 0 ;



Forest fire

(1) a burning tree becomes an
empty site ;

(2) a green tree becomes a burning
tree if at least one of its nearest
neighbors is burning ;

(3) at an empty site, a tree grows
with probability p ;

(4) A tree without a burning
nearest neighbor becomes a
burning tree during one time
step with probability f
(lightning).



Complex systems

Rule of the Game of Life :

I Square lattice, 8
neighbors

I Cells are dead or alive
(0/1)

I Birth if exactly 3
living neighbors

I Death if less than 2
or more than 3
neighbors

t t+10 t+20



Complex Behavior in the game of life

Collective behaviors develop (beyond the local rule)
“Gliders” (organized structures of cell) can emerge and can move
collectively.

t=0 t=1 t=2 t=3 t=4



Complex Behavior in the game of life

A glider gun (image : Internet)

I There are more complex structures with more complex
behavior : a zoology of organisms.

I The game of life is a Universal computer



Langton’s ant

This is an hypothetical animal moving on a 2D lattice, acoring to
simple rules, which depend on the color of the cell on which the
ant sits.



The rules



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Some evolution steps



Where does the ant go in the long run

I Animation...

I t=6900 t=10431 t=12000



Where does the ant go in the long run

I Animation...

I t=6900 t=10431 t=12000



The ants always escape to infinity

for any initial coloration of the cells



What about many ants ?

I Adapt the “change of
color” rule

I Cooperative and
destructive effects

I The trajectory can be
bounded or not

I Past/futur symmetry
explains periodic motion

t=2600 t=4900 t=8564



Impact on the scientific methodolgy

I The laws are perfectly known

I But we cannot predict the details of the movements (when
does a highway appears)

I Microscopic knolwdge is not enough to predict the
macroscopic behavior

I Then, the only solution is the observe the behavior

I The only information we have on the trajectory are the reflect
of the symmetries of the rule



Prediction means to compute faster than reality
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Prediction means to compute faster than reality

(a) (b) (c)



Wolfram’s rules
256 one-dimensional, 3 neighbors Cellular Automata :

(a) (b) (c) (d)

Coombs, Stephen 2009, The Geometry and Pigmentation of Seashells



Wolfram’s rules : complexity classes

(a) (b) (c) (d)

I Class I Reaches a fixed point

I Class II Reaches a limit cycle

I Class III self-similar, chaotic attractor

I Class IV unpredicable persistent structures, irreducible,
universal computer

Note : it is undecidable whether a rule belongs or not to a given
class.



Wolfram’s rules : 1D, 5 neighbors



Other simple rules

I time-tunnel

Sum(t) = C (t) + N(t) + S(t) + E (t) + W (t)

C (t + 1) =

{
C (t − 1) if Sum(t) ∈ {0, 5}
1− C (t − 1) if Sum(t) ∈ {1, 2, 3, 4}

I random

C (t + 1) = (S(t).and .E (t)).xor .W (t).xor .N(t).xor .C (t)

I string : a one-dimensional spring-bead system



Traffic Models

A vehicle can move only when the downstream cell is free.

time t

time t+1



Flow diagram

The car density at time t on a road segment of length L is defined
as

ρ(t) =
N(t)

L

where N is the no of cars along L
The average velocity < v > at time t on this segment is defined as

< v >=
M(t)

N(t)

where M(t) is the number of car moving at time t
The traffic flow j is defined as

j = ρ < v >



Flow diagram of rule 184
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Traffic in a Manhattan-like city
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Case of the city of Geneva

I 1066 junctions

I 3145 road
segments

I 560886 road cells

I 85055 cars

Origin

Destination

1

3

2

4
3

1
4

2



Travel time during the rush hour
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Lattice gases

Fully discrete molecular dynamics



Example : HPP model collision rules

I HPP : Hardy, Pomeau, de
Pazzis, 1971 : kinetic theory of
point particles on the D2Q4
lattice

I FHP : Frisch, Hasslacher and
Pomeau, 1986 : first LGA
reproducing a (almost) correct
hydrodynamic behavior
(Navier-Stokes eq.)

(a)

(b)

(c)

time t time t+1

Exact mass and momentum conservation : that is what really
matters for a fluid ! ! !



FHP model

p=1/2

p=1/2

Stochastic rule with Conservation of mass and momentum.



Flow past an obstacle (FHP)



Why can such a simple model work ?

I At a macroscopic scale, the detail of the interaction does not
matter so much

I Only conservation laws and symmetries are important

I We can invent our own fluid, especially one adapted to
computer simulation



Demos

I Pressure/density wave : aniotropy

I Reversibility

I Spurious invariants : momentum along each line and column,
checkerboard invariant

I Diffusion, DLA, reaction-diffusion models

I Snow transport by wind



Lattice Boltzmann (LB) models

I Lattice Gases implement an exact dynamics

I But they require large simulations, statistical averages and
have little freedom to adjust problem parameters

I In the early 1990s, the discrete Boltzmann equation describing
the average dynamics of a lattice Gas was re-interpreted (with
improvements) as a flow solver

I → Lattice Boltzmann models



The lattice Boltzmann (LB) method : the historical way

I Historically, LB was born from Lattice Gases, discrete kinetic
models of colliding particles

I Now the LB method is often derived by a discretization
procedure (in velocity, space and time variables) of the
standard Boltzmann equation

∂t f (v , r , t) + v · ∂r f (v , r , t) = Ω(f )

I where f (v , r , t) is the density distribution of particles at
location r , time t, with velocity v .



The Lattice Boltzmann scheme : definitions

v1

v2

v3

v4

v5

v6 v7 v8

I Possible particle velocities : vi , i = 0, 1, ..., q − 1

I Lattice spacing : ∆x , time step : ∆t, |vi | = ∆x/∆t.

I f ini (r, t) is the density of particle entering site r with velocity
vi , at time t.

I Density : ρ(r, t) =
∑

i f
in
i ;

I Velocity : ρu =
∑

i f
in
i vi

I Momentum tensor Παβ =
∑

i f
in
i (r, t)viαviβ



The Lattice Boltzmann scheme : definitions

Collision Propagation

I Possible particle velocities : vi , i = 0, 1, ..., q − 1

I Lattice spacing : ∆x , time step : ∆t, |vi | = ∆x/∆t.

I f ini (r, t) is the density of particle entering site r with velocity
vi , at time t.

I Density : ρ(r, t) =
∑

i f
in
i ;

I Velocity : ρu =
∑

i f
in
i vi

I Momentum tensor Παβ =
∑

i f
in
i (r, t)viαviβ
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The Lattice Boltzmann scheme : definitions
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∑
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∑
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in
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The Lattice Boltzmann scheme : dynamics

Collision Propagation

I Collision : f outi = f ini + Ωi (f )

I Propagation : f ini (r + ∆tvi , t + ∆t) = f outi (r, t)

Collision and Propagation :

fi (r + ∆tvi , t + τ) = fi (r, t) + Ωi (f ) (1)

where f = f in



The single relaxation time LB scheme (BGK)

The collision term Ωi is a relaxation towards a prescribed local
equilibrium distribution

Ωi (f ) =
1

τ
(f eqi (ρ,u)− fi ) (2)

where

f eqi = ρwi (1 +
vi · u
c2s

+
1

c4s
Qiαβuαuβ) (3)

contains the desired physics (here hydrodynamics) and Qiαβ is

Qiαβ = viαviβ − c2s δαβ

τ is a constant called the relaxation time



Choice of the vi and lattice weight wi

The “microscopic” velocities vi must be such that there exists
constants wi and c2s so that :∑

i

wi = 1∑
i

wivi = 0∑
i

wiviαviβ = c2s δαβ∑
i

wiviαviβviγ = 0∑
i

wiviαviβviγviδ = c4s (δαβδγδ + δαγδβδ + δαδδβγ)∑
i

wiviαviβviγviδviε = 0 (4)



Lattice Geometries DdQq

d is the space dimension and q the number of microscopic
velocities

I D2Q9 : 2D, square lattice with diagonals and rest particles.

I D3Q19 : 3D, with rest particles

have enough symmetries.

v1

v2

v3

v4

v5

v6 v7 v8

w0 = 4/9 w1 = w3 = w5 = w7 = 1/9

w2 = w4 = w6 = w8 = 1/36



Continuous limit

Up to order O(∆x2) and O(∆t2), and provied that Ma << 1, the
LB eq.

fi (r + ∆tvi , t + τ) = fi (r, t) +
1

τ
(f eqi − fi ) (5)

is equivalent to Navier-Stokes equations{
∂tρ+ ∂αρuα = 0
∂tu + (u · ∇)u = −1

ρ∇p + ν∇2u
(6)

for ρ =
∑

i fi and ρu =
∑

i fiu.



Properties :

Viscosity :
ν = c2s ∆t(τ − 1/2)

Pressure :
p = ρc2s

Thus, LB-fluids are compressible



Relations between the fi ’s and the hydrodynamic quantites

Hydrodynamic quantities
from the fi

fi from the hydrodynamic quantities

I ρ =
∑

i fi
I ρu =

∑
i fivi

I Παβ =
∑

i viαviβfi

I f = f eq + f neq

I f eqi = ρwi (1 + vi ·u
c2s

+ 1
2c4s

Qiαβuαuβ)

I f neqi = −∆tτ wi
c2s
QiαβρSαβ

where
Sαβ = (1/2)(∂αuβ + ∂βuα)

and
Qiαβ = viαviβ − c2s δαβ



Boundary conditions

(a) (b) (c)

(a) Specular reflection, (b) bounce back condition and (c) trapping
wall condition
The Bounce Back rule implements a no-slip condition. It is the
most common choice :

f outi = f in−i



Boundary conditions : beyond bounce-back

f
1

f
2
f
3

f
4

f
5

f
6

f
7f

8

Compute the missing population so as to have the desired physical
properties



Pros and cons on the LB method

+ Closer to physics than to
mathematics

+ Quite flexible to new
developments, intuitive,
multiphysics

+ Complicated geometries,
cartesian grids

+ no need to solve a Poisson
equation

+ Parallelization

- Recent methods

- No efficient unstructured
grids

- Intrinsically a time
dependent solver

- Not always so easy

- Still some work to have a
fully consistent
thermo-hydrodynamical
model.



More advantages...

I Streaming is exact

I Non-linearity is local

I Numerical viscosity is negative

I Extended range of validity for larger Knudsen numbers

I Palabos open source LB software (http ://www.palabos.org)



Wave equation

v
1

v
2

v
3

v
4

f1

f0

f1

f2

f3

f4

(a) (b)

fi (r + τvi , t + τ) = fi (r, t) + 2(f eqi − fi ) (7)

f eqi = aρ+ bu · vi
Conservation of ρ, its current u and time reversibility. Note that∑

f 2i is also conserved.
This is equivalent to

∂2t ρ+ c2∇2ρ = 0



CA for Reaction-Diffusion processes

p
0

p p
2

p

A B C A B

C

ν=1 ν=0

Diffusion Reaction



LB Reaction-Diffusion

fi (r + ∆tvi , t + τ) = fi (r, t) + ω(f eqi − fi ) +
∆t

2d
R (8)

with R the reaction term (for instance R = −kρ2). and

f eq =
1

2d
ρ

This is equivalent to

∂tρ = D∇2ρ+ R



Demos

http ://cui.unige.ch/∼chopard/CA/Animation/root.html



Palabos : an Open-Source solver (UNIGE)
Multiphysics, same code from laptop to massively parallel
computer : (www.palabos.org)

Droplet Pumps Washing machines

Energy converter Air conditioning sedimentation

http://www.palabos.org
file:///home/bastien/Desktop/Movie/Droplet/palabos_bursting_bubble_side.flv
file:///home/bastien/Desktop/Movie/Palabos/splashing_pump.wmv
file:///home/bastien/Desktop/Movie/Palabos/washing_machine_surfaces.avi
file:///home/bastien/Desktop/Movie/MARINET/movie.mp4
file:///home/bastien/Desktop/Movie/Palabos/palabos_airconditioning_comparison.wmv
file:///home/bastien/Desktop/Movie/Palabos/d.avi


Simulation of river Rhone in Geneva

file:///home/bastien/Desktop/Movie/Rhone/uNorm_wholeRhone.avi
file:///home/bastien/Desktop/Movie/Rhone/ma2.avi
file:///home/bastien/Desktop/Movie/Rhone/FS_movie_outlet.avi
file:///home/bastien/Desktop/Movie/Rhone/palabos_rhone_draining.avi


How to treat cerebral aneuryms : flow diverters

I The stent
reduces
bloodflow in
the aneurysm

I Clotting is
induced in the
aneurysm

Our goal is to elucidate the mechanisms leading to thrombus
formation from biological knowledge and numerical modeling



Fully resolved simulation with a flow diverter

Pipeline flow diverter from EV3-COVIDIEN
∆x ∆t diameter # fluid nodes Re

25 µm 1 µs 3.7 mm 40 millions ≈ 300

CPU time : 10 days (on 120 Westmere
Intel cores)

file:///home/bastien/Desktop/Movie/Aneurysm/palabos_artery_stent_unsteady.avi
file:///home/bastien/Desktop/Movie/Aneurysm/NoForceRED2.mov


Spatio-temporal Thrombosis Model

I Low shear : creation of TF, then
thrombin from endothelial cells

I Fibrinogen and anti-thrombin are in
suspension, brought by fresh blood

I thrombin+fibrinogen → fibrin
(=clot)

I thrombin+anti-thrombin → 0

I Platelets attach to the fibrin,
compact the clot and allow
re-endothelialization

I Clot stops to grow when all
thrombin molecules have been
consumed

Need clever multiscale solutions for the numerical implementation



Thrombosis Model

Pulsatile versus steady flow
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file:///home/bastien/Desktop/Movie/Aneurysm/animPart_Density.avi
file:///home/bastien/Desktop/Movie/Aneurysm/animSteady.avi


Simulation of the thrombus in giant aneurysm
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Mean velocity (two periods)

I movie

I accelerated for
2200 heart cycles

ν ρ inlet diam. aneurysm size inlet flow
3.7e-6 m2/s 1080 kg/m3 0.8 mm 8 cm 4× 10−6 m3/s

file:///home/bastien/Desktop/Movie/Aneurysm/anim3.ogv


Validation with a patient

Blue : patient Red : simulation

Another case

file:///home/bastien/Desktop/Movie/Aneurysm/rotation.ogv


Vertebroplasty



Palabos Simulation

file:///home/bastien/Desktop/Movie/Spine/vertebroplasty.avi


Experiment versus simulation

After 6 ml After 7 ml

Good agreement within experimental errors



Dynamical load balancing on Palabos
Domains reallocation at regular time intervals

Performance with and
without data migra-
tion

file:///home/bastien/Desktop/Movie/Spine/vertebroplasty_sparsemem.avi


Exercices

I Play with a python code producing a 2D flow around a sphere
(d2q9.py). For instance, change the Reynolds number RE

I Play with a python code modeling the movement of bacteria
in a field of nutrients (bacteria.py). Try to add a source and
diffusion of nutrients, and the change in concentration when
eaten by the bacteria

http://cui.unige.ch/~chopard/FTP/USI/

http://cui.unige.ch/~chopard/FTP/USI/
http://cui.unige.ch/~chopard/FTP/USI/
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