Eléments d'informatique théorique

Série 16

Exercice 16.1 Démontrez par réduction la NP-complétude des problèmes suivants:

1. Couverture minimale

Données: une collection de sous-ensembles C d'un ensemble fini S et un entier positif $k \leq |C|$.

Question: C contient-il une couverture pour S de taille $\leq k$, i.e. un sousensemble $C' \subseteq C$ avec $|C'| \leq k$ tel que tout élement de S appartienne à au moins un membre de C'?

2. Ensemble touchant

Données: comme précédemment.

Question: S contient-il un ensemble touchant pour C de taille $\leq k$? i.e. $S' \subseteq S : \forall A \in P(C), S' \cap A \neq \emptyset$?

3. Echéancier multiprocesseur

Données: $A = \{t\hat{a}ches\}, l: A \to \mathbb{N}^* \ a \mapsto l(a)(longueur\ de\ a), \ \#\{processeurs\} = m;\ et\ la\ date\ limite\ d \in \mathbb{N}^*.$

Question: Existe-t-il une partition $\bigcup_{i=1...m} A_i = A$, de A dans m ensembles disjoints tels que $\max_{i=1...m} (\sum_{a \in A_i} l(a)) \leq d$?

Exercice 16.2 Considérons le problème du sous-graphe isomorphique :

Soient deux graphes $G_1 = (V_1, E_1)$ et $G_2 = (V_2, E_2)$. Existe-t-il un sous-graphe G = (V, E) de G_1 isomorphe à G_2 tel que $V \subseteq V_1$, $E \subseteq E_1$ et $|V| = |V_2|$, $|E| = |E_2|$ et qu'il existe une fonction $f: V_2 \to V$ satisfaisant $(u, v) \in E_2$ si et seulement si $(f(u), f(v)) \in E$?

Prouvez que ce problème est NP-hard!

Exercice 16.3 Considérons le problème de l'arbre de recouvrement borné:

Soit un graphe G=(V,E) et un entier positif $k \leq |V|-1$. Existe-t-il un arbre de recouvrement pour G tel que pour tout sommet $v \in V$ $d(v) \leq k$ (d(v) correspond au degré de v) et un sous-ensemble $E' \subseteq E$ vérifiant |E'| = |V|-1, G' = (V,E') est connecté et aucun sommet $v \in V$ n'est connecté à au plus k arrêtes de E'? Prouvez que ce problème est NP-hard!

Exercice 16.4 Donnez la définition d'un langage co-NP-complet!

Exercice 16.5 Prouvez que si un ensemble A est co- \mathcal{NP} -complet et que $A \in P$ alors P = NP!

Exercice 16.6 Prouvez que si A est co- \mathcal{NP} -complet et que $A \in \mathrm{NP}$ alors $\mathrm{NP} = co-\mathcal{NP}$!