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This research is part of the ongoing study to better
understand web page ranking on the web. It looks at a
web page as a graph structure or a web graph, and tries
to classify different web graphs in the new coordinate
space: (out-degree, in-degree). The out-degree coordi-
nate od is defined as the number of outgoing web pages
from a given web page. The in-degree id coordinate is
the number of web pages that point to a given web page.
In this new coordinate space a metric is built to classify
how close or far different web graphs are. Google’s web
ranking algorithm (Brin & Page, 1998) on ranking web
pages is applied in this new coordinate space. The re-
sults of the algorithm has been modified to fit different
topological web graph structures. Also the algorithm
was not successful in the case of general web graphs
and new ranking web algorithms have to be considered.
This study does not look at enhancing web ranking by
adding any contextual information. It only considers web
links as a source to web page ranking. The author be-
lieves that understanding the underlying web page as a
graph will help design better ranking web algorithms,
enhance retrieval and web performance, and recom-
mends using graphs as a part of visual aid for browsing
engine designers.

1. Introduction

Scientific citations have been studied for a long time.
Citation analysis in bibliometrics (Egghe & Rousseau,
1990) is the science of studying citations, their structures,
and the evolution of a specific domain of knowledge from
its citations. Many information sciences journals, e.g.,
JASIST (Small, 1973; Small, 1986), havedevoted issuesand
complete volumes to the exploration of such an area of
knowledge. Al l these confirm that:

● A citation is static and unidirectional. Once an article is
published, no new references can be added to it. A citation
can be used to evaluate its impact and influence over the

whole body of knowledge in agiven field. A citation fulfill-
ing such a role in a given field becomes an authority in that
field. Citations in agiven journal follow the same principles,
standards, and forms. Thus, the contextual amount of vari-
ability between two articles in a given journal is usually
small. Human judgment of thetechnicality of an articlekeeps
thequality of publication at ahigh level although thenoise is
present, and thus acitation is more relevant and more objec-
tive to a given topic. Citations link articles that are relevant
to agiven research. Garfield’s impact factor (Garfield, 1972)
is the most important factor ever developed to assess a
journal j influence over the publication in that field. The
impact factor is the average number of citations in a given
year a journal j receivesfrom other journal articlesafter it has
been published for the last 2 years. It becomes the in-degree
of nodes in a given network of publications in that field.
Pinski and Narin (1976) argued that a journal is influential if
it is heavily cited by other influential journals. Citations of a
given publication are“signaturesof intelligence” of thespace
and time of a collective group of people.

● A web link in a web page is dynamic and bidirectional. It
points to other links, and other links point to it. A web
page gets updated, so as new links are discovered, new
links are added. It is a living community of links. The
contextual amount of variability between two web pages
on two separate web servers is very high. Not only do they
deal with different subjects, but they could be in different
languages, have nothing in common, no standards are
imposed on the content, and reflect subjective ideas rather
than commonly established scientific explorations. Human
judgment on web content is more subjective, and noisier
than in acitation. No control of quality can be maintained
on the web. Also, web pages can also be there merely for
navigational purposes and not to link two documents. Page
ranking is important because it makes use of the link
structure of the web to calculate aquality ranking for each
web page. Web pages are ranked according to a ranking
scheme where each is evaluated according to the in-degree
and the out-degree of that web page. Web pages also
reflect the “signatures of intelligence” in our era and
contain rich information on our collective society as a
whole.
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The comparison above can seem to help or hinder the
usage of the web link as a means to search the web. But the
WWW and the scientific literature are governed by different
principles. Web pages are not scrutinized but scientific
journals are. New links in a web page can have an impact on
the whole search done, and the ever-changing size of the
web can reflect patterns of indexing, crawling for search
engine (SE) designers who feed on these web links
(Meghabghab, in press, a). WWW users will be more suc-
cessful if they are made aware of how to interpret their
search results when they query the WWW. More impor-
tantly, users need to be aware not only of the set of results
returned, but also of the set of results not returned, or the
percentage of “rejected web pages” for each query
(Meghabghab, in press, b). A formula on how to measure
the goodness of an SE emerges as follows from this study
on the set of queries (SQ) used:

G 5 ~SE; SQ! 5 a* ~Coverage! 1 b* ~Age! (1)

where Coverage is the coverage with the estimated web size
at the time of the experiment, and Age is the “median age”
of new document in the result set,a and b are constants
each between 0 and 1. A visualization graph of the structure
of the returned set of results and the rejected set of web
pages will prove helpful for both users and SE designers.

To fully comprehend and assess the ranking and the
influence of a web page over other web pages in a given
web site, graph theory can be used to better understand the
measures developed in Brin and Page (1998) and Brin
(1998). Graph theory can also be used to discover new
patterns that appear in a citation graph. The same idea can
be used to measure the distance between two web pages.
Discovering new ideas in a web page graph is easier than in
a citation graph. Measuring the topological structure rich-
ness of a collection of web pages is an important aspect of
web pages never explored before, and it is helpful in un-
derstanding page-ranking algorithms.

The next section is a reminder of concepts borrowed from
graph theory to help analyze links, and the richness of the
WWW as an information network of ideas and decisions.

2. Basic Graph Theory Applied to Web Pages

A graph is a directed link. A link on a web page connects
one document to another. A link also represents an endorse-
ment to the target page. When we consider more than just
one link, we could explore characteristics of the web space.
Spatial relations between web pages can help make clear the
topology of a web page and, in general, of the web space. In
the space of all web pages W, let A« W to mean a page A
belongs to the space of all web pages. The web page A
represents a graph. In that graph, if there is a link to another
web page B, we can say that A is related to B by the link.
In symbolic terms we can write (A, B)«ℜ, whereℜ is the

relation “point to.” We can add the following observations
on the relationℜ:

A. If every web page is related to itself, we say thatℜ is
reflexive.

B. For all web pages X and Y that belong to A, if (X, Y)«ℜ
f (Y, X) «ℜ. Web pages X and Y in that case represent
mutual endorsement. Then the relation is said to be
symmetric.

C. For all web pages X and Y that belong to A, if (X, Y)
«ℜ f (Y, X) «ℜ. Web pages X and Y are linked in a
unidirectional way. Then the relation is then said to be
anti-symmetric.

D. For all web pages that belong to A, when a web page X
cites another web page Y and that last page cites another
web page Z, we can say thatℜ is transitive:

(X, Y) «ℜ and (Y, Z) «ℜ f (X, Z) «ℜ.

E. When a web page cites X another web page Y and Y
does not cite X, X endorses Y and Y does not endorse X,
we can say thatℜ is not symmetric:

(X, Y) «ℜ but (Y, X) ¸ℜ

F. When two web pages X and Y point to a distinct 3rd web
page Z, then we could say that the 2 web pages are
related through a very special relationship similar to a
filtering relationship or bibliographic coupling (Kessler,
1963). This kind of relationship does not have a name in
the algebraic properties ofℜ.

(X, Z) «ℜ and (Y, Z) «ℜ.

G. Conversely when one web page X points to two distinct
web pages Y and Z, then we say that X co-cites Y and
Z. Co-citation is a term borrowed from the field of
bibliometric studies (Small, 1973). Co-citation has been
used as a measure of similarity between WWW by
Larson (1996) and Pitkow and Pirolli (1997). Small and
Griffith (1974) used breadth-first search to compute the
connected components of the unidirected graphs in
which two nodes are joined by an edge if and only if they
have a positive co-citation value. This kind of relation-
ship does not have a name in the algebraic properties
of ℜ:

(X, Y) «ℜ and (X, Z) «ℜ.

These seven properties are the simplest common patterns
that can be perceived on the web. These seven properties
can blend together to form more complex patterns that are
indicative of emerging links or communities on the web.
These complex patterns can model properties of web pages
that can be qualified as “authoritative web pages” because
almost all web pages point to that web page. Other emerging
complex patterns can model web pages that can be qualified
survey web pages or “hub web pages” because they cite
“authoritative web pages” (Kleinberg, 1998).

2.1. Adjacency Matrix Representation of a Web Graph

Consider a graph G (Fig. 1) that represents a real web
page and its adjacency matrix A. An entry apq in A is
defined by the following:

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—July 2001 737



apq 5 1 if there is an edge or link between 2 web pages p
and q.

5 0 Otherwise

The Appendix expounds on the properties that can be dis-
covered from an adjacency matrix.

Now consider two linear transformations defined on unit
vectors a and h as follows:

a 5 ATh (2)

h 5 Aa (3)

thus:

a 5 AATa (4)

h 5 ATAh (5)

By examining closely the entries of these product matrices
AAT and ATA. These two matrices are symmetric with the
following properties observed:

● An entry (p, p) in AAT means the number of web pages that
come out of p. We call that number the out-degree or od.

● An entry (p, p) in ATA means the number of web pages that
point towards p. We call that number the in-degree or id.

● An entry (p, q) in ATA represents the number of web pages
that are in common between p and q that point towards p and
q.

● An entry (p, q) in AAT represents the number of web pages
that came out of p and q that are in common.

Here is the corresponding adjacency matrix for Figure 1:

A 5

od
0 1 0 1 0 1 3
0 0 1 0 0 0 1
1 0 0 1 0 0 2
0 0 0 0 0 0 0
1 0 0 1 0 0 2
0 0 0 0 0 0 0

Building AT yields:

AT 5

0 0 1 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0

Building C 5 AAT yields:

C 5 AAT 5

3 0 1 0 0 0
0 1 0 0 0 0
1 0 2 0 2 1
0 0 0 0 0 0
0 0 2 0 2 0

Building D 5 ATA yields:

D 5 ATA 5

2 0 0 2 0 0
0 1 0 1 0 1
0 0 1 0 0 0
2 1 0 3 0 1
0 0 0 0 0 0
0 1 0 1 0 1

Figure 2 illustrates the in-degree and out-degree for the
graph G.

How far away are two web pages in a web graph?
The adjacency matrix A can be used to calculate the

length of the path than can separate two distinct web pages.
To further explore such an idea, consider the power matrices
of A, i.e., A2, A3, A4, . . . An for a graph of n vertices. If we
calculate the value of A2 for Graph G, we have:

A2 5

0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0

Every non-zero element in A2 means that to travel from
vertex i to vertex j we will need two web links to get there.
Thus, considering that A2 (2,4)5 1 means that the distance
from vertex 2 to vertex 4 is 2. This can be verified on Figure
1 where (2,3)«ℜ and (3,4)«ℜ.

If we calculate the rest of powers of A, i.e., A3, A4, . . .
An, and we reach a value m, n such that Am5 A, then we
say that any two web pages in that graph are m pages or
clicks away.

Applying this to Graph G, one can see that A4 5 A. This
means that the furthest away any two web pages are from
each other is four web pages. An example in graph G is web

FIG. 2. In/out degrees for Figure 1.

FIG. 1. A general web graph.
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page 1 and 6, where to reach 6 from 1 we can travel directly
with a path of length 1 or through vertices 2, 3, 1, 6.

Expanding the idea of the distances of web pages over the
WWW, Albert, Jeong, and Barabasi (1999) were able to show
that the distribution of web pages over the web constitutes a
power law and that the distance between far away connected
web pages is 19. In other words, to move along the whole
WWW, it would take approximately 19 web pages or clicks at
most. Thus the diameter of the WWW is 19 clicks.

2.2. Incidence Matrix Representation of a Web Graph

Another interesting representation of a graph is an incidence
matrix. Let us consider the same graph G in Figure 1 and its
corresponding incidence matrix I. To build the incidence ma-
trix of a graph we label the rows with the vertices and the
columns with the edges (in any order). The entry ive for row r
(vertex v) and column c (edge e) is as such:

i ve 5 1 if e is incident onv

5 0 otherwise.

Notice that id, which is the number of edges incident on a
vertex v, can be deduced from the incidence matrix. We also
added to I the row s which the sum of all the values in a
given column.

I 5

e1 e2 e3 e4 e5 e6 e7 e8 id
1 0 0 1 0 0 1 0 0 2
2 1 0 0 0 0 0 0 0 1
3 0 1 0 0 0 0 0 0 1
4 0 0 0 1 1 0 1 0 3
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 1 1
s 1 1 1 1 1 1 1 1 1

We could deduce from I that web page 4 or vertex 4 is the
one with the highest incidence of links to it. Web page 4 is
an authoritative web page since it is the web page with most
links pointing to it. We can deduce through the value of s
that there are no bidirectional links on this graph. That is
why this graph is antisymmetric.

One way to look at how matrix A and vector id relate is
by considering the following matrix-vector multiplication
ATU where AT is the transpose of A already computed in
2.1 and U is the Unit vector 1.

Applying ATU to Graph G results in the following:

AT 3 U 5

0 0 1 0 1 0 1 2
1 0 0 0 0 0 1 1
0 1 0 0 0 0 3 1 5 1
1 0 1 0 1 0 1 3
0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1

AT 3 U 5 id (6)

The matrix I has been ignored in the literature on web graph
theory (Kleinberg, 1998). Looking closely at IIT will yield
the following matrix:

II T 5

2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 3 0 0
0 0 0 0 0 0
0 0 0 0 0 1

IIT is a diagonal matrix. Its eigenvalues vector is equal to
vector id. Its eigenvectors constitute the columns of the unit
matrix of size 63 6:

Eigenvalue~II T! 5 id (7)

By looking at equations (5) and (6) we can see how I and A
are related:

Eigenvalue~II T! 5 id 5 AT 3 U (8)

2.3. Bipartite Graphs

A bipartite graph G is a graph where the set of vertices can
be divided into sets V1 and V2 such that each edge is incident
on one vertex in V1 and one vertex in V2. Graph G in Figure
1 is not an actual bipartite graph. To make G an actual bipartite
graph, a possible bipartite graph G1 can be designed.

If we let V1 5 {1,3,5} and V2 5 {2,4,6} , then we can
take out the two edges e3 and e7 that were in and then the
new graph G1 will become a bipartite graph (Fig. 3).

In other related works, tree structures have been used
to design better hyperlink structures (Botafogo, Rivlin, &
Shneiderman, 1992). The reverse process of discovering
tree structures from hyperlink web pages and discover
hierarchical structures has also been studied (Mukherjea,
Foley, & Hudson, 1995; Pirolli, Pitkow, & Rao, 1996).

In case of topic search, we do not need to extract a web
structure from the web. Often the user is interested in
finding a small number of authoritative pages on the
search topic. These pages will play an important role in
a tree had we extracted the tree structure itself. An

FIG. 3. A bipartite graph.
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alternative to extracting trees from a web graph is to use
a ranking method to the nodes of the web graph. In this
section we review such methods proposed in the litera-
ture. Some basic concepts have to be laid down before
doing so.

We conclude that the topology of the links in web
pages affects search performance and strategies of the
WWW.

2.4. Web Topology

In this section, we will explore how different can web
graphs be. Can we classify these different web pages? How
complex can these web pages appear to be?

Different categories of web graphs can emerge according
to their in-degree id or out-degree od. Even though we do
not pretend that this classification is exhaustive, but we have
gathered different kinds of graphs that were used to model
different kinds of applications and domains of research.
Emerging web graphs can be complex and rich in structure
and links more than web page designers realize.

2.4.1. In-degree web graphs
Complex pages can emerge with large in-degree that

looks like Figure 4.
Figure 5 illustrates such in-degree web pages by looking

as their out/in-degree chart.

2.4.2. Out-degree web graphs
Complex web pages with large out-degree can emerge

that look like Figure 6. Such a graph becomes a tree where
the starting node is the root of the tree.

Figure 7 illustrates such out-degree web pages by look-
ing as their out/in-degree chart, which is the complement of
Figure 5.

2.4.3. Complete bipartite web graphs
Other complex web pages can emerge as complete bi-

partite graphs that look like Figure 8 with three nodes in the
first set V1 and three nodes in the second set V2. (Note that
the number of nodes in V1 and V2 is arbitrary.)

Remember that the topology of complete bipartite graphs
like the one in Figure 8 is unique.

2.4.4. Bipartite web graphs
Other complex web pages can emerge as bipartite graphs

that look like Figure 8 with four nodes in the first set V1 and
two nodes in the second set V2.

The difference between complete bipartite web graphs
and bipartite graphs is the fact that not all nodes between set
V1 and V2 are connected as seen in Figure 10.

Pages with large in-degree or out-degree play an impor-
tant role in web algorithms in general. The next two para-
graphs illustrate that point.

2.5. Topological Difference of Web Pages

The signature of a web graph lies in its in-degree/out-
degree characteristics, as can be seen from all these different
charts. The in-degree/out-degree of a graph can be used to
measure the differences or similarities between different
topological web structures. The signature of a web graph
lies in that. The Euclidean distance will help classify dif-
ferent graphs.

Not only is the size of a graph important in the analysis
of a graph, but its structure is also consequential. A graph
will be assumed to be symbolized by two vectors: the
in-degree vector and the out-degree vector. Next, the aver-

FIG. 4. An in-degree web graph.

FIG. 5. Out/in degree of Figure 4.

FIG. 6. An out-degree web graph.

FIG. 7. Out/in degree of Figure 6.
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age of the in-degree vector will be calculated, the average
value of the out-degree vector will be calculated, and say
that for a vertex v:

od~v! 5 1 if its value is above the average value
0 if otherwise. (9)

id~v! 5 1 if its value is above the average value
0 if otherwise. (10)

By applying (9) and (10) to Figure 1, which is a general
graph, we could deduce:

od 5 ~1,0,1,0,1,0!

id 5 ~1,0,0,1,0,0!

By applying (9) and (10) to Figure 10, which is a possible
bipartite graph on Figure 1, we deduce:

od 5 ~1,0,1,0,1,0!

id 5 ~0,1,0,1,0,1!

By applying (9) and (10) to Figure 8, which is the only
complete possible bipartite on figure 10, we deduce:

od 5 ~1,1,1,0,0,0!

id 5 ~0,0,0,1,1,1!

By applying (9) and (10) to Figure 4, which is an in-degree
graph, we deduce:

od 5 ~0,1,1,1,1,1!

id 5 ~1,1,1,0,0,0!

By applying (9) and (10) to Figure 6, which is an out-degree
graph, we deduce:

od 5 ~1,1,1,0,0,0!

id 5 ~0,1,1,1,1,1!

The following matrix M summarizes the difference between
these different web graphs with the same number of nodes
in their (out-degree, in-degree) coordinate space:

M 5

1 10 8 4 6
1 ~0,0! ~0,3! ~2,3! ~3,3! ~2,5!

10 ~0,3! ~0,0! ~2,2! ~3,4! ~2,2!
8 ~2,3! ~2,2! ~0,0! ~4,6! ~0,2!
4 ~3,3! ~3,4! ~4,6! ~0,0! ~4,4!
6 ~2,5! ~2,2! ~0,2! ~4,4! ~0,0!

The smallest coordinate in this graph is the value (0,2),
which says that Figures 8 and 6 are the closest because a
complete bipartite graph is a form of an out-degree graph
with many roots. The next best smallest coordinate in the
graph is (0,3), which says that general graphs and bipartite
graphs are the closest among all other graphs. The largest
coordinate is (4,6), which says that complete bipartite
graphs and in-degree are the farthest apart. The next biggest
difference is between in-degree and out-degree trees, which
is evident form the structure of the trees. It also shows that
bipartite graphs are as close to out-degree trees and com-
plete bipartite graphs than in-degree trees, which is can be
concluded from the statement before.

FIG. 9. Out/in degree of Figure 8.

FIG. 10. A bipartite web graph.

FIG. 11. Out/in degree of Figure 10.

FIG. 8. A complete bipartite web graph.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—July 2001 741



We conclude that in the coordinate space of (out-degree,
in-degree) the following metric of graphs topology stands:

u~CBG!u , u~OD!u , u~BG!u , u~GG!u , u~ID!u (11)

where CBG5 a complete bipartite graph, OD5 out-degree
trees, BG5 bipartite graph, GG5 general graphs, and ID
5 in-degree trees

Figure 12 displays the classification of the web graphs in

FIG. 12. Classification of web graphs and the new coordinate space.
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the new coordinate (out-degree, in-degree) space. In Figure
12, data 1 represents all the data in the first row of matrix M,
data 2 represents all the data in the second row of matrix M,
data 3 represents all the data in the third row of matrix
M, data 4 represents all the data in the fourth row of matrix
M, and data 5 represents all the data in the fifth row of
matrix M. Pages with large in-degree or out-degree play an
important role in web algorithms in general. The next algo-
rithm shows that point. No other studies have reflected on
the topological structure of web graphs and web algorithms.

Page Ranking According to Google’s Search
Engine (Brin & Page, 1998)

Let rp be the rank of a page p and odp the out-degree of
node i, i.e., the number of outgoing links from a web page
p. The rank of a page p is computed as specified by
Google’s SE:

r p 5 ~1 2 c! 1 c@~r 1/od1! 1 ~r 2/od2!

1 ~r 3/od3! 1 · · ·1 ~r n/odn!# (12)

for all nodes 1,2,3, . . . . n where (1,p) ((, (2,p) ((,(3,p) ((,
(n,p) (( and where c is a constant: 0,c,1 (ideally selected
at 0.85).

Note that the rp form a probability distribution over all
web pages, so the probability over all web pages will be
one.

Applying equation (12) to the graph in Figure 1 yields
the following equations for all these vertices:

r 1 5 ~1 2 c! 1 c~r 3/2 1 r 5/2! (13)

~3,1! «ℜ,~5,1! «ℜ

r 3 5 ~1 2 c! 1 c~r 2! (14)

~2,3! «ℜ

r 5 5 ~1 2 c! 1 0 5 1 2 c (15)

r 2 5 ~1 2 c! 1 c~r 1/3! (16)

~1,2! «ℜ

r 4 5 ~1 2 c! 1 c~r 1/3 1 r 3/2 1 r 5/2! (17)

~1,4! «ℜ, ~3,4! «ℜ,~5,4! «ℜ

r 6 5 ~1 2 c! 1 c~r 1/3! (18)

~1,6! «ℜ

Replacing (14), (15), (16) in (13) yields:

r 1 5 3~1 2 c!~c 1 3 1 c2!/~6 2 c3!

Table 1 shows the values of r1, r2, r3, r4, r5, and r6 as a
function of c.

The following observations can be made:

Vertex 4 being the vertex with the highest links pointing to
it or degree id5 3 yielded the highest ranking among all
the pages.

Vertex 1 follows vertex 4 in its ranking because of id5 2.
Vertices 3, 2, and 6 rank behind vertex 1. Although these

three vertices have their id5 1, they should have equal
value r; yet they differ greatly. Value r3 is closer to r1
than it is to the rank of vertices 2 and 6.

Vertex 5 with the least rank because it did not have any
nodes pointing to it.

Vertices with the same in-degree id according to equa-
tion (12) should yield equal ranking. That last principle is
violated in graph G. Vertices 2, 3, and 6 should have very
similar ranking. To observe whether Google’s ranking be-
haves well on other topological structures, we simulated
Google’s algorithm on more complex patterns, i.e., in-
degree web graphs like Figure 4, out-degree web graphs like
Figure 6, bipartite graphs like Figure 3, and complete bi-
partite graphs like Figure 8.

Theorem 1:Nodes at the same level in complete bipartite
graphs will have equal value to Google’s rank.

r 0 5 0.15

r 1 5 0.151 0.85~r 0pm/k! (19)

where m is the number of nodes at level5 0, and k is the
number of children to each node in level5 0

Proof: Given the fact complete Bipartite graphs are made
of two levels, one level with id5 0 and another level5 1
with id higher than 0, then all vertices of a degree higher
than 0 will have equal ranking regardless of the number of
nodes or configurations.

Example: In Figure 13, m5 4 and k5 3. The following
observations can be made:

● All vertices in V1 5 {1,2,3,4} have an id5 0. They are also
at level5 0. Their ranks according to Theorem 1 will be all
the same and will equal to:

r0 5 0.15~for c 5 0.85!

● All vertices in V2 5 {5,6,7} have an id5 4. They are all at
level 5 1. Their ranks according to Theorem 1 will be the
same and will be equal to:

TABLE 1. Summary of Google’s ranking applied to Figure 13.

Rank of vertex Value ofc Value of id

r1 5 0.38 0.85 2
r2 5 0.26 0.85 1
r3 5 0.37 0.85 1
r4 5 0.43 0.85 3
r5 5 0.15 0.85 0
r6 5 0.26 0.85 1
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r1 5 ~1 2 c! 1 c~r0*4/3! 5 0.151 0.85~0.15*4/3! 5 0.32

Theorem 2:Nodes at the same level in out-degree trees
will have equal value to Google’s rank.

r n 5 0.15 forn 5 0

r n 5 0.151 0.85*~r n21/m! for n 5 1 (20)

One Sub-tree:rn 5 0.151 0.85*~rn21/m!

for n . 1 and ifm#k

Other Sub-tree:rn 5 0.151 0.85*~rn21/k!

where m is the number of children of node n2 1 in one
subtree, k is the number of children of node n2 1 in the
other subtree, and L is the level of the node.

Proof: Out-degree graphs (or trees) having more than
two levels will never provide equal ranking for vertices with
equal degree. Instead of the degree of a node, the level of a
node in a given tree will be the determining factor.

Example: Consider the following out-degree tree in Fig-
ure 14.

r 0 5 0.15

r 1 5 0.151 0.85*~r 0/2! 5 0.15

1 0.85*0.0755 0.214

for n 5 2, we have 2 ranks becausek#m (m 5 3, k 5 2):

r 2 5 0.151 0.85~r 1/3! 5 0.15

1 0.85*~0.214/3! 5 0.221

r 2 5 0.151 0.85~r 1/2! 5 0.15

1 0.85*~0.214/2! 5 0.241

Thus the rank of node 1 is r0, the rank of nodes 2 and 3
is the same r1, the rank of nodes 4, 5, 6 is the same r2

5 0.221, and the rank of nodes 7 and 8 is the same r2

5 0.241.
Interpretation: Even though all vertices are of the same

degree id5 1 except the root of the tree, which has a degree
id 5 0, vertices 2, and 3 at level5 1 will have equal rank,
which is 0.214. Vertices at level5 2 will be divided into
two ranks because the left subtree has more children coming
out of node 2 than those coming out of node 3 on the right
subtree. Vertices 4, 5, 6, which are at level 2 of the let
subtree, will have lower rank than those on the right part of
the tree, which are still higher than that of those vertices at
level5 1. This is expected, since what feeds into vertices 4,
5, 6 are nodes at a degree higher than those feeding into
vertices 2 and 3, which is node 1. If 1 cites 2 and 3, and 2
now cites three others like 4, 5, and 6, then 4, 5, and 6 will
have higher ranking than 2 because they are more important
than 2.

Theorem 3:Nodes at the same level in in-degree trees
will have equal value to Google’s rank.

r 0 5 0.15

r n 5 0.151 0.85*~r n21 p m 1 r n22 p k! (21)

where m is the number of parents to node n from level n2 1
and k is the number of parents to node n from level n2 2.

Proof: In-degree graphs (or trees) having more than two
levels will never provide equal ranking for vertices with
equal in-degree. Instead of the in-degree of a node, the level
of a node in a given tree will be the determining factor.

Example: Consider the following general in-degree tree
in Figure 15.

r 0 5 0.15

r 1 5 0.151 0.85*~r*02! 5 0.151 0.85*0.305 0.405

r 2 5 0.151 0.85~r*12 1 1* r 0!

5 0.151 0.85*~0.4051 0.15! 5 0.555

Thus the rank of node 8 is r2, the rank of nodes 6 and 7
is r1, and the rank of nodes 1, 2, 3, 4, and 5 is r0.

FIG. 14. An out-degree web graph.

FIG. 13. A complete bipartite web graph.
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Interpretation: Even though vertices 6, 7, and 8 have the
same degree id5 2, only vertices 6, and 7 at level5 1 will
have equal rank, which is 0.405. Vertex 8, which is at level
2, will have the highest rank that is 0.555. Vertices 1, 2, 3,
4, and 5, which are at level 0, will have equal rank, which
is much lower than that of all other vertices. This is ex-
pected since what feeds into vertex 8 are not only a low
level node such as 3, but also vertices 6 and 7, which are
nodes at an in-degree higher than those feeding into 6 and 7,
which are vertices 1, 2, 4, and 5, which occupy level5 0.
If 1 and 2 point to 6, 4 and 5 point to 7, 6 and 7 point to 8
besides 3, that makes 8 a more a more important link than
all other links in the tree.

Theorem 4:Google’s ranking procedure will not work
well on bipartite graphs.

Proof: Even though we have seen that bipartite graphs
allow the separation of the set of vertices into two sets,
nothing has changed in the interpretation of the fact that
nodes with equal in-degree id can have different rankings,
which is contrary to the interpretation of equation (12).

Example: Consider the example of a bipartite graph like
the one in Figure 3. Table 2 summarizes Google’s ranking
applied to Figure 3.

The same remark that was applied to the graph in Figure
1 still applies to the graph in Figure 3. Vertex 3 has a higher
ranking than those of the 3 vertices 2, 3, and 6, which have
the same in-degree. Making a graph a bipartite graph did not
change anything in the ranking of links. A more involved
ranking scheme will be needed to further explore the com-
plexity of ranking in bipartite and general graphs.

Theorem 5:Google’s ranking procedure will not work
well on general graphs.

Table 3 summarizes the results of the modified Google’s
ranking procedure on these different topological structures.
Thus, such an algorithm needs to be applied carefully de-
pending upon the topological structure of the web pages that
are studied. No other studies have reported the influence of
the topology of the web links on Google’s page-ranking
technique.

Final Observations on Google’s Ranking
Algorithm and Conclusion

Google’s ranking algorithm needs to be adjusted to dif-
ferent topological web structures to be able to successfully
rank web pages without any contextual information added.
Given the fact that Google’s SE is gaining momentum in
indexing more than one billion web pages and being
adopted by major SEs like Yahoo, it seems that a study of
their ranking web algorithm is timely in further exploring its
applicability in a variety of web graphs. This study focused
first on categorizing different web graphs and how close or
far away these different topological web graphs are. Then
we applied Google’s web ranking algorithm to the complete
bipartite graphs, followed by bipartite graphs, then out-
degree trees, in-degree trees, and lastly, general graphs.
Google’s ranking web algorithm worked best on complete
bipartite graphs by ranking equally vertices at the same
level. The algorithm did not fare well in other web graph
structures on the lower ranking of the remaining vertices.
More specifically, vertices with equal degrees (e.g., equal
amount of outgoing nodes) did not rank equally. Different
theorems were adopted for these different topological struc-
tures, and Google’s was readjusted ranking to fit these
different topological structures.

The metric adopted here to classify these different struc-
tures in the coordinate (out-degree, in-degree) space has
been applied in a more recent study (Meghabghab, in press,
a) to discovering hubs and authorities in a variety of graph
web-based pages. Early results show the uncommon phe-
nomenon that a web page can be both a hub page and an
authority web page in general graphs only, for example. The
other graphs showed that phenomenon in the beginning of
the filtering procedure, but after a number of iterations, the
only web pages left were those that were either hub web
pages or authority web pages, and not both at the same time.
A web page is said to be an authority web page (Kleinberg,
1998) if many web pages point to it. The web pages that
point to those authority web pages are themselves called
hub web pages. According to Kleinberg (personal e-mail to
the author, Sept. 14, 2000), that phenomenon is quite un-
common even though the web algorithm itself does not
prohibit it from happening. Our study focused on just using
links as a mean to evaluate web pages and uncover hubs and
authorities. No heuristics or any other contextual informa-
tion was used to further enhance the idea of hubs and
authorities. In an early study, McBryan (1994) used search-

FIG. 15. An in-degree web graph.

TABLE 2. Summary of Google’s ranking applied to Figure 3.

Rank of vertex Value ofc Value of id

r1 5 0.15 0.85 0
r2 5 0.21 0.85 1
r3 5 0.33 0.85 1
r4 5 0.62 0.85 3
r5 5 0.15 0.85 0
r6 5 0.21 0.85 1

TABLE 3. Summary of Google’s ranking applied to different web
graphs.

Topological structure Google’s web ranking
In-degree trees Works well per tree level (see Theorem 3)
Out-degree trees Works well per subtree level (see Theorem 2)
Bipartite graphs Does not work (see Theorem 4)
General graphs Does not work (see Table 1 and Theorem 5)
Complete bipartite

graphs Works well per graph level (see Theorem 1)
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ing hyperlinks based on an anchor text, in which one treats
the text surrounding a hyperlink as a descriptor of the page
being pointed to when assessing the relevance of that web
page. Frisse (1997) considered the problem of document
retrieval in single-authored, stand-alone works of hypertext.
He proposed heuristics by which hyperlinks can enhance
notions of relevance and hence the performance of retrieval
heuristics. In recent studies, Bharat and Henzinger (1998),
Chakrabarti et al. (1998a), and Charkrabarti et al. (1998b)
performed three user studies to evaluate the HITS system to
better find information on the WWW. Each one of the
studies employed additional heuristics to further enhance
relevance judgments. As such, these three studies cannot
enhance the direct evaluation of the pure link-based method
described here; rather, they assess its performance as the
core component of a WWW search tool. For example, in
Chakrabarti et al. (1998), the CLEVER system was used to
create an automatic resource compilation or the construction
of lists of high-quality WWW pages related to a broad
search topic; the goal was to see whether the output of
CLEVER compared to that of a manually generated com-
pilation such as the WWW search service of Yahoo for a set
of 26 topics. A collection of 37 users was assembled; the
users were required to be familiar with the use of a web
browser, but were not experts in the topics picked. The users
were asked to judge each web page as “bad,” “fair,” “good,”
or “fantastic” in terms of their utility of learning about the
topic. For approximately 31% of the topics, the evaluations
of Yahoo and CLEVER were equivalent to within a thresh-
old of statistical significance; for approximately 50% of the
topics CLEVER was evaluated higher; and for the remain-
ing 19% Yahoo was evaluated higher. Many of the users of
these studies reported that they used the lists as starting
points from which to explore, but that they visited many
pages not on the original topic lists generated by the various
techniques.

Other ranking algorithms could have been studied and
applied to the different topological web graphs, but given
the popularity of Google and its wide indexing power, with
more than a billion web pages, makes it a very powerful SE
that has been adopted by other SEs like Yahoo. All of these
factors contributed to the consideration of Google’s ranking
algorithm in this study. The author is considering reviewing
other web page-ranking algorithms to be applied to the same
rich topological web graphs.

Appendix

Consider a graph G that represents a real web page and
its adjacency matrix A. An entry apq in A is defined by the
following:

apq 5 1 if there is an edge or link between 2 web pages p
and q.

5 0 Otherwise

Here some of the properties that could be discovered from
an adjacency matrix perspective:

A. A graph is said to be reflexive if every node in a graph
is connected back to itself, i.e., app 5 1. The situation
will happen if a page points back to itself.

B. A graph is said to be symmetric if for all edges p and q
in G: iff apq 5 1 then aqp 5 1. We say in this case that
there is mutual endorsement.

C. A graph is said to be not symmetric if there exists two
edges p and q in G such that iff apq 5 1 then aqp 5 0. We
say in this case that there is endorsement in one direc-
tion.

D. A graph is said to be transitive if for all edges p,q, and r:

Iff apq 5 1 and aqr 5 1 then apr 5 1

We say in this case that all links p endorse links r even
though not directly.

E. A graph is said to be antisymmetric iff for all edges p
and q:

Iff apq 5 1 then aqp 5 0

F. If two different web pages p and q point to another web
page r then we say that there is social filtering. This
means that these web pages are related through a mean-
ingful relationship.

apr 5 1 and aqr 5 1

G. If a single page p points to two different web pages q
and r then we say that there is co-citation.

apq 5 1 and apr 5 1

To illustrate the above points let us look back again at
Figure 1.

Here are the algebraic properties ofℜ in G:

ℜ is not reflexive
ℜ is not symmetric
ℜ is not transitive
ℜ is anti-symmetric
(1,4)«ℜ, (3,4)«ℜ, and (5,4)«ℜ:
we could say that the vertex with the highest number of web
pages pointing to it.
(5,1)«ℜ and (5,4)«ℜ: 5 co-cites 1 and 4.
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