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This research is part of the ongoing study to better
understand web page ranking on the web. It looks at a
web page as a graph structure or a web graph, and tries
to classify different web graphs in the new coordinate
space: (out-degree, in-degree). The out-degree coordi-
nate od is defined as the number of outgoing web pages
from a given web page. The in-degree id coordinate is
the number of web pages that point to a given web page.
In this new coordinate space a metric is built to classify
how close or far different web graphs are. Google’s web
ranking algorithm (Brin & Page, 1998) on ranking web
pages is applied in this new coordinate space. The re-
sults of the algorithm has been modified to fit different
topological web graph structures. Also the algorithm
was not successful in the case of general web graphs
and new ranking web algorithms have to be considered.
This study does not look at enhancing web ranking by
adding any contextual information. It only considers web
links as a source to web page ranking. The author be-
lieves that understanding the underlying web page as a
graph will help design better ranking web algorithms,
enhance retrieval and web performance, and recom-
mends using graphs as a part of visual aid for browsing
engine designers.

1. Introduction

Scientifc citatiors hawe been studied for a long time.
Citation analyss in bibliometrics (Eggle & Rousseau,
1990 is the sciene of studyirg citations their structures,
ard the evolution of a specift doman of knowledg from
its citations Many information science journals e.g.,
JASIS (Small 1973 Small 1986) hawe devotel issuesand
complee volumes to the exploration of suc an area of
knowledge All thes confim that:

e A citation is statc and unidirectional Once an article is
published no new reference can be addel to it. A citation
can be useal to evaluae its impad ard influene over the
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whole body of knowledg in agiven field. A citation fulfill-
ing such arole in agiven field becoms an authoriy in that
field. Citatiors in agiven journd follow the sarre principles,
standardsand forms. Thus the contextua amourt of vari-
ability betwea two articles in a given journd is usually
small Human judgmer of thetechnicaliy of an article keeps
the quality of publicatian at a high levd althoudh the noise is
presentand thus acitation is more relevart and more objec-
tive to agiven topic. Citatiors link articles that are relevant
to agiven researchGarfield’s impad factar (Garfield 1972)
is the mog important factar eve developé to asses a
journd j influene over the publicatin in that field. The
impad facta is the averag numbe of citations in a given
yea ajournd j receivesfrom othe journd articles after it has
bee publishel for the lag 2 years It becoms the in-degree
of nodes in a given netwok of publicatiors in tha field.
Pinsk and Narin (1976 arguel tha ajournd is influentid if
it is heavily cited by othe influentid journals Citatiors of a
given publication are “signatures of intelligencé of the space
ard time of a collective groyp of people.

A web link in aweb page is dynamt and bidirectional It
points to othe links, and othe links point to it. A web
pace gets updated so as new links are discovered new
links are added It is aliving communiy of links. The
contextud amour of variability betwee two web pages
on two separag web servesisvery high. Not only do they
ded with different subjects but they could be in different
languages hawe nothing in common no standard are
imposel on the content and refled subjectie ideas rather
than commony establishd scientifc explorationsHuman
judgmert on web conten is more subjective and noisier
than in acitation. No contrd of quality can be maintained
on the weh. Also, web pages can also be there merely for
navigation&dpurpose and not to link two documentsPage
ranking is importart becaus it makes use of the link
structue of the web to calculat aquality ranking for each
web page Web pages are ranked accordirg to a ranking
schene where ead is evaluatel accordimg to the in-degree
and the out-degre of tha web page Web page also
reflead the “signatures of intelligencé in our era and
contan rich information on our collective sociey as a
whole.
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The comparison above can seem to help or hinder theelation “point to.” We can add the following observations
usage of the web link as a means to search the web. But then the relation:
WWW and the scientific literature are governed by different
principles. Web pages are not scrutinized but scientific reflexive
journals are. New links in a web page can hav_e an i_mpact on o coall wéb pages X and Y that belong to A, if (X, X[}
the whole search done, and_the e_zver-changmg size of the = (Y, X) e0]. Web pages X and Y in that case represent
web can reflect patterns of indexing, crawling for search mutual endorsement. Then the relation is said to be
engine (SE) designers who feed on these web links symmetric.
(Meghabghab, in press, a). WWW users will be more suc- C. For all web pages X and Y that belong to A, if (X, Y)
cessful if they are made aware of how to interpret their ed = (Y, X) e0. Web pages X and Y are linked in a
search results when they query the WWW. More impor- unidirectional way. Then the relation is then said to be
tantly, users need to be aware not only of the set of results anti-symmetric.
returned, but also of the set of results not returned, or the D- Forall web pages that belong to A, when a web page X

A. If every web page is related to itself, we say thats

percentage of “rejected web pages” for each query cites another web page Y and _that Ias_t page cites another
(Meghabghab, in press, b). A formula on how to measure web page Z, we can say thaits transitive:
the goodness of an SE emerges as follows from this study (X,Y)ed and (Y, 2) 0 = (X, 2) .

on the set of queries (SQ) used: E. When a web page cites X another web page Y and Y

does not cite X, X endorses Y and Y does not endorse X,
G = (SE SQ = o* (Coverage+ p* (Age) (1) we can say thafl is not symmetric:
X, Y) e but (Y, X) ¢

where Coverage is the coverage with the estimated web size F. When two web pages X and Y point to a distintt®eb
at the time of the experiment, and Age is the “median age” page Z, then we could say that the 2 web pages are
of new document in the result set,and 8 are constants related through a very special relationship similar to a
each between 0 and 1. A visualization graph of the structure filtering relationship or bibliographic coupling (Kessler,
of the returned set of results and the rejected set of web ~ 1963). This kind of relationship does not have a name in
pages will prove helpful for both users and SE designers. the algebraic properties 6f.

To fully comprehend and assess the ranking and the (X, 2) e0 and (Y, 2) e0.
influer_me of a web page over other web pages in a given G. Conversely when one web page X points to two distinct
web site, graph theory can pe used to better understand t_he web pages Y and Z, then we say that X co-cites Y and
measures developed in Brin and Page (1998) and Brin 7 co-citation is a term borrowed from the field of
(1998). Graph theory can also be used to discover new  pibliometric studies (Small, 1973). Co-citation has been
patterns that appear in a citation graph. The same idea can  used as a measure of similarity between WWW by
be used to measure the distance between two web pages. Larson (1996) and Pitkow and Pirolli (1997). Small and
Discovering new ideas in a web page graph is easier than in Griffith (1974) used breadth-first search to compute the

a citation graph. Measuring the topological structure rich- connected components of the unidirected graphs in

ness of a collection of web pages is an important aspect of ~ Which two nodes are joined by an edge if and only if they

web pages never explored before, and it is helpful in un- have a positive co-citation value. This kind of relation-

derstanding page-ranking algorithms ship does not have a name in the algebraic properties
: of O:

The next section is a reminder of concepts borrowed from
graph theory to help analyze links, and the richness of the (X,Y)eO and (X, Z) 0.

WWW as an information network of ideas and decisions. . .
These seven properties are the simplest common patterns

that can be perceived on the web. These seven properties
can blend together to form more complex patterns that are
indicative of emerging links or communities on the web.
A graph is a directed link. A link on a web page connects | "€S€ complex patterns can model properties of web pages
one document to another. A link also represents an endorsfat can be qualified as “authoritative web pages” because
ment to the target page. When we consider more than jug@Mmostall web pages point to that web page. Other emerging
one link, we could explore characteristics of the web spaceSOMPIex patterns can model web pages that can be qualified
Spatial relations between web pages can help make clear tif4TVeY Web pages or *hub web pages” because they cite
topology of a web page and, in general, of the web space. Iruthoritative web pages” (Kleinberg, 1998).
the space of all web pages W, leteAW to mean a page A ) . .
belongs to the space of all web pages. The web page A-1. Adjacency Matrix Representation of a Web Graph
represents a graph. In that graph, if there is a link to another Consider a graph G (Fig. 1) that represents a real web
web page B, we can say that A is related to B by the link.page and its adjacency matrix A. An entry,dn A is
In symbolic terms we can write (A, By, wherell is the  defined by the following:

2. Basic Graph Theory Applied to Web Pages
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Building C = AAT yields:

e s @ 301000
5 01 00O0O
C=AA"=1 02 0 2 1
0 00O0OTP O
FIG. 1. A general web graph. 002020
Building D = ATA yields:
a,q= 1 ifthere is an edge or link between 2 web pages p
and qg. 2 00200
=0 Otherwise 010101
.. 001 000O0
The Appendix expounds on the properties that can be dis- D=AA= 5% 10301
covered from an adjacency matrix. 0 0O0OO0OOTO
Now consider two linear transformations defined on unit 010101

vectors a and h as follows:

a=A"h 2

h= Aa 3)
thus:

a=AAa (4)

h = ATAh (5)

Figure 2 illustrates the in-degree and out-degree for the
graph G.

How far away are two web pages in a web graph?

The adjacency matrix A can be used to calculate the
length of the path than can separate two distinct web pages.
To further explore such an idea, consider the power matrices
of A, i.e., A2, A3 A% ... A" for a graph of n vertices. If we
calculate the value of Afor Graph G, we have:

By examining closely the entries of these product matrices

AAT and ATA. These two matrices are symmetric with the
following properties observed:

e An entry (p, p) in AA" means the number of web pages that
come out of p. We call that number the out-degree or od.

o An entry (p, p) in AA means the number of web pages that
point towards p. We call that number the in-degree or id.

e An entry (p, q) in A'A represents the number of web pages
that are in common between p and q that point towards p and
g.

e An entry (p, q) in AA" represents the number of web pages

that came out of p and q that are in common.

001000
100100
, 010101
A= 000000
010101
0000000

Every non-zero element in “Ameans that to travel from
vertex i to vertex j we will need two web links to get there.
Thus, considering that?(2,4) = 1 means that the distance
from vertex 2 to vertex 4 is 2. This can be verified on Figure
1 where (2,30 and (3,4)e0.

Here is the corresponding adjacency matrix for Figure 1: |f we calculate the rest of powers of A, i.e.2pA% ...

od

010101 3

0010001

A= 1 001 0 0 2

0 00O0OO0OO0OTO

100100 2

00 O0O0OO0OOTO
Building AT yields:

001010

1 00 00O

s 010000

~ 1 01010

00 0O0O0OTO

1 00 0O00O0

A", and we reach a value ra n such that Am= A, then we
say that any two web pages in that graph are m pages or
clicks away.

Applying this to Graph G, one can see thdtA A. This
means that the furthest away any two web pages are from
each other is four web pages. An example in graph G is web

—e— Out-Degree

~ag— In-Degree

O = NWwhr

Vertix

FIG. 2. In/out degrees for Figure 1.
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page 1 and 6, where to reach 6 from 1 we can travel directly
with a path of length 1 or through vertices 2, 3, 1, 6.

Expanding the idea of the distances of web pages over the
WWW, Albert, Jeong, and Barabasi (1999) were able to show
that the distribution of web pages over the web constitutes a
power law and that the distance between far away connected
web pages is 19. In other words, to move along the whole
WWW, it would take approximately 19 web pages or clicks at
most. Thus the diameter of the WWW is 19 clicks.

FIG. 3. A bipartite graph.

2.2. Incidence Matrix Representation of a Web Graph i
ATX U =id (6)

Another interesting representation of a graph is an incidence
matrix. Let us consider the same graph G in Figure 1 and itghe matrix | has been ignored in the literature on web graph
corresponding incidence matrix I. To build the incidence matheory (Kleinberg, 1998). Looking closely af' Iwill yield
trix of a graph we label the rows with the vertices and thethe following matrix:
columns with the edges (in any order). The enjgyfar row r

(vertex v) and column c (edge e) is as such: 20000 0
010000

ie = 1 ifeisincident onv 7= 0 01 0O0O0

0 00 3 00

= 0 otherwise. 0 00O0OOTO

0 00 0O01

Notice that id, which is the number of edges incident on a T

o . is a diagonal matrix. Its eigenvalues vector is equal to
vertex v, can be deduced from the incidence matrix. We also . . : .
vector id. Its eigenvectors constitute the columns of the unit

added to | the row s which the sum of all the values in a

given column matrix of size 6X 6:

. Eigenvalugll™) = id @)
e e € e 6 6 e 6 id

100100100 2 By looking at equations (5) and (6) we can see how | and A
2100000001 are related:

| = 3 01 0 0 O0O0OO0OTUO0O 1

~ 4 0 0 0 1 1 0 1 0 3 . AT

500000000 0 Eigenvalugll') =id =A" X U (8)
6 0 0 0O0O OO0 0 1 1
s 1 1 1 11 1 1 1 1 2.3. Bipartite Graphs

) A bipartite graph G is a graph where the set of vertices can
We could deduce from | that web page 4 or vertex 4 is theye givided into sets Yand V, such that each edge is incident
one with t_he_highest incider_lce qf I_inks to it. Web page 4isyn one vertex in yand one vertex in Y Graph G in Figure
an authoritative web page since it is the web page with mosj is not an actual bipartite graph. To make G an actual bipartite
links pointing to it. We can deduce through the value of Sgraph, a possible bipartite graph Gan be designed.
that there are no bidirectional links on this graph. That is™ |t we |et V, = {1,3,5} and V, = {2,4,6} , then we can
why this graph is antisymmetric. take out the two edges;@nd e that were in and then the
One way to look at how matrix A and vector id relate is oy graph G will become a bipartite graph (Fig. 3).
by considering_the following matrix-vector multiplicatiorj In other related works, tree structures have been used
AU where Ais the transpose of A already computed in tg design better hyperlink structures (Botafogo, Rivlin, &
2.1 and U is the Unit vector 1. _ _ Shneiderman, 1992). The reverse process of discovering
Applying ATU to Graph G resullts in the following: tree structures from hyperlink web pages and discover
hierarchical structures has also been studied (Mukherjea,

0 01 010 1 2 Foley, & Hudson, 1995; Pirolli, Pitkow, & Rao, 1996).
1 0 00 0O 1 1 In case of topic search, we do not need to extract a web
AT U — 01 00 0 O0X 1 =1 structure from the web. Often the user is interested in
~ 1 01 0 10 1 3 finding a small number of authoritative pages on the
0O 0 00O 0O 1 0 search topic. These pages will play an important role in
1 0 0 0 OO 1 1 a tree had we extracted the tree structure itself. An
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4 5
4 5 6

. FIG. 6. An out-degree web graph.
FIG. 4. An in-degree web graph.

Figure 7 illustrates such out-degree web pages by look-
alternative to extracting trees from a web graph is to uséng as their out/in-degree chart, which is the complement of
a ranking method to the nodes of the web graph. In thisigure 5.
section we review such methods proposed in the litera-

ture. Some basic concepts have to be laid down before L
doing so. 2.4.3. Complete bipartite web graphs

We conclude that the topology of the links in web Other complex web pages can emerge as complete bi-

pages affects search performance and strategies of t rtite graphs that look like Figure 8 with three nodes in the
WWW irst set ; and three nodes in the second set {Note that

the number of nodes in Vand V, is arbitrary.)
Remember that the topology of complete bipartite graphs

like the one in Figure 8 is unique.
2.4. Web Topology

In this section, we will explore how different can web 2.4.4. Bipartite web graphs
graphs be. Can we classify these different web pages? How Other complex web pages can emerge as bipartite graphs
complex can these web pages appear to be? that look like Figure 8 with four nodes in the first sef &hd
Different categories of web graphs can emerge accordingvo nodes in the second set.V
to their in-degree id or out-degree od. Even though we do The difference between complete bipartite web graphs
not pretend that this classification is exhaustive, but we havand bipartite graphs is the fact that not all nodes between set
gathered different kinds of graphs that were used to modeV,; and V, are connected as seen in Figure 10.
different kinds of applications and domains of research. Pages with large in-degree or out-degree play an impor-
Emerging web graphs can be complex and rich in structurg¢ant role in web algorithms in general. The next two para-
and links more than web page designers realize. graphs illustrate that point.

2.5. Topological Difference of Web Pages
2.4.1. In-degree web graphs . S
Complex pages can emerge with large in-degree that The S|gnature.of_ a web graph lies in its m-degree_/out—
looks like Figure 4. degree chargctenstlcs, as can be seen from all these different
Figure 5 illustrates such in-degree web pages by Iookinqnharts' The in-degree/out-degree of a graph can be used to
as their out/in-degree chart. easure the differences or S|m|lgr|t|es between different
topological web structures. The signature of a web graph
lies in that. The Euclidean distance will help classify dif-

2.4.2. Out-degree web graphs ferent graphs. . _ .
Complex web pages with large out-degree can emerge Not only is the size of a graph important in the analysis

that look like Figure 6. Such a graph becomes a tree wherf @ graph, but its structure is also consequential. A graph
the starting node is the root of the tree. will be assumed to be symbolized by two vectors: the

in-degree vector and the out-degree vector. Next, the aver-

—e— Out-Degree ‘

—e— Out-Degree

—gi— In-Degree

—=—In-Degree |

1 2 3 4 5 6 1 2 3 4 5 6
Vertex Vertex
FIG. 5. Out/in degree of Figure 4. FIG. 7. Out/in degree of Figure 6.
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FIG. 10. A bipartite web graph.
FIG. 8. A complete bipartite web graph.

. _ od =(0,1,1,1,1,}
age of the in-degree vector will be calculated, the average

value of the out-degree vector will be calculated, and say id = (1,1,1,0,0.0
that for a vertex v: 144 Us Uy

od(v) = 1 ifits value is above the average value By aﬁplyln%(%) anq (10) to Figure 6, which is an out-degree
0 if otherwise. (9) 9raph, we deduce:

od =(1,1,1,0,0,0
id(v) = 1 if its value is above the average value
0 if otherwise. (10) id =(0,1,1,1,1,1

) ) o The following matrix M summarizes the difference between
By applying (9) and (10_) to Figure 1, which is a generalinese different web graphs with the same number of nodes
graph, we could deduce: in their (out-degree, in-degree) coordinate space:

od =(1,0,1,0,1,0 1 10 8 4 6

1 (0,00 (0,3 (2,3 (3,3 (2,9

id =(1,0,0,1,0,0 10 (0,3 (0,00 (2,2 (3,4 (2,2

M= "8 23 (22 0,0 (46 (0,2

By applying (9) and (10) to Figure 10, which is a possible 4 (3,3 (3,4 (4,6) (0,00 (4,9
bipartite graph on Figure 1, we deduce: 6 (2,5 (2,2 (0,2 (4,4 (0,0

od =(1,0,1,0,1,0 The smallest coordinate in this graph is the value (0,2),

which says that Figures 8 and 6 are the closest because a
id =(0,1,0,1,0,1 complete bipartite graph is a form of an out-degree graph
with many roots. The next best smallest coordinate in the
By applying (9) and (10) to Figure 8, which is the only graph is (0,3), which says that general graphs and bipartite

complete possible bipartite on figure 10, we deduce: graphs are the closest among all other graphs. The largest
coordinate is (4,6), which says that complete bipartite

od =(1,1,1,0,0,0 graphs and in-degree are the farthest apart. The next biggest

difference is between in-degree and out-degree trees, which
id =(0,0,0,1,1,1 is evident form the structure of the trees. It also shows that

bipartite graphs are as close to out-degree trees and com-
By applying (9) and (10) to Figure 4, which is an in-degreePlete bipartite graphs than in-degree trees, which is can be

graph, we deduce: concluded from the statement before.
4
2 ‘ —e— Out-Degree —e— Out-Degree
1 —a— In-Degree —s— In-Degree
O $
1 2 3 4 5 6 1 2 3 4 5 6
Vertex Vertex
FIG. 9. Out/in degree of Figure 8. FIG. 11. Out/in degree of Figure 10.
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FIG. 12. Classification of web graphs and the new coordinate space.

We conclude that in the coordinate space of (out-degreavhere CBG= a complete bipartite graph, OB out-degree
in-degree) the following metric of graphs topology stands:trees, BG= bipartite graph, GG= general graphs, and ID
= in-degree trees
|(CBG)| < |(OD)| < |(BG)| < [(GG)| < |(ID)|  (11) Figure 12 displays the classification of the web graphs in
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the new coordinate (out-degree, in-degree) space. In FigufBABLE 1. Summary of Google’s ranking applied to Figure 13.
12, data 1 represents all the data in the first row of matrix M,

data 2 represents all the data in the second row of matrix M Rank of vertex value ot Value ofid
data 3 represents all the data in the third row of matrix r, = 0.38 0.85 2
M, data 4 represents all the data in the fourth row of matrix r,=0.26 0.85 1
M, and data 5 represents all the data in the fifth row of rs = 0.37 0.85 1
matrix M. Pages with large in-degree or out-degree play an :4 - 8"1‘2 8'22 g
important role in web algorithms in general. The next algo- rz — 026 085 1

rithm shows that point. No other studies have reflected on
the topological structure of web graphs and web algorithms.

The following observations can be made:

Page Ranking According to Google’s Search Vertex 4 being the vertex with the highest links pointing to
Engine (Brin & Page, 1998) it or degree id= 3 yielded the highest ranking among alll
the pages.

Let r, be the rank of a page p and pithe out-degree of Vertex 1 follows vertex 4 in its ranking because of=d2.
node i, i.e., the number of outgoing links from a web page yertices 3, 2, and 6 rank behind vertex 1. Although these

p. The rank of a page p is computed as specified by three vertices have their ig¢ 1, they should have equal

Google’s SE: value r; yet they differ greatly. Valueg, iis closer to |
than it is to the rank of vertices 2 and 6.
r,=(1—c) + c[(r/ody) + (r,/od,) Vertex 5 with the least rank because it did not have any

nodes pointing to it.
+ (rgodg) + - - -+ (r/ody)] (12)

Vertices with the same in-degree id according to equa-
for all nodes 1,2,3.. .. nwhere (1,p) ((; (2,p) (((3,p) (( tion (12) should yield equal ranking. That last principle is
(n,p) ((and where c is a constan&0<1 (ideally selected violated in graph G. Vertices 2, 3, and 6 should have very
at 0.85). similar ranking. To observe whether Google’s ranking be-

Note that the y form a probability distribution over all  haves well on other topological structures, we simulated
web pages, so the probability over all web pages will beGoogle’s algorithm on more complex patterns, i.e., in-

one. _ . o . degree web graphs like Figure 4, out-degree web graphs like
Applying equation (12) to the graph in Figure 1 yields Figure 6, bipartite graphs like Figure 3, and complete bi-
the following equations for all these vertices: partite graphs like Figure 8.
Theorem 1Nodes at the same level in complete bipartite
ri=(@1—-c)+c(ryd2+r42) (13) graphs will have equal value to Google’s rank.
(3,1) £0,(5,1) &
ro=0.15
rs=(1—c)+c(ry (14)
(2,3 &0 r,=0.15+ 0.85rym/k) (19)
here m is the number of nodes at level0, and k is the
rs=(1—c)+0=1-c¢ 15y VW '
5= ) (15) number of children to each node in level 0
B Proof: Given the fact complete Bipartite graphs are made
rz=(1-0¢)+c(r/3) (16) of two levels, one level with id= 0 and another lever 1
(1,2) el with id higher than 0, then all vertices of a degree higher
than O will have equal ranking regardless of the number of
r,=(1—c)+c(r/3+ry2+r1g2) (17)  nodes or configurations.
(1,4) 0, (3,4) ¢0,(5,4) O Example: In Figure 13, n+ 4 and k= 3. The following
observations can be made:
re=(1—c)+c(rd3) (18) o .
e All vertices in V; = {1,2,3,4} have an id= 0. They are also
(1,6) e at level= 0. Their ranks according to Theorem 1 will be all

the same and will equal to:
Replacing (14), (15), (16) in (13) yields:

ro = 0.15for c = 0.89
r, = 31—-c)c+3+cH6-cd

o All vertices in V, = {5,6,7} have an id= 4. They are all at
Table 1 shows the values of,1r,, 13, 1y, I's, and g as a level = 1. Their ranks according to Theorem 1 will be the
function of c. same and will be equal to:
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1~ 5 Thus the rank of node 1 ig,rthe rank of nodes 2 and 3
is the same j; the rank of nodes 4, 5, 6 is the same r
= 0.221, and the rank of nodes 7 and 8 is the same r
= 0.241.
Interpretation: Even though all vertices are of the same
degree id= 1 except the root of the tree, which has a degree
7 id = 0, vertices 2, and 3 at levet 1 will have equal rank,
which is 0.214. Vertices at levet 2 will be divided into
two ranks because the left subtree has more children coming

Level=0 Level=1 out of node 2 than those coming out of node 3 on the right
subtree. Vertices 4, 5, 6, which are at level 2 of the let
FIG. 13. A complete bipartite web graph. subtree, will have lower rank than those on the right part of

the tree, which are still higher than that of those vertices at
level = 1. This is expected, since what feeds into vertices 4,
r,=(1-c)+c(ry*4/3) = 0.15+ 0.850.15*4/3 = 0.32 5, 6 are nodes at a degree higher than those feeding into
vertices 2 and 3, which is node 1. If 1 cites 2 and 3, and 2
ow cites three others like 4, 5, and 6, then 4, 5, and 6 will
ave higher ranking than 2 because they are more important
than 2.
Theorem 3:Nodes at the same level in in-degree trees
will have equal value to Google’s rank.

Theorem 2:Nodes at the same level in out-degree tree{:
will have equal value to Google’s rank.

r,=0.15 forn=0

r,=0.15+ 0.85%r,_,/m) forn=1 (20) ro=0.15

One Sub-treer, = 0.15+ 0.85%r,_,/m) rh=0.15+0.85*(r,,* m+r,,%k  (21)
forn>1andifm¥k \\here mis the number of parents to node n from level b
and k is the number of parents to node n from levet 2.
Other Sub-treer, = 0.15+ 0.85%r,_,/k) Proof: In-degree graphs (or trees) having more than two
levels will never provide equal ranking for vertices with
where m is the number of children of node-n1 in one €qualin-degree. Instead of the in-degree of a node, the level
subtree, k is the number of children of node-n1 in the  ©Of @ node in a given tree will be the determining factor.
other subtree, and L is the level of the node. Example: Consider the following general in-degree tree
Proof: Out-degree graphs (or trees) having more thai Figure 15.
two levels will never provide equal ranking for vertices with
equal degree. Instead of the degree of a node, the level of &0 = 0.15
node in a given tree will be the determining factor.
Example: Consider the following out-degree tree in Fig- r; = 0.15+ 0.85%r%2) = 0.15+ 0.85*0.30= 0.405
ure 14.

r,=0.15+ 0.85(r%2 + 1*r,)
ro=0.15
= 0.15+ 0.85%0.405+ 0.15 = 0.555
r,=0.15+ 0.85%r,/2) = 0.15
Thus the rank of node 8 is,rthe rank of nodes 6 and 7
+ 0.85*0.075= 0.214 is r;, and the rank of nodes 1, 2, 3, 4, and 54s r

for n = 2, we have 2 ranks becaukgm (m = 3, k = 2): Level=0 1

r,=0.15+ 0.85r,/3) = 0.15

Level=1
+ 0.8540.214/3 = 0.221 v
r,=0.15+ 0.85r,/2) = 0.15 Level=2 4 5
+ 0.85%0.214/2 = 0.241 FIG. 14. An out-degree web graph.
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Level=2 TABLE 3. Summary of Google’s ranking applied to different web

graphs.

Level =1 6
Topological structure Google’s web ranking

Level=0 “1 3 4 In-degree trees Works well per tree level (see Theorem 3)
Out-degree trees Works well per subtree level (see Theorem 2)

FIG. 15. An in-degree web graph. Bipartite graphs Does not work (see Theorem 4)
General graphs Does not work (see Table 1 and Theorem 5)
Complete bipartite
Interpretation: Even though vertices 6, 7, and 8 have the 9raphs Works well per graph level (see Theorem 1)

same degree iek 2, only vertices 6, and 7 at leved 1 will
have equal rank, which is 0.405. Vertex 8, which is at level
2, will have the highest rank that is 0.555. Vertices 1, 2, 3 Final Observations on Google’s Ranking
4, and 5, which are at level 0, will have equal rank, whichAlgorithm and Conclusion

is much lower than that of all other vertices. This is ex-
pected since what feeds into vertex 8 are not only a lov\fer
level node such as 3, but also vertices 6 and 7, which ar
nodes at an in-degree higher than those feeding into 6 and
which are vertices 1, 2, 4, and 5, which occupy leweD.

If 1 and 2 pointto 6, 4 and 5 point to 7, 6 and 7 point to 8
besides 3, that make8 a more a more important link than
all other links in the tree.

Google’s ranking algorithm needs to be adjusted to dif-
ent topological web structures to be able to successfully
nk web pages without any contextual information added.
iven the fact that Google’'s SE is gaining momentum in
indexing more than one billion web pages and being
adopted by major SEs like Yahoo, it seems that a study of
their ranking web algorithm is timely in further exploring its
) , . . applicability in a variety of web graphs. This study focused
Theorgm 4_.Goog|e s ranking procedure will not work first on categorizing different web graphs and how close or
well on bipartite graphs. far away these different topological web graphs are. Then

Proof: Even though we have seen that bipartite graph§ve applied Google’s web ranking algorithm to the complete

allow the separation of the set of vertices into two sets, . _ .. .
. . X : bipartite graphs, followed by bipartite graphs, then out-
nothing has changed in the interpretation of the fact tha&legree trees, in-degree trees, and lastly, general graphs.

nodes with equal in-degree id can have different rank'ngSGoogle’s ranking web algorithm worked best on complete

which is contrary to the interpretation of equation (12). LS . :
Example: Consider the example of a bipartite graph Iikeblloartlte graphs by ranking equally vertices at the same

th in Fi 3 Table 2 . Gooale’ Ki level. The algorithm did not fare well in other web graph
€ one in Figure o. Table - summarizes 00g1e's rankiNgctyres on the lower ranking of the remaining vertices.
applied to Figure 3.

. .. More specifically, vertices with equal degrees (e.g., equal
The same remark that was applied to the graph in F'gur%mount of outgoing nodes) did not rank equally. Different

! Stll(l.l apg}hes ttr? the gfr?ﬁ h :Ign FI%.U re 32' Vsertexd36hash§1 E'%hettheorems were adopted for these different topological struc-
ranking than those ot the 3 Vertices <, 3, and 6, which | aV‘l:’ures, and Google’s was readjusted ranking to fit these
the same in-degree. Making a graph a bipartite graph did NQfittarent topological structures

chan_ge anything n the ranking of links. A more involved The metric adopted here to classify these different struc-
ranking scheme will be needed to further explore the coms .o " the coordinate (out-degree, in-degree) space has
plexity of ranking in bipartite and general graphs. ’

) , . ! been applied in a more recent study (Meghabghab, in press,
Theorem 5:Google’s ranking procedure will not work a) to discovering hubs and authorities in a variety of graph
well on general graphs.

web-based pages. Early results show the uncommon phe-

Table 3 summarizes the results of the modified Google’%Omenon that a web page can be both a hub page and an

ranking procedure on these different topological Strucwresauthority web page in general graphs only, for example. The

Thus, such an algorithm needs to be applied carefully de(')ther graphs showed that phenomenon in the beginning of

pending upon the topological structure of the web pages théﬂﬁe filtering procedure, but after a number of iterations, the

are studied. No other studies have reported the influence %f

the topol f th b link Gooale’ Ki nly web pages left were those that were either hub web
€ topology of the Web links on %>00gle's page-ran Ingpages or authority web pages, and not both at the same time.

technique. A web page is said to be an authority web page (Kleinberg,
1998) if many web pages point to it. The web pages that
TABLE 2. Summary of Google’s ranking applied to Figure 3. point to those authority web pages are themselves called
hub web pages. According to Kleinberg (personal e-mail to
Rank of vertex Value ot Value ofid the author, Sept. 14, 2000), that phenomenon is quite un-
r = 0.15 085 0 common even though the web algorithm itself does not
r,=0.21 0.85 1 prohibit it from happening. Our study focused on just using
rs = 0.33 0.85 1 links as a mean to evaluate web pages and uncover hubs and
r, = 0.62 0.85 3 authorities. No heuristics or any other contextual informa-
rs = 0.15 0.85 0 tion was used to further enhance the idea of hubs and
re = 0.21 0.85 1

authorities. In an early study, McBryan (1994) used search-
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ing hyperlinks based on an anchor text, in which one treats A. A graph is said to be reflexive if every node in a graph
the text surrounding a hyperlink as a descriptor of the page  is connected back to itself, i.e.,a= 1. The situation
being pointed to when assessing the relevance of that web Wil happen if a page points back to itself.

page. Frisse (1997) considered the problem of document B: A graph is said to be symmetric if for all edges p and q
retrieval in single-authored, stand-alone works of hypertext. n G: '_ff 3pq = 1 then g, = 1. We say in this case that
He proposed heuristics by which hyperlinks can enhance c T\ere 1S 'T‘”t“‘"’." endorsement. . _

. ! . A graph is said to be not symmetric if there exists two
notlo_ns_ of relevance and _hence the performanqe of retrieval edges p and q in G such that iff &= 1 then a, = 0. We
heuristics. In recent studies, Bharat and Henzinger (1998), g4y in this case that there is endorsement in one direc-
Chakrabarti et al. (1998a), and Charkrabarti et al. (1998b) tion.
performed three user studies to evaluate the HITS systemto D. A graph is said to be transitive if for all edges p,q, and r:
better find information on the WWW. Each one of the
studies employed additional heuristics to further enhance
relevance judgments. As such, these three studies cannot  We say in this case that all links p endorse links r even
enhance the direct evaluation of the pure link-based method though not directly.
described here; rather, they assess its performance as theE. A graph is said to be antisymmetric iff for all edges p
core component of a WWW search tool. For example, in and g
Chakrabarti et al. (1998), the CLEVER system was used to
create an automatic resource compilation or the construction
of lists of high-quality WWW pages related to a broad F- If two different web pages p and g point to another web
search topic; the goal was to see whether the output of ~ Page r then we say that there is social filtering. This
CLEVER compared to that of a manually generated com- means tha_t thes_e web pages are related through a mean-
pilation such as the WWW search service of Yahoo for a set Ingful relationship.
of 26 topics. A collection of 37 users was assembled; the ay,=1 and a,=1
users were required to be familiar with the use of a web
browser, but were not experts in the topics picked. The users
were asked to judge each web page as “bad,” “fair,” “good,”
or “fantastic” in terms of their utility of learning about the a,=1 and a,=1
topic. For approximately 31% of the topics, the evaluations
of Yahoo and CLEVER were equivalent to within a thresh-  T0 illustrate the above points let us look back again at
old of statistical significance; for approximately 50% of the Figure 1.
topics CLEVER was evaluated higher; and for the remain- Here are the algebraic properties[ofin G:
ing 19% Yz_ihoo was evaluated higher. Many (_)f the users pf] is not reflexive
the_se studies r_eported that they used the Ils_ts_ as starting s not symmetric
points from which '_[0_ explor_e, _but that they visited many 1 js not transitive
pages not on the original topic lists generated by the various; ;g anti-symmetric

techniques. _ _ 1,4)e0, (3,4)e0, and (5,4)%0:
Other ranking algorithms could have been studied anGye could say that the vertex with the highest number of web
applied to the different topological web graphs, but givenpages pointing to it.
the popularity of Google and its wide indexing power, with (5,1) 0 and (5,4)0: 5 co-cites 1 and 4.
more than a billion web pages, makes it a very powerful SE
that has been adopted by other SEs like Yahoo. All of these
factors contributed to the consideration of Google’s rankingacknowledgment
algorithm in this study. The author is considering reviewing
other web page-ranking algorithms to be applied to the same Special thanks are given #ASISTreferees for thorough

Iffaj,=1 and a,=1 then a,=1

Iffap, =1 then a;,=0

G. If a single page p points to two different web pages q
and r then we say that there is co-citation.

rich topological web graphs. review of this paper and valuable feedback.
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