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In this paper we study how we can maintain local copies of remote data sources “fresh,” when

the source data is updated autonomously and independently. In particular, we study the problem

of Web crawlers that maintain local copies of remote Web pages for Web search engines. In this

context, remote data sources (Web sites) do not notify the copies (Web crawlers) of new changes,

so we need to periodically poll the sources to maintain the copies up-to-date. Since polling the
sources takes significant time and resources, it is very difficult to keep the copies completely
up-to-date.

This paper proposes various refresh policies and studies their effectiveness. We first formalize

the notion of “freshness” of copied data by defining two freshness metrics, and we propose a
Poisson process as the change model of data sources. Based on this framework, we examine the
effectiveness of the proposed refresh policies analytically and experimentally. We show that a

Poisson process is a good model to describe the changes of Web pages and we also show that our
proposed refresh policies improve the “freshness” of data very significantly. In certain cases, we
got orders of magnitude improvement from existing policies.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Distributed

databases; H.3.3 [Information Search and Retrieval]: Search process; G.3 [Mathematics of

Computing]: Probability and Statistics

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Web crawlers, World-Wide Web, Web search engines, Page
refresh

1. INTRODUCTION

Frequently, one needs to maintain local copies of remote data sources for better
performance or availability. For example, a Web search engine copies a significant
subset of the Web and maintain copies and/or indexes of the pages to help users
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access relevant information. Also, in a data warehouse environment, one may locally
copy remote customer and transaction records for later analysis. Typically, the
remote sources are managed autonomously and updated independently of the local
copies. Because the sources do not often push updates to the copies, we must
periodically poll the sources to detect changes and refresh the copies.

In this scenario, a part of the local copy may get out-of-date because changes
at the sources are not immediately propagated to the local copy. Therefore, it
becomes important to design a good refresh policy that maximizes the “freshness”
of the local copy. In this paper we address some important questions in this context.
For instance, how often should we refresh the copy to maintain, say, 80% of the
copy up-to-date? How much fresher does the copy get if we refresh it twice as often?
Should we refresh a data item more often when its “importance” is twice as high
as others? Should we poll frequently-changing objects more frequently?

Even though this synchronization problem arises in various contexts, our work is
mainly motivated by our need to manage Web data. In our WebBase project, we
try to store a significant portion of the Web (currently 100 million pages), in order
to provide the pages to researchers for their own experiments on Web searching
and data mining [Page and Brin 1998; Cho et al. 1998]. Web search engines (i.e.,
Google and AltaVista) also maintain copies and/or indexes of Web pages, and they
need to periodically revisit the pages to maintain them up-to-date. This task is
typically done by a program called a Web crawler.

As the Web grows larger, it becomes more important to refresh the data more
effectively. Recent studies show that it often takes more than 6 months for a
new page to be indexed by Web search engines [Lawrence and Giles 1998; 1999].
Also, many search engines return obsolete links, frustrating users. For example,
reference [Lawrence and Giles 1999] estimates that up to 14% of the links in search
engines are broken.

To improve the “freshness” of a local copy, we need to address many important
challenges. First, it is not easy to even measure the freshness of the copy. Intuitively,
the copy is considered fresh when the data in the local copy is the same as the
remote sources. However, how can we instantaneously know the current status of
the remote data when it is spread across thousands of Web sites? Second, even if a
data item changes at a certain average rate, we do not know exactly when the item
will change. For instance, the pages in the New York Times Web site are updated
about once a day, but the update of a particular page depends on how the news
related to that page develops over time. Therefore, visiting the page once a day
does not guarantee its freshness.

In this paper, we will study how to synchronize data to maximize its freshness.
The main contributions of this paper are:

—We present a formal framework to study the synchronization problem.

—We present several synchronization policies that are currently employed, and we
compare how effective they are. Our study will show that some policies that may
be intuitively appealing might actually perform worse than a naive policy.

—We also propose a new synchronization policy which can improve freshness by
orders of magnitude in certain cases. Our policy takes into account how often
a page changes and how important the pages are, and makes an appropriate
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synchronization decision.

—We validate our analysis using experimental data collected from 270 Web sites
over 4 month period.

The rest of this paper is organized as follows. In Section 2, we present a framework
for the synchronization problem. Then in Section 3, we explain what options exist
for synchronizing a local copy, and we compare these options in Sections 4 and 5.
In Section 7, we verify our analysis using data collected from the World Wide Web.
Finally, Section 8 discusses related work.

2. FRAMEWORK

To study the synchronization problem, we first need to understand the meaning of
“freshness,” and we need to know how data changes over time. In this section we
present our framework to address these issues. In our discussion, we refer to the
Web sites (or the data sources) that we monitor as the real-world database and their
local copies as the local database, when we need to distinguish them. Similarly, we
refer to individual Web pages (or individual data items) as the real-world elements
and as the local elements.

In Section 2.1, we start our discussion with the definition of two freshness metrics,
freshness and age. Then in Section 2.2, we discuss how we model the evolution of
individual real-world elements. Finally in Section 2.3 we discuss how we model the
real-world database as a whole.

2.1 Freshness and age

Intuitively, we consider a database “fresher” when the database has more up-to-
date elements. For instance, when database A has 10 up-to-date elements out of 20
elements, and when database B has 15 up-to-date elements, we consider B to be
fresher than A. Also, we have a notion of “age:” Even if all elements are obsolete,
we consider database A “more current” than B, if A was synchronized 1 day ago,
and B was synchronized 1 year ago. Based on this intuitive notion, we define
freshness and age as follows:

(1) Freshness: Let S = {e1, . . . , eN} be the local database with N elements. Ideally,
all N elements will be maintained up-to-date, but in practice, only M(< N)
elements will be up-to-date at a specific time. (By up-to-date we mean that
their values equal those of their real-world counterparts.) We define the fresh-
ness of S at time t as F (S; t) = M/N . Clearly, the freshness is the fraction
of the local database that is up-to-date. For instance, F (S; t) will be one if all
local elements are up-to-date, and F (S; t) will be zero if all local elements are
out-of-date. For mathematical convenience, we reformulate the above definition
as follows:

Definition 2.1. The freshness of a local element ei at time t is

F (ei; t) =

{

1 if ei is up-to-date at time t
0 otherwise.
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Then, the freshness of the local database S at time t is

F (S; t) =
1

N

N
∑

i=1

F (ei; t).

Note that freshness is hard to measure exactly in practice since we need to
“instantaneously” compare the real-world data to the local copy. But as we
will see, it is possible to estimate freshness given some information about how
the real-world data changes.
Also note that under the above definition, the freshness of every element is
considered “equal.” Every element contributes the same freshness 1/N to the
freshness of the database S. Later in Section 6, we will consider how we can
extend the above definition to a general case when the freshness of one element
might be more “important” than another.

(2) Age: To capture “how old” a database is, we define the metric age as follows:

Definition 2.2. We use tm(ei) to represent the time of the first modification
of ei after the most recent synchronization. Then, the age of the local element
ei at time t is

A(ei; t) =

{

0 if ei is up-to-date at time t
t − tm(ei) otherwise.

Then the age of the local database S is

A(S; t) =
1

N

N
∑

i=1

A(ei; t).

The age of S tells us the average “age” of the local database. For instance,
if all real-world elements changed one day ago and we have not synchronized
them since, A(S; t) is one day.
Again, the above definition considers that the age of every element is equal.
In Section 6, we consider an extension where the age of an element is more
important than another.

In Figure 1, we show the evolution of F (ei; t) and A(ei; t) of an element ei. In this
graph, the horizontal axis represents time, and the vertical axis shows the value of
F (ei; t) and A(ei; t). We assume that the real-world element changes at the dotted
lines and the local element is synchronized at the dashed lines. The freshness drops
to zero when the real-world element changes, and the age increases linearly from
that point on. When the local element is synchronized to the real-world element,
its freshness recovers to one, and its age drops to zero. Note that it is possible
that an element changes multiple times between synchronization. Once an element
changes after a synchronization, however, the following changes do not affect the
freshness or age values as we show in Figure 1.

Obviously, the freshness (and age) of the local database may change over time.
For instance, the freshness might be 0.3 at one point of time, and it might be
0.6 at another point of time. To compare different synchronization methods, it is
important to have a metric that fairly considers freshness over a period of time, not
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F(ei)

A(ei)

1

0

0 Time

Time

element is synchronized
element is modified

Fig. 1. An example of the time evolution of F (ei; t) and A(ei; t)

just at one instant. In this paper we use the freshness averaged over time as this
metric.

Definition 2.3. We define the time average of freshness of element ei, F̄ (ei), and
the time average of freshness of database S, F̄ (S), as

F̄ (ei) = lim
t→∞

1

t

∫ t

0

F (ei; t)dt F̄ (S) = lim
t→∞

1

t

∫ t

0

F (S; t)dt.

The time average of age can be defined similarly.

From the definition, we can prove that F̄ (S) is the average of F̄ (ei).

Theorem 2.4. F̄ (S) =
1

N

N
∑

i=1

F̄ (ei) Ā(S) =
1

N

N
∑

i=1

Ā(ei)

Proof.

F̄ (S) = lim
t→∞

1

t

∫ t

0

F (S; t)dt (definition of F̄ (S))

= lim
t→∞

1

t

∫ t

0

(

1

N

N
∑

i=1

F (ei; t)

)

dt (definition of F (S; t))

=
1

N

N
∑

i=1

lim
t→∞

1

t

∫ t

0

F (ei; t)dt

=
1

N

N
∑

i=1

F̄ (ei) (definition of F̄ (ei))

The proof for age is similar.
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2.2 Poisson process and probabilistic evolution of an element

To study how effective different synchronization methods are, we need to know
how the real-world element changes. In this paper, we assume that the elements
are modified by a Poisson process. The Poisson process is often used to model
a sequence of events that happen randomly and independently with a fixed rate
over time. For instance, the occurrences of fatal auto accidents, or the arrivals of
customers at a service center, are usually modeled by Poisson processes. Under the
Poisson process, it is well-known that the time to the next event is exponentially
distributed [Taylor and Karlin 1998]. That is, if T is the time that the next event
occurs in a Poisson process with change rate λ, the probability density function for
T is

fT (t) =

{

λe−λt for t > 0
0 for t ≤ 0.

(1)

Also, it is known that the probability that ei changes at least once in the time
interval (0, t] is

Pr{T ≤ t} =

∫ t

0

fT (t)dt = 1 − e−λt

In this paper, we assume that each element ei is modified by the Poisson process
with change rate λi. That is, each element changes at its own rate λi, and this rate
may differ from element to element. For example, one element may change once
a day, and another element may change once a year. Existing literature strongly
indicates that a Poisson process is a good approximate model to describe real Web
page changes [Brewington and Cybenko 2000a; 2000b]. Later in Section 7, we also
experimentally verify the Poisson process model using real Web data.

Under the Poisson process model, we can analyze the freshness and age of the
element ei over time. More precisely, let us compute the expected freshness of ei

at time t. For the analysis, we assume that we synchronize ei at t = 0 and at
t = I. Since ei is not synchronized in the interval (0, I), the local element ei may
get out-of-date with probability Pr{T ≤ t} = 1 − e−λt at time t ∈ (0, I). Hence,
the expected freshness is

E[F (ei; t)] = 0 · (1 − e−λt) + 1 · e−λt = e−λt for t ∈ (0, I).

Note that the expected freshness is 1 at time t = 0 and that the expected freshness
approaches 0 as time passes.

We can obtain the expected age of ei similarly. If the first time ei is modified is
at time s ∈ (0, I), the age of ei at time t ∈ (s, I) is (t − s). From Equation 1, ei

changes at time s with probability λe−λs, so the expected age at time t ∈ (0, I) is

E[A(ei; t)] =

∫ t

0

(t − s)(λe−λs)ds = t(1 − 1 − e−λt

λt
)

Note that E[A(ei; t)] → 0 as t → 0 and that E[A(ei; t)] ≈ t as t → ∞; the expected
age is 0 at time 0 and the expected age is approximately the same as the elapsed time
when t is large. In Figure 2, we show the graphs of E[F (ei; t)] and E[A(ei; t)]. Note
that when we resynchronize ei at t = I, E[F (ei; t)] recovers to one and E[A(ei; t)]
goes to zero.
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0 I
Time

1
F(e ;t)iE[           ]

(a) E[F (ei; t)] graph over time

0 I
Time

A(e ;t)iE[           ]

(b) E[A(ei; t)] graph over time

Fig. 2. Time evolution of E[F (ei; t)] and E[A(ei; t)]

2.3 Evolution model of database

In the previous subsection we modeled the evolution of an element. Now we discuss
how we model the database as a whole. Depending on how its elements change over
time, we can model the real-world database by one of the following:

—Uniform change-frequency model: In this model, we assume that all real-world
elements change at the same frequency λ. This is a simple model that could be
useful in the following cases:
—We do not know how often the individual element changes over time. We only

know how often the entire database changes on average, so we may assume
that all elements change at the same average rate λ.

—The elements change at slightly different frequencies. In this case, this model
will work as a good approximation.

—Non-uniform change-frequency model: In this model, we assume that the elements
change at different rates. We use λi to refer to the change frequency of the
element ei. When the λi’s vary, we can plot the histogram of λi’s as we show in
Figure 3. In the figure, the horizontal axis shows the range of change frequencies
(e.g., 9.5 < λi ≤ 10.5) and the vertical axis shows the fraction of elements that
change at the given frequency range. We can approximate the discrete histogram
by a continuous distribution function g(λ), when the database consists of many
elements. We will adopt the continuous distribution model whenever convenient.

For the reader’s convenience, we summarize our notation in Table I. As we
continue our discussion, we will explain some of the symbols that have not been
introduced yet.

3. SYNCHRONIZATION POLICIES

So far we discussed how the real-world database changes over time. In this section
we study how the local copy can be refreshed. There are several dimensions to this
synchronization process:

(1) Synchronization frequency: We first need to decide how frequently we synchro-
nize the local database. Obviously, as we synchronize the database more often,
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Fig. 3. Histogram of the change frequencies

symbol meaning

(a) F̄ (S), F̄ (ei) Freshness of database S (and element ei) averaged over time

(b) Ā(S), Ā(ei) Age of database S (and element ei) averaged over time

(c) F̄ (λi, fi), Ā(λi, fi) Freshness (and age) of element ei averaged over time, when
the element changes at the rate λi and is synchronized at the

frequency fi

(i) λi Change frequency of element ei

(j) fi (= 1/Ii) Synchronization frequency of element ei

(k) λ Average change frequency of database elements

(l) f (= 1/I) Average synchronization frequency of database elements

(m) N Number of elements in the database

Table I. The symbols that are used throughout this chapter and their meanings

we can maintain the local database fresher. In our analysis, we assume that
we synchronize N elements per I time-units. By varying the value of I, we
can adjust how often we synchronize the database. We use the symbol f to
represent 1/I. f represents the average frequency at which an element in the
database is synchronized.

(2) Resource allocation: Even after we decide how many elements we synchronize
per unit interval, we still need to decide how frequently we synchronize each
individual element. We illustrate this issue by an example.

Example 3.1. A database consists of three elements, e1, e2 and e3. It is
known that the elements change at the rates λ1 = 4, λ2 = 3, and λ3 =
2 (times/day). We have decided to synchronize the database at the total rate
of 9 elements/day. In deciding how frequently we synchronize each element, we
consider the following options:

—Synchronize all elements uniformly at the same rate. That is, synchronize
e1, e2 and e3 at the same rate of 3 (times/day).

—Synchronize an element proportionally more often when it changes more of-
ten. In other words, synchronize the elements at the rates of f1 = 4, f2 = 3,
f3 = 2 (times/day) for e1, e2 and e3, respectively.

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.
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Based on how fixed synchronization resources are allocated to individual el-
ements, we can classify synchronization policies as follows. We study these
policies later in Section 5.

(a) Uniform-allocation policy: We synchronize all elements at the same rate,
regardless of how often they change. That is, all elements are synchronized
at the same frequency f . In Example 3.1, the first option corresponds to
this policy.

(b) Non-uniform-allocation policy: We synchronize elements at different rates.
In particular, with a proportional-allocation policy we synchronize element
ei with a frequency fi that is proportional to its change frequency λi. Thus,
the frequency ratio λi/fi, is the same for any i under the proportional-
allocation policy. In Example 3.1, the second option corresponds to this
policy.

(3) Synchronization order: Now we need to decide in what order we synchronize
the elements in the database.

Example 3.2. We maintain a local database of 10,000 Web pages from site
A. In order to maintain the local copy up-to-date, we continuously update our
local database by revisiting the pages in the site. In performing the update, we
may adopt one of the following options:

—We maintain an explicit list of all URLs in the site, and we visit the URLs
repeatedly in the same order. Notice that if we update our local database at
a fixed rate, say 10,000 pages/day, then we synchronize a page, say p1, at a
regular interval of one day.

—We only maintain the URL of the root page of the site, and whenever we crawl
the site, we start from the root page, following links. Since the link structure
(and the order) at a particular crawl determines the page visit order, the
synchronization order may change from one crawl to the next. Notice that
under this policy, we synchronize a page, say p1, at variable intervals. For
instance, if we visit p1 at the end of one crawl and at the beginning of the
next crawl, the interval is close to zero, while in the opposite case it is close
to two days.

We can generalize the above options as follows. In Section 4 we will compare
how effective these synchronization order policies are.

(a) Fixed order: We synchronize all elements in the database in the same
order repeatedly. Therefore, a particular element is synchronized at a fixed
interval under this policy. This policy corresponds to the first option of
the above example.

(b) Random order: We synchronize all elements repeatedly, but the synchro-
nization order may be different in each iteration. More precisely we take
a random permutation of elements in each iteration and synchronize el-
ements in the permuted order. This policy roughly corresponds to the
second option in the example.

(c) Purely random: At each synchronization point, we select a random element
from the database and synchronize it. Therefore, an element is synchro-
nized at intervals of arbitrary length. While this policy is rather hypo-
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(b)

(c)

 : page synchronization point

1 day

(a)

Fig. 4. Several options for the synchronization points

thetical, we believe it is a good comparison point because it has the most
variability in the visit intervals.

(4) Synchronization points: In some cases, we may need to synchronize the database
only in a limited time window. For instance, if a Web site is heavily accessed
during daytime, it might be desirable to crawl the site only in the night, when
it is less frequently visited. We illustrate several options for dealing with this
constraint by an example.

Example 3.3. We maintain a local database of 10 pages from site A. The
site is heavily accessed during daytime. We consider several synchronization
policies, including the following:

—Figure 4(a): We synchronize all 10 pages in the beginning of a day, say
midnight.

—Figure 4(b): We synchronize most pages in the beginning of a day, but we
still synchronize some pages during the rest of the day.

—Figure 4(c): We synchronize 10 pages uniformly over a day.

In this paper we assume that we synchronize a database uniformly over time.
We believe this assumption is valid especially for the Web environment. Because
the Web sites are located in many different time zones, it is not easy to identify
which time zone a particular Web site resides in. Also, the access pattern to a
Web site varies widely. For example, some Web sites are heavily accessed during
daytime, while others are accessed mostly in the evening, when the users are
at home. Since crawlers cannot guess the best time to visit each site, they
typically visit sites at a uniform rate that is convenient to the crawler.

4. SYNCHRONIZATION-ORDER POLICIES

In this section, we study the effectiveness of synchronization-order policies and
identify which synchronization-order policy is the best in terms of freshness and
age.

In this section we assume that all real-world elements are modified at the same
average rate λ. That is, we adopt the uniform change-frequency model (Section 2.3).
When the elements change at the same rate, it does not make sense to synchronize
the elements at different rates, so we also assume uniform-allocation policy (Item 2a
in Section 3). These assumptions significantly simplify our analysis, while giving
us solid understanding on the issues that we address. Based on these assumptions,
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Algorithm 4.1. Fixed-order synchronization

Input: ElemList = {e1, e2, . . . , eN}

Procedure

[1] While (TRUE)

[2] SyncQueue := ElemList

[3] While (not Empty(SyncQueue))

[4] e := Dequeue(SyncQueue)

[5] Synchronize(e)

Fig. 5. Algorithm of fixed-order synchronization policy

1

0

E[F(ei;t)]

Time
I 2I0

Fig. 6. Time evolution of E[F (ei; t)] for fixed-order policy

we analyze different synchronization-order policies in the subsequent subsections.
A reader who is not interested in mathematical details may skip to Section 4.4.

4.1 Fixed-order policy

Under the fixed-order policy, we synchronize the local elements in the same order
repeatedly. We describe the fixed-order policy more formally in Figure 5. Here,
ElemList records ordered list of all local elements, and SyncQueue records the ele-
ments to be synchronized in each iteration. In steps [3] through [5], we synchronize
all elements once, and we repeat this loop forever. Note that we synchronize el-
ements in the same order in every iteration, because the order in SyncQueue is
always the same.

Now we compute the freshness of the database S. (Where convenient, we will
refer to the time-average of freshness simply as freshness, if it does not cause any
confusion.) Since we can compute the freshness of S from freshness of its elements
(Theorem 2.4), we first study how the freshness of a random element ei evolves over
time.

Since we assume that it takes I time units to synchronize all N elements in S, the
expected freshness of ei will evolve as in Figure 6. In the graph, we assumed that
we synchronize ei initially at t = 0 without losing generality. Note that E[F (ei; t)]
recovers to 1 every I time units, when we synchronize it. Intuitively, ei goes through
exactly the same process every I time units, so we can expect that we can learn
everything about ei by studying how ei evolves in the interval (0, I]. In particu-

lar, we suspect that the freshness of ei averaged over time, limt→∞

1
t

∫ t

0
F (ei; t)dt,

should be equal to the expected freshness of ei averaged over the interval (0, I),
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1
I

∫ I

0
E[F (ei; t)]dt. The following theorem proves it more formally.

Theorem 4.1. When the element ei is synchronized at the fixed interval of I
time units, the time average of the freshness of ei is the same as the time average
of E[F (ei; t)] over the interval (0, I].

F̄ (ei) =
1

I

∫ I

0

E[F (ei; t)]dt

Proof.

F̄ (ei) = lim
t→∞

∫ t

0
F (ei; t)dt

t

= lim
n→∞

∑n−1
j=0

∫ (j+1)I

jI
F (ei; t)dt

∑n−1
j=0 I

= lim
n→∞

∑n−1
j=0

∫ I

0
F (ei; t + jI)dt

nI

=
1

I

∫ I

0



 lim
n→∞

1

n

n−1
∑

j=0

F (ei; t + jI)



 dt (2)

Because we synchronize ei every I time units from t = 0, F (ei; t+jI) is the freshness

of ei at t time units after each synchronization. Therefore, 1
n

∑n−1
j=0 F (ei; t + jI),

the average of freshness at t time units after synchronization, will converge to its
expected value, E[F (ei; t)], as n → ∞. That is,

lim
n→∞

1

n

n−1
∑

j=0

F (ei; t + jI) = E[F (ei; t)].

Then,

1

I

∫ I

0



 lim
n→∞

1

n

n−1
∑

j=0

F (ei; t + jI)



 dt =
1

I

∫ I

0

E[F (ei; t)]dt. (3)

From Equations 2 and 3, F (ei) =
1

I

∫ I

0

E[F (ei; t)]dt.

Based on Theorem 4.1, we can compute the freshness of ei.

F̄ (ei) =
1

I

∫ I

0

E[F (ei; t)]dt =
1

I

∫ I

0

e−λtdt =
1 − e−λI

λI
=

1 − e−λ/f

λ/f

Here, f is 1/I, the (average) synchronization rate of an element. Throughout this
section, we assume that all elements change at the same frequency λ and that they
are synchronized at the same interval I, so the above equation holds for any element
ei. Therefore, the freshness of database S is

F̄ (S) =
1

N

N
∑

i=1

F̄ (ei) =
1 − e−λ/f

λ/f
.
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Algorithm 4.2. Random-order synchronization

Input: ElemList = {e1, e2, . . . , eN}

Procedure

[1] While (TRUE)

[2] SyncQueue := RandomPermutation(ElemList)

[3] While (not Empty(SyncQueue))

[4] e := Dequeue(SyncQueue)

[5] Synchronize(e)

Fig. 7. Algorithm of random-order synchronization policy

We can analyze the age of S similarly.

Ā(S) = Ā(ei) =
1

I

∫ I

0

E[A(ei; t)]dt =
1

I

∫ I

0

t(1 − 1 − e−λt

λt
)dt =

1

f
(
1

2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2
)

4.2 Random-order policy

Under the random-order policy, the synchronization order of elements might be
different from one crawl to the next. Figure 7 describes the random-order policy
more formally. Note that we randomize the order of elements before every iteration
by applying random permutation (step [2]).

The random-order policy is slightly more complex to analyze than the fixed-
order policy. Since we may synchronize ei at any point during interval I, the
synchronization interval of ei is not fixed any more. In one extreme case, it may
be almost 2I, when ei is synchronized at the beginning of the first iteration and
at the end of the second iteration. In the opposite case, it may be close to 0,
when ei is synchronized at the end of the first iteration and at the beginning of
the second iteration. Therefore, the synchronization interval of ei, W , is not a
fixed number any more, but follows a certain distribution fW (w). Therefore the
equation of Theorem 4.1 should be modified accordingly. In Theorem 4.1, we

simply divided
∫ I

0
E[F (ei; t)]dt by the fixed synchronization interval I. But now

because the synchronization interval w spans on [0, 2I] following the distribution
fW (w), we need to take the average of

∫ w

0
E[F (ei; t)]dt weighted by the frequency

of synchronization interval w ∈ [0, 2I], and divide it by the average synchronization

interval
∫ 2I

0
fW (w) w dw:

F̄ (ei) = lim
t→∞

1

t

∫ t

0

F (ei; t)dt =

∫ 2I

0
fW (w)

(∫ w

0
E[F (ei; t)]dt

)

dw
∫ 2I

0
fW (w) w dw

(4)

To perform the above integration, we need to derive the closed form of fW (w).

Lemma 4.2. Let T1(T2) be the time when element ei is synchronized in the first
(second) iteration under the random-order policy. Then the p.d.f. of W = T1 − T2,
the synchronization interval of ei, is

fW (w) =







w
I2 0 ≤ w ≤ I
2I−w

I2 I ≤ w ≤ 2I
0 otherwise.
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Proof. The p.d.f.’s of T1 and T2 are

fT1
(t) =

{

1
I 0 ≤ t ≤ I
0 otherwise

and fT2
(t) =

{

1
I I ≤ t ≤ 2I
0 otherwise.

Then

fW (w) = f(T2 − T1 = w)

=

∫ I

0

f(T1 = s)f(T2 − T1 = w|T1 = s) ds

=

∫ I

0

f(T1 = s)f(T2 = s + w) ds

=
1

I

∫ I

0

f(T2 = s + w) ds.

When w < 0 or w > 2I, f(T2 = s + w) = 0 for any s ∈ (0, I). Therefore,

fW (w) =
1

I

∫ I

0

f(T2 = s + w) ds = 0.

When 0 ≤ w ≤ I, f(T2 = s + w) = 1
I for s ∈ [I − w, I]. Then,

fW (w) =
1

I

∫ I

I−w

1

I
ds =

w

I2
.

When I ≤ w ≤ 2I, f(T2 = s + w) = 1
I for s ∈ [0, 2I − w], and therefore

fW (w) =
1

I

∫ 2I−w

0

1

I
ds =

2I − w

I2
.

Using Lemma 4.2, we can compute each part of Equation 4:
∫ 2I

0
fW (w) w dw =

∫ I

0
w
I2 w dw +

∫ 2I

I
2I−w

I2 w dw = I
∫ w

0
E[F (ei; t)]dt =

∫ w

0
e−λtdt = 1

λ (1 − e−λw)
∫ 2I

0
fW (w)

(∫ w

0
E[F (ei; t)]dt

)

dw =
∫ I

0

(

w
I2

)

1
λ (1 − e−λw)dw +

∫ 2I

I

(

2I−w
I2

)

1
λ (1 − e−λw)dw

= 1
λ

[

1 −
(

1−e−λI

λI

)2
]

Thus,

F̄ (ei) =
1

λ/f

[

1 −
(

1 − e−λ/f

λ/f

)2
]

.

Since this analysis is valid for any element ei, the freshness of S is the same as
above:

F̄ (S) =
1

λ/f

[

1 −
(

1 − e−λ/f

λ/f

)2
]
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Algorithm 4.3. Purely-random synchronization

Input: ElemList = {e1, e2, . . . , eN}

Procedure

[1] While (TRUE)

[2] e := PickRandom(ElemList)

[3] Synchronize(e)

Fig. 8. Algorithm of purely-random synchronization policy

We can compute Ā(S) through the same steps and get the following result.

Ā(S) =

∫ 2I

0
fW (w)

(∫ w

0
E[A(ei; t)]dt

)

dw
∫ 2I

0
fW (w) w dw

=
1

f

[

1

3
+

(

1

2
− 1

λ/f

)2

−
(

1 − e−λ/f

(λ/f)2

)2
]

4.3 Purely-random policy

Whenever we synchronize an element, we pick an arbitrarily random element under
the purely-random policy. Figure 8 describes the policy more formally.

The analysis of the purely-random policy is similar to that of the random-order
policy. Here again, the time between synchronizations of ei, W , is a random variable
with a probability density function fW (w), and the freshness of ei becomes

F̄ (ei) = lim
t→∞

1

t

∫ t

0

F (ei; t)dt =

∫

∞

0
fW (w)

(∫ w

0
E[F (ei; t)]dt

)

dw
∫

∞

0
fW (w) w dw

. (5)

Note that the outer integral is over (0,∞), since the synchronization interval of ei

may get arbitrarily large. The law of rare events [Taylor and Karlin 1998] shows
that fW (w) is

fW (w) =

{

fe−fw w ≥ 0
0 otherwise

Using fW (w), we can compute each part of Equation 5:
∫

∞

0
fW (w) w dw =

∫ 2I

0
fe−fw w dw = 1/f

∫ w

0
E[F (ei; t)]dt =

∫ w

0
e−λtdt = 1

λ (1 − e−λw)
∫

∞

0
fW (w)

(∫ w

0
E[F (ei; t)]dt

)

dw =
∫

∞

0
(fe−fw) 1

λ (1 − e−λw) dw = 1
f+λ

Therefore,

F̄ (S) = F̄ (ei) =
1

1 + λ/f

We can compute Ā(S) through the same steps and get the following result:

Ā(S) =

∫

∞

0
fW (w)

(∫ w

0
E[A(ei; t)]dt

)

dw
∫

∞

0
fW (w) w dw

=
1

f

(

λ/f

1 + λ/f

)

.

4.4 Comparison of synchronization-order policies

In Table II, we summarize the results in the preceding subsections. In the table,
we use r to represent the frequency ratio λ/f , where λ is the frequency at which a
real-world element changes and f(= 1/I) is the frequency at which a local element
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policy Freshness F̄ (S) Age Ā(S)

Fixed-order 1−e−r

r
1
f
( 1
2
− 1

r
+ 1−e−r

r2
)

Random-order 1
r
(1 − ( 1−e−r

r
)2) 1

f
( 1
3

+ ( 1
2
− 1

r
)2 − ( 1−e−r

r2
)2)

Purely-random 1
1+r

1
f
( r
1+r

)

Table II. Freshness and age formula for various synchronization-order policies

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1

Freshness

purely−random
random−order
fixed−order

(a) Freshness graph over r = λ/f

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1

Age/I

purely-random
random-order
fixed-order

(b) Age graph over r = λ/f

Fig. 9. Comparison of freshness and age of various synchronization policies

is synchronized. When r < 1, we synchronize the elements more often than they
change, and when r > 1, the elements change more often than we synchronize them.

To help readers interpret the formulas, we show the freshness and the age graphs
in Figure 9. In the figure, the horizontal axis is the frequency ratio r, and the
vertical axis shows the freshness and the age of the local database. From the
graph, it is clear that the fixed-order policy performs best by both metrics. For
instance, when we synchronize the elements as often as they change (r = 1), the
freshness of the fixed-order policy is (e−1)/e ≈ 0.63, which is 30% higher than that
of the purely-random policy. The difference is more dramatic for age. When r = 1,
the age of the fixed-order policy is only one fourth of the random-order policy. In
general, as the variability in the time between visits increases, the policy gets less
effective. This result is expected given that the fixed-order policy guarantees a
“bound” on freshness and age values while the purely-random policy may lead to
unlimited freshness and age values.

Notice that as we synchronize the elements more often than they change (λ �
f , thus r = λ/f → 0), the freshness approaches 1 and the age approaches 0.
Also, when the elements change more frequently than we synchronize them (r =
λ/f → ∞), the freshness becomes 0, and the age increases. Finally, notice that
the freshness is not equal to 1, even if we synchronize the elements as often as
they change (r = 1). This fact has two reasons. First, an element changes at
random points of time, even if it changes at a fixed average rate. Therefore, the
element may not change between some synchronizations, and it may change more
than once between other synchronizations. For this reason, it cannot be always

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



Effective Page Refresh Policies For Web Crawlers · 17

up-to-date. Second, some delay may exist between the change of an element and
its synchronization, so some elements may be “temporarily obsolete,” decreasing
the freshness of the database.

5. RESOURCE-ALLOCATION POLICIES

In the previous section, we compared synchronization-order policies assuming that
all elements in the database change at the same rate. But what can we do if the
elements change at different rates and we know how often each element changes?
Is it better to synchronize an element more often when it changes more often?
In this section we address this question by studying different resource-allocation
policies (Item 2 in Section 3). For the study, we model the real-world database by
the non-uniform change-frequency model (Section 2.3), and we assume the fixed-
order policy for the synchronization-order policy (Item 3 in Section 3), because
the fixed-order policy is the best synchronization-order policy. In other words, we
assume that the element ei changes at the frequency λi (λi’s may be different from
element to element), and we synchronize ei at the fixed interval Ii(= 1/fi, where fi

is synchronization frequency of ei). Remember that we synchronize N elements in

I(= 1/f) time units. Therefore, the average synchronization frequency ( 1
N

∑N
i=1 fi)

should be equal to f .
In Section 5.1, we start our discussion by comparing the two most straightforward

resource allocation policies: the uniform-allocation and the proportional-allocation
policy. While we may intuitively expect that the proportional policy performs
better than the uniform policy, our result in Section 5.1 will show that the uniform
policy is always more effective than the proportional policy under any scenario.
Then in Section 5.2 we try to understand why this happens by studying a simple
example. Finally in Section 5.3 we derive the optimal resource-allocation policy
that either maximizes freshness or minimizes age. A reader who only wants to
learn the optimal resource-allocation policy may skip to Section 5.3.

5.1 Superiority of the uniform policy to the proportional policy

In this subsection, we prove that the uniform policy is better than the proportional
policy under any distribution of λ values. To help our proof, we use F̄ (λi, fi) to
refer to the time average of freshness of ei when it changes at λi and is synchronized
at fi. Our proof is based on the convexity of the freshness function F̄ (λi, fi) over
λi. When f(x) is a convex function, it is well known [Thomas, Jr. 1969] that

1

n

n
∑

i=1

f(xi) ≥ f(
1

n

n
∑

i=1

xi) for any xi
′s (i = 1, 2, . . . , n). (6)

Similarly, when f(x) is concave,

1

n

n
∑

i=1

f(xi) ≤ f(
1

n

n
∑

i=1

xi) for any xi
′s (i = 1, 2, . . . , n). (7)

Our goal is to prove that the freshness of the uniform policy (represented as
F̄ (S)u) is better than the freshness of the proportional policy (represented as
F̄ (S)p). We first note that the function F̄ (λi, fi) derived in Section 4 is convex

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



18 · J. Cho and H. Garcia-Molina

over λi for any synchronization-order policy.1 Therefore, F̄ (λi, fi) satisfies Equa-
tion 6 for variable λi.

Theorem 5.1. It is always true that F̄ (S)u ≥ F̄ (S)p.

Proof. By definition, the uniform policy is fi = f for any i. Then

F̄ (S)u =
1

N

N
∑

i=1

F̄ (λi, fi) =
1

N

N
∑

i=1

F̄ (λi, f). (8)

For the proportional policy, λi/fi = λ/f = r for any i, and because the analytical
form of F̄ (λi, fi) only depends on the ratio r = λi/fi, F̄ (ei) = F̄ (λi, fi) = F̄ (λ, f).
Therefore,

F̄ (S)p =
1

N

N
∑

i=1

F̄ (ei) =
1

N

N
∑

i=1

F̄ (λ, f) = F̄ (λ, f). (9)

Then

F̄ (S)u =
1

N

N
∑

i=1

F̄ (λi, f) (Equation 8)

≥ F̄ (
1

N

N
∑

i=1

λi, f) (convexity of F̄ over λi)

= F̄ (λ, f) (definition of λ)

= F̄ (S)p. (Equation 9)

Similarly, we can prove that the age of the uniform policy, Ā(S)u, is always less
than the age of the proportional policy, Ā(S)p, based on the concavity of Ā(λi, fi)
over λi.

Theorem 5.2. It is always true that Ā(S)u ≤ Ā(S)p.

Proof. From the definition of the uniform and the proportional policies,

Ā(S)u =
1

N

N
∑

i=1

Ā(λi, f) (10)

Ā(S)p =
1

N

N
∑

i=1

Ā(λi, fi) =
1

N

N
∑

i=1

λ

λi
Ā(λ, f). (11)

1We can verify its convexity by computing ∂2F̄ (λi, fi)/∂λ2
i of the derived function.
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Then

Ā(S)u =
1

N

N
∑

i=1

Ā(λi, f) (Equation 10)

≤ Ā(
1

N

N
∑

i=1

λi, f) (concavity of Ā over λi)

= Ā(λ, f) (definition of λ)

Ā(S)p = λĀ(λ, f)

(

1

N

N
∑

i=1

1

λi

)

(Equation 11)

≥ λĀ(λ, f)
1

1
N

∑N
i=1 λi

(convexity of function
1

x
)

= λĀ(λ, f)
1

λ
(definition of λ)

= Ā(λ, f).

Therefore, Ā(S)u ≤ Ā(λ, f) ≤ Ā(S)p.

5.2 Two-element database

Intuitively, we expected that the proportional policy would be better than the
uniform policy, because we allocate more resources to the elements that change
more often, which may need more of our attention. But why is it the other way
around? In this subsection, we try to understand why we get the counterintuitive
result, by studying a very simple example: a database consisting of two elements.
The analysis of this simple example will let us understand the result more concretely,
and it will reveal some intuitive trends. We will confirm the trends more precisely
when we study the optimal synchronization policy later in Section 5.3.

Now we analyze a database consisting of two elements: e1 and e2. For the
analysis, we assume that e1 changes at 9 times/day and e2 changes at once/day.
We also assume that our goal is to maximize the freshness of the database averaged
over time. In Figure 10, we visually illustrate our simple model. For element e1,
one day is split into 9 intervals, and e1 changes once and only once in each interval.
However, we do not know exactly when the element changes in one interval. For
element e2, it changes once and only once per day, and we do not know when it
changes. While this model is not exactly a Poisson process model, we adopt this
model due to its simplicity and concreteness.

Now let us assume that we decided to synchronize only one element per day.
Then what element should we synchronize? Should we synchronize e1 or should we
synchronize e2? To answer this question, we need to compare how freshness changes
if we pick one element over the other. If the element e2 changes in the middle of
the day and if we synchronize e2 right after it changed, it will remain up-to-date
for the remaining half of the day. Therefore, by synchronizing element e2 we get
1/2 day “benefit”(or freshness increase). However, the probability that e2 changes
before the middle of the day is 1/2, so the “expected benefit” of synchronizing
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1 day

e
2

v

 : element modification timev

e
1

v vvvvvvv v

Fig. 10. A database with two elements with different change frequency

row f1 + f2 f1 f2 benefit best

(a) 1 1 0 1
2
× 1

18
= 1

36
0 1

(b) 0 1 1
2
× 1

2
= 9

36

(c) 2 2 0 1
2
× 1

18
+ 1

2
× 1

18
= 2

36
0 2

(d) 1 1 1
2
× 1

18
+ 1

2
× 1

2
= 10

36

(e) 0 2 1
3
× 2

3
+ 1

3
× 1

3
= 12

36

(f) 5 3 2 3
36

+ 12
36

= 30
72

2 3

(g) 2 3 2
36

+ 6
16

= 31
72

(h) 10 9 1 9
36

+ 1
4

= 36
72

7 3

(i) 7 3 7
36

+ 6
16

= 41
72

(j) 5 5 5
36

+ 15
36

= 40
72

Table III. Estimation of benefits for different choices

e2 is 1/2 × 1/2 day = 1/4 day. By the same reasoning, if we synchronize e1 in
the middle of an interval, e1 will remain up-to-date for the remaining half of the
interval (1/18 of the day) with probability 1/2. Therefore, the expected benefit is
1/2× 1/18 day = 1/36 day. From this crude estimation, we can see that it is more
effective to select e2 for synchronization!

Table III shows the expected benefits for several other scenarios. The second
column shows the total synchronization frequencies (f1 + f2) and the third column
shows how much of the synchronization is allocated to f1 and f2. In the fourth
column we estimate the expected benefit, and in the last column we show the f1 and
f2 values that give the highest expected benefit. To reduce clutter, when f1+f2 = 5
and 10, we show only some interesting (f1, f2) pairs. Note that since λ1 = 9 and
λ2 = 1, row (h) corresponds to the proportional policy (f1 = 9, f2 = 1), and row (j)
corresponds to the uniform policy (f1 = f2 = 5). From the table, we can observe
the following interesting trends:

(1) Rows (a)-(e): When the synchronization frequency (f1 + f2) is much smaller
than the change frequency (λ1 + λ2), it is better to give up synchronizing the
elements that change too fast. In other words, when it is not possible to keep
up with everything, it is better to focus on what we can track.

(2) Rows (h)-(j): Even if the synchronization frequency is relatively large (f1 +
f2 = 10), the uniform allocation policy (row (j)) is more effective than the
proportional allocation policy (row (h)). The optimal point (row (i)) is located
somewhere between the proportional policy and the uniform policy.

We note that it may be surprising that the uniform policy performs better than
the proportional policy. Is this result due to an artifact of our discrete freshness
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metric (either 0 or 1)? Is the uniform policy better for any freshness metric?
While we do not have a formal proof, we believe that this result is not due to the
discreteness of our definition for the following reasons: First, in [Cho 2001], we
generalize the definition of freshness to a continuous value (between zero and one)
that gradually “decays” over time. Even under this continuous definition, we still
get the same result (the uniform policy is better than the proportional policy).
Second, the uniform policy also performs better for the age metric, which is based
on continuous age values.

In general, it will be an interesting research topic to study exactly what “codition”
guarantees the superiority of the uniform policy over the proportional policy.

5.3 The optimal resource-allocation policy

In this section, we formally verify the trend we have just observed by deriving the
optimal policy. Mathematically, we can formulate our goal as follows:

Problem 5.3. Given λi’s (i = 1, 2, . . . , N), find the values of fi’s (i = 1, 2, . . . , N)
that maximize

F̄ (S) =
1

N

N
∑

i=1

F̄ (ei) =
1

N

N
∑

i=1

F̄ (λi, fi)

when fi’s satisfy the constraints

1

N

N
∑

i=1

fi = f and fi ≥ 0 (i = 1, 2, . . . , N)

Because we can derive the closed form of F̄ (λi, fi),
2 we can solve the above

problem.

Solution Using the method of Lagrange multipliers [Thomas, Jr. 1969], we
can derive that the freshness of database S, F̄ (S), takes its maximum when all fi’s
satisfy the following equations3

∂F̄ (λi, fi)

∂fi
= µ and

1

N

N
∑

i=1

fi = f.

Notice that we introduced another variable µ in the solution,4 and the solution
consists of (N + 1) equations (N equations of ∂F̄ (λi, fi)/∂fi = µ and one equation

of 1
N

∑N
i=1 fi = f) with (N + 1) unknown variables (f1, . . . , fN , µ). We can solve

these (N + 1) equations for fi’s, since we know the closed form of F̄ (λi, fi).
From the solution, we can see that all optimal fi’s satisfy the equation ∂F̄ (λi, fi)/∂fi =

µ. That is, all optimal (λi, fi) pairs are on the graph of ∂F̄ (λ, f)/∂f = µ. To il-
lustrate the property of the solution, we use the following example.

Example 5.4. The real-world database consists of five elements, which change
at the frequencies of 1, 2, . . . , 5 (times/day). We list the change frequencies in

2For instance, F̄ (λi, fi) = (1 − e−λi/fi )/(λi/fi) for the fixed-order policy.
3When ∂F̄ (λi, fi)/∂fi = µ does not have a solution with fi ≥ 0, fi should be equal to zero.
4This is a typical artifact of the method of Lagrange multipliers.
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e1 e2 e3 e4 e5

(a) change frequency 1 2 3 4 5

(b) synchronization frequency (freshness) 1.15 1.36 1.35 1.14 0.00

(c) synchronization frequency (age) 0.84 0.97 1.03 1.07 1.09

Table IV. The optimal synchronization frequencies of Example 5.4
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Fig. 11. Solution of the freshness and age optimization problem of Example 5.4

row (a) of Table IV. (We explain the meaning of rows (b) and (c) later, as we
continue our discussion.) We decided to synchronize the local database at the
rate of 5 elements/day total, but we still need to find out how often we should
synchronize each element.

For this example, we can solve Problem 5.3 analytically, and we show the graph
of its solution in Figure 11(a). The horizontal axis of the graph corresponds to the
change frequency of an element, and the vertical axis shows the optimal synchro-
nization frequency of the element with that given change frequency. For instance,
the optimal synchronization frequency of e1 is 1.15 (f = 1.15), because the change
frequency of element e1 is 1 (λ = 1). Similarly from the graph, we can find the
optimal synchronization frequencies of other elements, and we list them in row (b)
of Table IV.

Notice that while e4 changes twice as often as e2, we need to synchronize e4 less
frequently than e2. Furthermore, the synchronization frequency of e5 is zero, while
it changes at the highest rate. This result comes from the shape of Figure 11(a). In
the graph, when λ > 2.5, f decreases as λ increases. Therefore, the synchronization
frequencies of the elements e3, e4 and e5 gets smaller and smaller.

While we obtained Figure 11(a) by solving Example 5.4, we prove in the next
subsection that the shape of the graph is the same for any distributions of λi’s.
That is, the optimal graph for any database S is exactly the same as Figure 11(a),
except that the graph of S is scaled by a constant factor from Figure 11(a). Since
the shape of the graph is always the same, the following statement is true in any
scenario: To improve freshness, we should penalize the elements that change too
often.

Similarly, we can compute the optimal age solution for Example 5.4, and we show
the result in Figure 11(b). The axes in this graph are the same as before. Also,
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Fig. 12. ∂F̄ (λ, f)/∂f = µ graph when µ = 1 and µ = 2

we list the optimal synchronization frequencies in row (c) of Table IV. Contrary
to the freshness, we can observe that we should synchronize an element more often
when it changes more often (f1 < · · · < f5). However, notice that the difference
between the synchronization frequencies is marginal: All fi’s are approximately
close to one. In other words, the optimal solution is rather closer to the uniform
policy than to the proportional policy. Similarly for age, we can prove that the
shape of the optimal age graph is always the same as Figure 11(b). Therefore, the
trend we observed here is very general and holds for any database.

5.4 The graph of the equation ∂F̄ (λ, f)/∂f = µ

We now study the property of the solutions for Problem 5.3. Since the solutions
are always on the graph ∂F̄ (λ, f)/∂f = µ, and since only µ changes depending on
scenarios, we can study the property of the solutions simply by studying how the
graph changes for various µ values.

In particular, we prove that the graph ∂F̄ (λ, f)/∂f = µ is scaled only by a
constant factor for different µ values. For example, Figure 12 shows the graphs
of the equation for µ = 1 and 2. The graph clearly shows that the µ = 2 graph
is simply a scaled version of the µ = 1 graph by a factor of 2; the µ = 1 graph
converges to zero when λ → 1, while the µ = 2 graph converges to zero when
λ → 1/2. Also, the µ = 1 graph takes its maximum at (0.53, 0.3), while the µ = 2
takes its maximum at (0.53/2, 0.3/2). The following theorem generalizes this scaling
property.

Theorem 5.5. We assume (λ, f) satisfy the equation ∂F̄
∂f (λ, f) = µ. Then (µλ, µf),

the point scaled by the factor µ from (λ, f), satisfies the equation ∂F̄
∂f (µλ, µf) = 1.

Proof. For the fixed-order policy,5 ∂F̄
∂f (λ, f) = − e−λ/f

f + 1−e−λ/f

λ . Then,

∂F̄
∂f (µλ, µf) = − e−µλ/µf

µf + 1−e−µλ/µf

µλ = 1
µ

(

− e−λ/f

f + 1−e−λ/f

λ

)

= 1
µ

∂F̄
∂f (λ, f) = 1

µ µ = 1.

(12)

Therefore, the points (µλ, µf) satisfies the equation ∂F̄
∂f (µλ, µf) = 1.

From Theorem 5.5, we can see that the graph of ∂F̄ (λ, f)/∂f = µ for any µ
value is essentially a scaled version of the graph ∂F̄ (λ, f)/∂f = 1. Therefore, its
shape is always the same for any value of µ. Since only the µ value changes as the

5We can similarly prove the theorem for other synchronization-order policies.
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distribution of λi’s change, this “scaling property” for different µ values shows that
the shape of the graph is always the same under any distribution.

Similarly for age, we can prove that the graphs are scaled only by a constant
factor for any distributions of λi’s.

6. WEIGHTED FRESHNESS

So far, we assumed that the freshness and the age of every element is equally
important to the users. But what if the elements have different “importance”? For
example, if the database S has two elements, e1 and e2, and if the users access
e1 twice as often as e2, how should we synchronize the elements to maximize the
freshness of the database perceived by the users? Should we refresh e1 more often
than e2? In this section, we study how we can extend our model to address this
scenario.

6.1 Weighted freshness metrics

When the users access element e1 twice more often than e2, we may consider that e1

is twice as important as e2, because we can make the users see fresh elements twice
as often by maintaining e1 up-to-date. To capture this concept of “importance”,
we may give different “weights” wi’s to element ei’s and define the freshness of a
database as follows:

Definition 6.1. Let wi be the weight (or importance) of element ei. The freshness
and the age of a database S is defined as

F (S; t) =

(

N
∑

i=1

wi F (ei; t)

)/(

N
∑

i=1

wi

)

A(S; t) =

(

N
∑

i=1

wi A(ei; t)

)/(

N
∑

i=1

wi

)

Note that when all wi’s are equal to 1, the above definition reduces to our previ-
ous definition. Under this weighted definition, we can analyze the Poisson-process
model using a similar technique described in Section 5.3. We first illustrate the
result with the following example.

Example 6.2. We maintain 6 elements in our local database, whose weights and
change frequencies are listed in the rows (a) and (b) of Table V. In this example,
there exist two classes of elements, the elements with weight 1 (e1∗) and the elements
with weight 2 (e2∗). Each class contains 3 elements (e∗1, e∗2, e∗3) with different
change frequencies. We assume that we synchronize a total of 6 elements every
day. Under these parameters, we can analyze the freshness maximization problem,
whose result is shown in Figure 13(a).

The horizontal axis of the graph represents the change frequency of an element,
and the vertical axis shows the optimal synchronization frequency for the given
change frequency. The graph consists of two curves because the elements in different
classes follow different curves. The wi = 2 elements (e2∗) follow the outer curve,
and the wi = 1 elements (e1∗) follow the inner curve. For example, the optimal
synchronization frequency of e11 is 0.78, because its weight is 1 and its change
frequency is once a day. We list the optimal synchronization frequencies for all
elements in row (c) of Table V. From this result, we can clearly see that we
should visit an element more often when its weight is higher. For instance, the
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Fig. 13. Solution of the freshness and age optimization problem of Example 6.2

e11 e12 e13 e21 e22 e23

(a) weight (wi) 1 2

(b) change frequency (times/day) 1 2 3 1 2 3

(c) synchronization frequency (freshness) 0.78 0.76 0.00 1.28 1.56 1.62

(d) synchronization frequency (age) 0.76 0.88 0.94 0.99 1.17 1.26

Table V. The optimal synchronization frequencies of Example 6.2

synchronization frequency of e21 is 1.28, which is higher than 0.78 of e11. (Note
that both e21 and e11 change at the same frequency.)

However, note that the optimal synchronization frequency is not proportional to
the weight of an element. For example, the optimal synchronization frequency of
e23 is infinitely larger than that of e13! In fact, in the following theorem, we prove
that the weight of an element determines the scale of the optimal curve that the
element follows. That is, the optimal curve that the wi = 2 elements follow is
exactly twice as large as the curve that the wi = 1 elements follow.

Similarly, we can analyze the weighted age metric for the example, and we show
the result in Figure 13(b). Again, we can see that we should visit an element more
often when its weight is higher, but not necessarily proportionally more often. In
general, we can prove the following property for age: When the weight of e1 is k
times as large as that of e2, the optimal age curve that e1 follows is

√
k times larger

than the curve that e2 follows.

Theorem 6.3. When the weight of e1 is k times as large as that of e2, the
optimal freshness curve that e1 follows is k times larger than the curve that e2

follows.

Proof. Similarly to Problem 5.3, we can solve the freshness optimization prob-
lem under the weighted freshness definition and show that the optimal fi values
satisfy the equation

∂F̄ (λi, fi)/∂fi = µ/wi.

To prove the theorem, we need to prove that if the (λi, fi) satisfy the above equa-
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tion for wi = 1, then the pair (kλi, kfi) satisfy the equation for wi = k. It is
straightforward to prove this fact. For example, for the fixed-order policy,6

∂F̄

∂f
(λ, fi) = −e−λ/fi

fi
+

1 − e−λ/fi

λ
.

Then

∂F̄
∂f (kλi, kfi) = − e−kλi/kfi

kfi
+ 1−e−kλi/kfi

kλi
= 1

k

(

− e−λi/fi

fi
+ 1−e−λi/fi

λi

)

= 1
k

∂F̄
∂f (λi, fi) = µ/k

Theorem 6.4. When the weight of e1 is k times as large as that of e2, the
optimal age curve that e1 follows is

√
k times larger than the curve that e2 follows.

Proof. The proof is similar to that of Theorem 6.3.

7. EXPERIMENTS

Throughout this paper we modeled database changes as a Poisson process. In this
section, we first verify the Poisson process model using experimental data collected
from 270 sites. Then, using the observed change frequencies on the Web, we com-
pare the effectiveness of our various synchronization policies. The experimental
results will show that our optimal policy performs significantly better than the
current policies used by crawlers.

7.1 Experimental setup

To collect the data on how often Web pages change, we crawled around 720,000
pages from 270 “popular” sites every day, from February 17th through June 24th,
1999. This was done with the Stanford WebBase crawler, a system designed to
create and maintain large Web repositories. The system is capable of high indexing
speeds (about 60 pages per second), and can handle relatively large data repositories
(currently 210GB of HTML is stored). In this section we briefly discuss how the
particular sites were selected for our experiments.

To select the sites for our experiment, we used the snapshot of the Web in our
WebBase repository. At that time, WebBase maintained the snapshot of 25 million
Web pages, and based on this snapshot we identified the top 400 “popular” sites
as the candidate sites. To measure the popularity of sites, we essentially counted
how many pages in our repository had a link to each site, and we used the count
as the popularity measure of a site.7

Then, we contacted the Webmasters of all candidate sites asking their permis-
sion for our experiment. After this step, 270 sites remained, including sites such
as Yahoo (http://yahoo.com), Microsoft (http://microsoft.com), and Stanford
(http://www.stanford.edu). Focusing on the “popular” sites biases our results to
a certain degree, but we believe this bias is toward what most people are interested
in. In Table VI, we show how many sites in our list are from which domain. In our
site list, 132 sites belong to com and 78 sites to edu. The sites ending with “.net”

6We can similarly prove the theorem for other synchronization-order policies.
7More precisely, we used PageRank as the popularity measure, which is similar to the link count.

To learn more about PageRank, please refer to [Page and Brin 1998; Cho et al. 1998].

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



Effective Page Refresh Policies For Web Crawlers · 27

domain number of sites

com 132

edu 78

netorg 30 (org: 19, net: 11)

gov 30 (gov: 28, mil: 2)

Table VI. Number of sites within a domain
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Fig. 14. Change intervals of pages

and “.org” are classified as netorg and the sites ending with “.gov” and “.mil” as
gov.

From each of the selected sites, we crawled 3,000 pages every day. That is,
starting from the root pages of the selected sites we followed links in a breadth-
first search, up to 3,000 pages per site. This “3,000 page window” was decided for
practical reasons. In order to minimize the load on a site, we ran the crawler only
at night (9PM through 6AM PST), waiting at least 10 seconds between requests
to a single site. Within these constraints, we could crawl at most 3,000 pages from
a site every day.

7.2 Verification of Poisson process

In this subsection, we verify whether a Poisson process adequately models Web
page changes. Similar experimental results have been presented in [Cho and Garcia-
Molina 2000; Brewington and Cybenko 2000a].

From Equation 1, we know how long it takes for a page to change under a Poisson
process. According to the equation, the time between changes follow an exponential
distribution λe−λt if the change frequency of the page is λ. We can use this result
to verify our assumption. That is, if we plot the time between changes of a page p,
the time should be distributed as λe−λt, if changes of p follow a Poisson process.

To compare our experimental data against the Poisson model, we first select only
the pages whose average change intervals are, say, 10 days, and plot the distribution
of their change intervals. In Figure 14, we show some of the graphs plotted this
way. Figure 14(a) is the graph for the pages with 10 day change interval, and
Figure 14(b) is for the pages with 20 day change interval. The horizontal axis
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represents the interval between successive changes, and the vertical axis shows the
fraction of changes with that interval. The vertical axis in the graph is logarithmic
to emphasize that the distribution is exponential. The lines in the graphs are the
predictions by a Poisson process. While there exist small variations, we can clearly
see that a Poisson process predicts the observed data very well. We also plotted
the same graph for the pages with other change intervals and got similar results
when we had sufficient data.

Although our results indicate that a Poisson process describes the Web page
changes very well, we note that our results are also limited due to the constraint
of our experiment. We crawled Web pages on a daily basis, so our result does not
verify the Poisson model for the pages that change very often. Also, the pages that
change very slowly were not verified either, because we conducted our experiment
for four months and did not detect any changes to those pages. However, given the
typical crawling rate of commercial search engines, we believe that the exact change
model of these pages are of relatively low importance in practice. For example,
Google [Google ] tries to refresh their index about once a month on average, so if a
page changes more than once a day, exactly when in a day the page changes does
not make significant difference in their index freshness. For this reason, we believe
the results that we obtain from our dataset is still useful for practical applications
despite its limitation.

7.3 Synchronization-order policy

In this subsection, we report our experimental results on synchronization-order
policies (Section 4). For the comparison of the synchronization-order policies, we
conducted the following experiments: We first selected the set of pages whose av-
erage change frequency were once every two weeks.8

Then on the set of selected pages, we ran multiple simulated crawls where we
downloaded the pages at the average rate of 1) once a day, 2) once every week, 3)
once every month and 4) once every two months. Since we knew exactly when each
page changed (at the granularity of a day), we could measure the freshness and the
age value of every page in each simulated crawl and compute their time averages.
In measuring the freshness and age, we assumed that a page changed in the middle
of a day when the page changed.

Figure 15 shows the results from these experiments. The horizontal axis repre-
sents the frequency ratio r = λ/f for a particular simulated crawl. For example,
r = 2 corresponds to the case when we downloaded pages at the average rate of
once every month (once two weeks/once a month). In order to cover a wide range
of r values, the horizontal axis is logarithmic. Figure 15(a) shows freshness and
Figure 15(b) shows age. The dots in the graph correspond to our experimental
results. The lines are the predictions from our theoretical analysis as we showed
in Figure 9.9 From the graph it is clear that the experimental results confirm our
theoretical analysis. Most of the dots sit closely to our theoretical graph. Given

8We performed the same experiments for the pages whose average change frequencies were other

than once every two weeks and observed similar results.
9Note that the vertical axis in Figure 15(b) is age, not age/I. In Figure 9(b) it is age/I, so the

shapes of the graphs are different.
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Fig. 15. Experimental results for synchronization-order policies

that the page change interval matches the Poisson model well, this result is not
surprising.

Note that the results of Figure 15 have many practical implications. For instance,
we can answer all of the following questions using this graph.

—How can we measure how fresh a local database is? By measuring how frequently
a Web page changes (using a similar monitoring technique that we employed for
our experiments), we can estimate how fresh a local database is. For instance,
when a Web page changes once a week, and when we download the page also
once a week (r = 1), the freshness of the local page is 0.63, under the fixed-order
policy.

—How can we guarantee certain freshness of a local database? From the graph, we
can find how frequently we should download a page in order to achieve certain
freshness. For instance, if we want at least 0.8 freshness, the frequency ratio r
should be less than 0.46 (fixed-order policy). That is, we should re-download the
page at least 1/0.46 ≈ 2 times as frequently as it changes.
Therefore, a Web search engine that wants to guarantee a certain level of freshness
for their index may want to perform a small-scale change monitoring experiments
to estimate how often the indexed pages change. Using this estimate, they can
determine how often they will have to download the pages. This technique can
be very useful during a planning stage of a Web search engine, when it decides
how much network bandwidth it wants to allocate for its crawling activity.

Note we obtained the results in this subsection only for a set of pages with similar
change frequency. In Section 7.5, we estimate the expected freshness and age values
for the overall Web.

7.4 Frequency of change

Based on the collected data we now study the change frequencies of Web pages. Es-
timating the change frequencies of pages is essential to evaluate resource-allocation
policies.

We can estimate the average change interval of a page by dividing our monitoring
period by the number of detected changes in a page. For example, if a page changed

ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003.



30 · J. Cho and H. Garcia-Molina

: page is modified

: page is accessed
: change of the page is detected.

v 1 day

v

(a)
v v vv vv v v v v v v v

vvv vvv
(b)

Fig. 16. The cases when the estimated change interval is lower than the real value

≤1day ≤1week ≤1month ≤ 4months >4months

0.05

0.1

0.15

0.2

0.25

0.3

(a) Over all domains

≤ 1day
≤ 1week ≤ 1month ≤ 4months

> 4months

0.1

0.2

0.3

0.4

0.5

gov

edu

netorg

com

>1day >1week >1month

(b) For each domain

Fig. 17. Fraction of pages with given average interval of change

4 times within the 4-month period, we can estimate the average change interval of
the page to be 4 months/4 = 1 month.

In Figure 17 we summarize the result of this estimation. In the figure, the
horizontal axis represents the average change interval of pages, and the vertical
axis shows the fraction of pages changed at the given average interval. Figure 17(a)
shows the statistics collected over all domains, and Figure 17(b) shows the statistics
broken down into each domain. For instance, from the second bar of Figure 17(a)
we can see that 15% of the pages have a change interval longer than a day and
shorter than a week.

From the first bar of Figure 17(a), we can observe that a surprisingly large number
of pages change at very high frequencies: More than 20% of pages had changed
whenever we visited them. As we can see from Figure 17(b), these frequently
updated pages are mainly from the com domain. More than 40% of pages in the
com domain changed every day, while less than 10% of the pages in other domains
changed at that frequency (Figure 17(b) first bars). In particular, the pages in
edu and gov domain are very static. More than 50% of pages in those domains
did not change at all for 4 months (Figure 17(b) fifth bars). Clearly, pages at
commercial sites, maintained by professionals, are updated frequently to provide
timely information and attract more users.

While our estimation method gives us a reasonable average change interval for
most pages, we also note that our estimation may not be accurate for certain
pages. For example, the granularity of the estimated change interval is one day,
because we can detect at most one change per day even if the page changes more
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overall com gov

Freshness Age Freshness Age Freshness Age

Proportional 0.12 400 days 0.07 386 days 0.69 19.3 days

Uniform 0.57 5.6 days 0.38 8.5 days 0.82 2.0 days

Optimal 0.62 4.3 days 0.44 7.4 days 0.85 1.3 days

Table VII. Freshness and age prediction based on the real Web data

often (Figure 16(a)). Also, if a page changes several times a day and then remains
unchanged, say, for a week (Figure 16(b)), the estimated interval might be much
longer than the true value.

7.5 Resource-allocation policy

From our dataset, we now estimate how much freshness and age values we may
expect for the overall Web if we use three resource-allocation policies. That is, we
assume the change-frequency distribution that we observed in the previous subsec-
tion and estimate how well each resource-allocation policy performs under the real
distribution. For this evaluation, we assume that we maintain a billion pages locally
and that we synchronize all pages every month.10 Also based on Figure 17(a), we
assume that 23% of pages change every day, 15% of pages change every week, etc.
For the pages that did not change in 4 months during our experiments, we assume
that they change every year. While it is a crude approximation, we believe we can
get some idea on how effective different policies are.

In the second and the third columns of Table VII, we show the predicted freshness
and age for various resource-allocation policies. To obtain the numbers, we assumed
the fixed-order policy (Item 3a in Section 3) as the synchronization-order policy.
We can clearly see that the optimal policy is significantly better than any other
policies. For instance, freshness increases from 0.12 to 0.62 (500% increase!), if we
use the optimal policy instead of the proportional policy. Also, age decreases by
23% from the uniform policy to the optimal policy. From these numbers, we can
also learn that we need to be very careful when we optimize the policy based on
the frequency of change. For instance, the proportional policy, which people may
intuitively prefer, is significantly worse than any other policies: The age of the
proportional policy is 93 times worse than that of the optimal policy!

In the remaining columns, we also show the estimated freshness and age if a
crawler focuses only on a particular domain of the Web (com and gov). Again, we
assumed the distribution from our experiments (Figure 17(b)) and that the crawler
downloaded every page once a month. For example, we assumed that 40% of the
pages in the com domain changed once a day.

The result shows that our optimal policy is more useful when pages change more
often (conversely, when we have less download resources). For example, for the gov
domain (that has fewer frequently changing pages), the freshness difference is 18%
between the proportional and the optimal policy, while the difference becomes 84%
for the com domain. Similarly, the age difference between the proportional and the
optimal policy increases from 1380% to 5110% from the gov domain to the com

10Many popular search engines report numbers similar to these.
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Fig. 18. Estimated freshness for different average change frequencies

domain.
In order to verify whether this trend is generally true, we conducted another set

of experiments. In these experiments, we wanted to see how the average freshness
value would change if the Web pages changed more (or less) often than the current
Web. For this purpose, we artificially increased the average change frequency of all
the pages in our dataset by a certain factor and reevaluated the freshness of the
pages. We assumed that we still downloaded every page once a month on average.
Figure 18 shows the results from these experiments. In the figure, the vertical axis
represents the expected freshness values of the three resource-allocation policies.
The horizontal axis represents how many times we increased the average change
frequency of each page. For example, when x = 4, the average change frequency of
all pages increased by a factor of 4. Thus, the freshness at x = 1 is identical to the
second column of Table VII. When x < 1, the pages changed less often than our
dataset. We performed similar experiments for the age metric and got comparable
graphs.

The result shows that the proportional policy performs very poorly when pages
change very often. For instance, the proportional policy resulted in almost 0 fresh-
ness when the average change frequency increased by a factor of 4 (x = 4), while
the uniform and the optimal policy gave higher than 0.4 freshness. Also, note that
the optimal policy becomes relatively more effective than the uniform policy as λ
increases. For example, when λ increased by a factor of 64 (x = 64), the optimal
policy performed twice as well as the uniform policy. From this result, we believe
that our optimal policy will be more useful for the applications that need to mon-
itor frequently changing information, such as daily news update. Also, as the size
of the Web grows and as it becomes more difficult to download all pages at the
current crawling rate, we believe our new crawling policies can help search engines
avoid sudden drops in their index freshness.

8. RELATED WORK

In general, we may consider the problem of this paper as a data replication problem.
A lot of work has been done to maintain the consistency of replicated-data [Bern-
stein and Goodman 1984; Alonso et al. 1990; Bernstein et al. 1980; Barbara and
Garcia-Molina 1995; de Carvalho and Roucairol 1982; Colby et al. 1997; Krishnaku-
mar and Bernstein 1991; 1994; Ladin et al. 1992; Golding and Long 1993; Pu and
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Leff 1991; Olston and Widom 2000]. This body of work studies the tradeoff between
consistency and read/write performance [Krishnakumar and Bernstein 1994; Ladin
et al. 1992; Alonso et al. 1990; Olston and Widom 2000] and tries to guarantee a
certain type of consistency [Alonso et al. 1990; Barbara and Garcia-Molina 1995;
Bernstein et al. 1980]. For example, reference [Yu and Vahdat 2000] tries to limit
the number of pending writes that have not been propagated to all replicas. It
also proposes a new distributed protocol that can guarantee this property. Refer-
ence [Olston and Widom 2000] guarantees a “divergence bound” on the difference
between the values of the replicated data and the source data through the cooper-
ation of sources. In most of the existing work, however, researchers have assumed
a push model, where the sources notify the replicated data sites of the updates.
In the Web context, this push model is not very appropriate, because most of the
Web site managers do not inform others of the changes they made. We need to
assume a pull model where updates are made independently and autonomously at
the sources.

Reference [Coffman, Jr. et al. 1998] studies how to schedule a Web crawler to
improve freshness. The model used for Web pages is similar to the one used in this
paper; however, the model for the Web crawler and freshness are very different. In
particular, the reference assumes that the “importance” or the “weight” of a page
is proportional to the change frequency of the page. While this assumption makes
analysis simple, it also makes it hard to discover the fundamental trends that we
identified in this paper. We believe the results of this paper is more general, be-
cause we study the impact of the change frequency and the importance of a page
separately. We also proposed an age metric, which was not studied in the reference.
Reference [Edwards et al. 2001] proposes another refresh algorithm based on linear
programming. The algorithm shows some promising results, but because algorithm
becomes more complex over time, the authors report that the algorithm has to peri-
odically “reset” and “start from scratch;” The algorithm takes (practically) infinite
amount of time to finish after a certain number of refreshes. A large volume of
literature studies various issues related to Web crawlers [Pinkerton 1994; Menczer
et al. 2001; Heydon and Najork 1999; Page and Brin 1998], but most of these stud-
ies focus on different issues, such as the crawler architecture [Heydon and Najork
1999; Page and Brin 1998], page selection [Menczer et al. 2001; Cho et al. 1998;
Chakrabarti et al. 1999; Diligenti et al. 2000] crawler parallelization [Shkapenyuk
and Suel 2002; Cho and Garcia-Molina 2002], etc.

There exist a body of literature that studies the evolution of the Web [Wills
and Mikhailov 1999; Wolman et al. 1999; Douglis et al. 1999; Pitkow and Pirolli
1997; Cho and Garcia-Molina 2000] and estimates how often Web pages change.
For example, reference [Pitkow and Pirolli 1997] studies the relationship between
the “desirability” of a page and its lifespan. Reference [Wills and Mikhailov 1999]
presents statistics on Web page changes and the responses from Web servers. In
reference [Cho and Garcia-Molina 2003], we propose new ways to estimate the
change frequencies of Web pages when we do not know the complete change histories
of the pages. References [Brewington and Cybenko 2000a; 2000b] estimate the
distribution of change frequencies based on experimental data. The work in this
category will be very helpful to design a good refresh policy, because we need to
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know how often pages change in order to implement the policies proposed in this
paper.

9. CONCLUSION

In this paper we studied how to refresh a local database to improve its “freshness.”
We formalized the notion of freshness by defining freshness and age, and we de-
veloped a model to describe Web page changes. We then analytically compared
various refresh policies under the Poisson model and proposed optimal policies that
can maximize freshness or minimize age. Our optimal policies consider how often
a page changes and how important the pages are, and make an appropriate refresh
decision.

Through our study, we also identified that the proportional-synchronization pol-
icy, which might be intuitively appealing, does not work well in practice. Our study
showed that we need to be very careful in adjusting the synchronization frequency
of a page based on its change frequency. Finally, we investigated the changes of
real web pages and validated our analysis based on this experimental data. We also
showed that our optimal policies can improve freshness and age very significantly
using real Web data.

As more and more digital information becomes available, it will be increasingly
important to collect it effectively. A crawler or a data warehouse simply cannot
refresh all its data constantly, so it must be very careful in deciding what data to
poll and check for freshness. The policies we have studied in this paper can make
a significant difference in the “temporal quality” of the data that is collected.
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