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ABSTRACT 
 
 
The World Wide Web can be modeled as a directed graph in which a node represents a 

Web page and an edge represents a hyperlink.  Currently, the number of nodes in this gi-

gantic Web graph is estimated to be over four billion, and is growing at more than seven 

million nodes a day   without any centralized control.  Recent studies suggest that de-

spite its chaotic appearance, the Web is a highly structured digraph, in a statistical sense.  

The study of this graph can provide insight into Web algorithms for crawling, searching, 

and ranking Web resources.  Knowledge of the graph-theoretic structure of the Web 

graph can be exploited for attaining efficiency and comprehensiveness in Web navigation 

as well as enhancing Web tools, e.g., better search engines and intelligent agents.  In this 

proposal, we discuss various problems to be explored for understanding the structure of 

the WWW.  Many research directions are identified such as Web caching, prevention of 

security threats, user-flow analysis, etc.  
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1. INTRODUCTION

The World Wide Web (WWW or Web) has revolutionized the way we access informa-

tion. By April 2001, the Web is estimated to have over 4 billion pages, more than 28 bil-

lion hyperlinks, and is growing rapidly at the rate of 7.3 million pages a day (Moore and

Murray [49], Kleinberg et al. [39]). This gigantic structure of the Web often makes it dif-

ficult for even the most technical users to find the best information available on a given

topic. The WWW can be viewed in two very divergent ways. From an internal stand-

point, it is a TCP-compliant application, HTTP with related software, e.g., support for

Java and a set of associated programming, and data communications problems and solu-

tions. We are interested in the other equally important way of viewing the WWW, which

is external and extensional. From this standpoint, the Web is a vast and continuously

growing repository of information: textual as well as audio and video. The size, number

of pages, and presence of hyperlinks distinguish the Web from a distributed database.

The sheer volume of material and the apparently chaotic nature of the Web can make lo-

cating, acquiring, and organizing information for a specific purpose both time consuming

and difficult. This runs exactly opposite to the promise of the Web, namely that all in-

formation can be made readily available to the world’s population all of the time. The

first challenge to overcome in attaining this laudable goal would be to find methods for

efficiently and comprehensively navigating the WWW. Efficiency has to be defined in

WWW-intrinsic terms. That is, one wants to minimize the number of links that must be

followed to reach a desired piece of information from a designated starting point. Com-



2

prehensiveness means that most relevant information is actually obtained during the navi-

gation. At present, neither efficiency nor comprehensiveness can be reliably achieved.

Much of the effort in devising search methods for navigating the WWW would be

based on knowledge engineering. This is a promising approach provided one knows how

deep (how many links overall) the search should continue and how comprehensively rele-

vant sections of the WWW have been identified. Knowledge engineering is most appro-

priate when the field of search has been significantly narrowed to the point where with

some certainty most of the relevant information resides in visited pages. At this point,

knowledge-engineering techniques can be used to amplify relevance and filter less rele-

vant material away so that the user can then apply interface techniques, e.g., visualization

to examine the results. There is need of a set of methods that can exploit structural prop-

erties of the WWW to accelerate the search process, so that it actually reaches the thresh-

old where knowledge engineering can be profitably applied. A summary of the WWW

data collection and characterizations of aspects of the WWW appears in Pitkow [56].

However, a Web model does not ‘emerge’ from these data, as the elements of any model

must be formulated mathematically.

Despite its chaotic appearance, the Web is highly structured, but in a statistical sense.

Models have been proposed which reproduce certain experimentally determined features

of the WWW and these features could be exploited to attain efficiency and comprehen-

siveness in the WWW navigation. Graph theory aids in understanding the structure of the

Web at macroscopic as well as microscopic level. An overview of applications of graph

theory to the WWW appears in Hayes [33, 34]. In this paper, we survey the present re-



3

search on Web modeling, search algorithms, and properties of the Web from a graph-

theoretic perspective. The paper is organized as follows. Section 2 discusses some pre-

liminary considerations about the WWW that play a crucial role in assessing its models.

Section 3 is a survey of the random-graph models that explain the Web structure. Section

4 covers various empirical studies of the WWW. Section 5 discusses properties of the

Web that have been discovered until now. Section 6 points out features of the present

search engines and analyzes factors for improving them. Section 7 describes algorithms

applied for search and identification of Web communities. Section 8 discusses the pro-

posed work. Section 9 presents the concluding remarks. Appendix I provides the defini-

tions of the important graph-theoretic terms as well as abbreviations used. The descrip-

tion of the graph-theoretic terms used in this paper can be found in a standard graph-

theory book such as [24].

2. MODELING THE WWW

An accurate model of the Web is helpful for testing the correctness and scalability of a

Web algorithm. In addition, modeling the Web structure will enable us to predict its fu-

ture properties likely to emerge from its current pattern of evolution.

2.1 WWW is not the Internet

Any discussion of the WWW in the extensional sense must begin by disengaging it from

the Internet. The Internet is a constellation of data communications technologies, which

are not relevant for the Web structure. There is no correspondence between the distance
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(minimum number of hyperlinks) from one Web page to another and the minimum num-

ber of IP router hops required to realize the traversal. It may be a three-hyperlink jump

for navigating from one Web page to another, but nine routers might have to be involved

in the best of circumstances on the Internet. Internet topology and traffic are defined by

data communications lines and resource allocation issues in entities like routers or operat-

ing systems. Claffy [21] and Crovella et al. [22] presented valuable studies of the Inter-

net and the impact certain kinds of WWW activities have on it as a resource issue. How-

ever, the WWW and the Internet are two very distinct entities.

The smallest useful component of the WWW is a Web page. A page can be resolved

into smaller elements such as cross-linked subdocuments (HTML files) and multimedia

objects, e.g., digital images. This level of detail is not necessary for an analysis of the

Web structure. The design of an individual Web page and its outgoing and incoming hy-

perlinks are not influenced by data communications or systems considerations. Since, the

WWW is the sum total of the authoring decisions made by individual designers of a page,

the hyperlinks on a Web page reflect semantically motivated, intentional acts by human

beings. Recent studies about the WWW structure show that it resembles collective be-

havior reminiscent of complex physical systems and thermodynamics. Thus, despite the

impossibility of direct modeling at the microscopic level, the WWW structure can be

modeled. Such model will be used to improve existing search methods and invent new

scalable approaches that can match the growth of the Web.

The Web resembles a distributed database superficially. However, it has many fea-

tures that distinguish it from a distributed database. The uncontrolled, decentralized, and
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rapid growth of the Web is absent in a distributed database. Web pages are constantly

being created, maintained, and modified by hundreds of thousands, perhaps millions, of

users all over the world. The Web is unique in the sense that there is no uniform struc-

ture, integrity constraints, transactions, standard query language, or a data model [29].

Moreover, the key features of a database such as reliability, recovery, etc., are not present

in the Web.

2.2 WWW as a Digraph

The WWW can be modeled as a directed graph where each node represents a page and

each edge, a hyperlink. We refer the directed graph formed by the WWW as the Web

graph. A small section of the Web graph is shown in Figure 1.

To draw one more distinction between the Internet and the WWW, the word ‘site’ has

various meanings when applied to the WWW. From the Internet standpoint, a site is a

principal IP address. It can be identified as a single, reachable target on the Internet.

From the WWW standpoint, a Web site is defined as a registered domain-name on the

Internet. As an interesting exercise in both WWW search and the framing of the defini-

tion, here are some URLs, that have conflicting definitions of the term Web site

(FOLDOC [62], Netlingo [63], Webopedia [64]). Whatever appropriate definition even-

tuates, it does not coincide with IP site.
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Brown Univ.
Web Agents Group

(cs.brown.edu/research/
webagent/)

Archive.org

Xerox PARC
(parc.xerox.com/iea)

IBM Almaden
(almaden.ibm.com/cs

/k53/clever.html)

cs.cornell.edu/
home/kleinber

USChess.org
USTennis
(usta.com)

Ithaca Weather
(cuinfo.cornell.edu
/ithaca/weather/)

National Weather Service
(nws.noaa.gov)

Weather.com

American Redcross
(redcross.org/disaster/

safety/floods.html)

Cartalk.com

Artificial Life
(alife.fusebox.com)

Spaceimaging.com
Web-search.com/cool.html

Adoption.com

Encyclopedia.com

Newspapers in India
(newsdirectory.com/news/press/as/in)

Elibrary.com

Beaucoup.com/1refeng.html

AAA tours
(csaa.com)

Oracle in News
(cs.virginia.edu/misc/

news-bacon.html)

Time.com
IMDB.com

Amazon.com

Homegrocer.com

Wineshopper.com

Library of
Congress
(loc.gov)

ICARP Tajikistan
(icarp.org/tajik.html)

Figure 1. A Small Section of the Web Graph

www-net.cs.umass.edu/cs691s



7

3. RANDOM-GRAPH MODELS

This section surveys various models of random graphs that have been proposed for the

WWW. We also point out drawbacks of these models. Some of these models capture the

growth characteristics of the Web, while others are only static.

3.1 Erdös-Rényi Model

Erdös and Rényi [28] proposed the earliest model of a random graph. The model starts

with a null graph having n nodes. Each of the
2

)1( −⋅ nn
pairs of nodes is connected

with an edge at random with a specified uniform probability p. At a threshold value pc of

the probability p, many interesting properties appear in the graph. When cpp < ,

(pc ~ 1/n), the graph has many disconnected components. At p = pc, a large connected

component is formed, which in the asymptotic limit contains all the nodes in the graph.

The number of nodes in this model is fixed. Therefore, this model cannot capture the

growth characteristics of the Web. In addition, a uniform probability p of edge formation

between all pairs of nodes does not truly reflect the real-life WWW.

An example of the Erdös-Rényi model is shown in Figure 2(a) and 2(b). Initially, we

have a null graph with n = 10 nodes as in Figure 2(a). With a probability p = 0.2, an edge

is added between any two nodes, e.g., nodes c and j. This process is repeated until a total

of 9
2

)1( =−⋅⋅= nnp
m edges are added, as shown in Figure 2(b). This leads to the

formation of a random graph, which has a small diameter.
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Figure 2(b). Erdös-Rényi Random Graph With 10 Nodes
and 9 Edges
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3.2 Small-World Models

The small-world model of random networks has inspired much of the research into the

WWW structure. Milgram [48] appears to be the first to articulate the basic properties of

small-world networks. It is a well-founded folklore that each individual is indirectly

linked through a short chain of acquaintances to practically anyone else in the world.

Sparseness, small diameter, and cliquishness1 are the three properties that characterize

small-world networks. Erdös-Rényi type random graphs have small diameter, but they

lack the cliquishness present in small-world networks. The small-world effect has been

identified in disparate contexts including neural network of the worm C. elegans, epide-

miology [59], power-grid network, collaboration graph of film actors (e.g., Kevin Bacon

graph [65]), and the WWW.

Edge-Reassigning Small-World Network

Watts and Strogatz [60] suggested a probabilistic graph-evolution as the process underly-

ing small-world networks. Evolution starts with a ring lattice with each node connected

to its d nearest neighbors. Then each of
2

dn ⋅
edges is randomly reassigned to distant

nodes with a probability p in a round robin fashion. This network has two properties:

characteristic-path length L that measures the separation between two nodes (global prop-

erty), and clustering coefficient C that measures the cliquishness of neighborhood of a

node (local property). Clustering is a measure of the extent to which neighbors of a node

form a complete graph, and it provides the basis for redefining a Web page in purely
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WWW structural terms. The rewired-edges connect nodes that are actually apart from

each other by a distance more than Lrandom, where Lrandom is the number of edges in the

shortest path, averaged over all pairs of nodes in the network for p = 1 (Erdös-Rényi ran-

dom graph). The chief feature of this model, which can be viewed as yielding random

chordal rings if we start with a ring lattice, is that a region of values for p produces evolu-

tion unlike the Erdös-Rényi type random-graph evolution. On entering this region from

below, the characteristic path-length L of the small-world network decreases dramatically,

while the expected clustering is only slowly varying throughout the region. As new edges

are reconnected, shortcuts are added between nodes far apart.

An example of the edge-reassigning (Watts-Strogatz) small-world network is shown in

Figure 3. The ring lattice has n = 10 nodes each with degree d = 4, as in Figure 3(a).

Each of the 20 edges is reassigned with a probability p = 0.3. A small-world network

emerges out of the original ring lattice after the six edges are reassigned (Figure 3(b)).

1 Tendency to form a clique. (See Appendix I)
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Figure 3(c). All Edges of Fig. 3(a) Reassigned
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Figure 3(a). A Ring Lattice (n = 10, d = 4)
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When p = 0, the original regular-graph remains unchanged. The ring lattice is a highly

clustered, large world where the characteristic path-length L grows linearly with n. As p

increases from 0 to 1, the characteristic path-length L decreases rapidly. However, reas-

signing an edge from a clustered neighborhood has at most a linear effect on the cluster-

ing coefficient C. The result is a poorly clustered, small-world random network. When

p = 1, we get an Erdös-Rényi type random graph as shown in Figure 3(c).

Edge-Addition Small-World Network

Analysis of the small-world model has gone well beyond the description provided by

Watts and Strogatz. Important examples of both results and analytical tools appear in

Moore and Newman [50, 51] and Newman et al. [53, 54]. The Edge-Addition Small-

World model extends the Watts-Strogatz small-world model and is based on undirected

graphs.
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In the edge-addition small-world model, additional edges are added randomly giving

an expected number
2

ndp ⋅⋅
of new edges. Here p, d, and n denote the probability of

addition of a new edge, degree of each node in the original ring-lattice, and the number of

nodes in the ring lattice, respectively. The model exhibits the cliquishness and short

paths among nodes, found in social networks. An example of edge-addition small-world

network is shown in Figure 4. Four edges are added between randomly chosen nodes (p

= 0.2) in the ring lattice in Figure 3(a).

Moore and Newman [50] consider the following situation in a small-world network.

Some fraction f of nodes is populated by individuals who will contract a disease if ex-

posed to it. The probability P(j) that a randomly chosen node i belongs to a connected

cluster of j nodes is determined. A cluster has an epidemiological significance. If any

node i contains an infected individual, P(j) is the probability that j people will be conse-

g
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e

c

d

f

j

Figure 4. Four Edges Added to Fig. 3(a)
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quently infected because there are very short paths from the original infected-individual

to all others in the cluster.

The mathematical model presented by Newman et al. [53] establishes a connection

between the discrete small-world network and its continuous version. It is a mean-field

model, meaning that the variables are all taken to be expected values. For a given dis-

tance l (expressed in terms of number of edges traversed) and a random node v, the ex-

pected number of nodes within distance l of v is determined. These nodes break up into

clusters and the number of clusters is a random variable. Using the continuous model,

good estimates for these variables are obtained, and corresponding estimates for the dis-

crete model can be obtained (with a suitable confidence measure) that reflect granularity.

They derive the distribution of path length and an expression for average path length.

The study shows that these parameters are scale-free, i.e., independent of the number of

nodes in the network. However, this is only true for ‘large’ networks. The notion of a

‘large’ network can be made precise in terms of the correspondence between their con-

tinuous and discrete models.

The method presented by Moore and Newman [51] permits the calculation of a

threshold value of the fraction f at which the expected size j of infectious outbreak di-

verges. This represents an epidemic. They also derive an asymptotic expression for P(j)

in the neighborhood of this threshold value of f.

The spread of epidemics in a population bears an interesting analogy to the spread of

viruses on the WWW. The small-world characteristic of the Web aids in spread of a vi-

rus epidemic. A file meant for general distribution on a popular site, if infected by a vi-
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rus, can become the source of a major outbreak. The Web pages, particularly primary

pages, of a popular Web site are vulnerable as these pages are part of a cluster. Once in-

fected, they propagate the virus through their immediate neighbors and cause a global

epidemic thereby causing enormous loss of time and money. The outbreak of virus is go-

ing to be significantly less severe and can be controlled, if the infected node does not be-

long to a near clique. The study of small-world network is useful in predicting the nature

of a virus outbreak and its effect on the Web.

3.3 The Preferential-Attachment Model

The small-world models cannot be applied directly to the Web because number of nodes

(pages) in the Web is variable. These models do not accommodate a birth/death process

in which new pages are created. They also do not explain how new links are formed

(possibly through editing old pages), and how both links and pages can be deleted. Two

new models have been proposed recently to explain some of the empirical findings con-

cerning the overall Web structure, taking on board the reality of the birth/death process.

They are the preferential-attachment model proposed by Albert et al. [4, 5, 6] and the

Web-site growth model proposed by Huberman and Adamic [35].

The preferential-attachment model starts with a small, null graph having a finite num-

ber of nodes (n0).

1. At each successive time step, a new node with a random, but bounded number of

outgoing edges (m0) is added to the network.
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2. The probability that an edge is added between a new node and an existing node i is

∑
j

j

i

d
d , where, di is the degree of node i, and the denominator sum runs over all exist-

ing nodes. Thus, a newly introduced node is more likely to be adjacent to a node with

high degree. This is the preferential-attachment rule. The preferential attachment of

newly introduced nodes implies that the nodes that are added at early stages of devel-

opment are more likely to have high degree.

Figure 5 shows an example of the preferential-attachment model. It starts with a null

graph with four (n0) nodes (Figure 5(a)). In the first step, a new node e with degree three

is added (Figure 5(b)). Node f with three new edges is added, according to the preferen-

tial-attachment rule, in the second step (Figure 5(c)). The next two Figures 5(d) and 5(e)

show the third and fourth steps, respectively.

The preferential-attachment model reproduces one of the most significant empirical

findings about the WWW, namely, the probability that a page or a node i has degree di is

)(d

A

i
c

, where A is proportional to the square of average degree of the network and c is a

constant. The exponent c was empirically found to be about 2.9, and it is independent of

the number of edges being added at each time step. Albert et al. analytically derived the

exponent c of the power law and found it to be 3.

This model does not allow reconnection of existing edges. Also, addition of new

edges takes place only when new nodes are added in the system. However, in real life,

the new links are added continuously between old nodes as well.
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Albert et al. [6] investigated two other models analytically neither of which yield a

scale-free power law for node degrees. In one model, the number of nodes increases at

each time step, but the preferential-attachment behavior of edge formation between a

newly introduced node and an existing node is absent. In the other model, the number of

nodes remains fixed; a new edge is added between a randomly selected node and another

node with higher degree.

3.4 The Web-Site Growth Model

Huberman and Adamic [1, 35] have proposed another model that exhibits an inverse,

scale-free power law for the probability that a Web site s has Ns pages. The scale-free

nature means that the power law holds true for any portion of the Web, i.e., it is inde-

pendent of the number of nodes in the Web subgraph under consideration. The term Web

site in their study is defined as a registered domain-name on the Internet. Individual Web

pages are arranged in a hierarchical, tree-like manner in each Web site. The basis of the

Huberman-Adamic Web-site growth model is an equation governing the number of pages

(a random variable) at a site s as a function of time. The number of pages added to site s

at any given time is considered proportional to those already existing on the site. The

equation has the form

Ns(t + 1) = Ns(t) + g(t + 1)⋅Ns(t),

where, Ns(t) = the number of pages at Web site s at time step t, and
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g(t) = the universal growth rate, which is independent of a Web site.

Due to the unpredictable nature of growth of a site, g(t) fluctuates about a positive

mean g0, and it can be expressed as

g(t) = g0 + ξ(t),

where, g0 = the basic, constant growth rate, and

ξ(t) = a Brownian motion variable.

The expected value of Ns(t) is

where, tυ is a Wiener process such that ))((2 tgvar
t e ⋅=υ and var(g) is variance of growth

rate g(t) of the Web site.

The probability of Ns(t) pages at site s is given by a weighted integral, which elimi-

nates dependence on time t and yields a scale-free inverse power-law γ)(N

c

s

, where c is

a constant and exponent γ is in the range [1, ∞]. The probability P(Ns) that a given site

with an unknown growth rate has Ns pages is given by the sum over all growth rates g, of

the probability that the site has so many pages given g, times the probability that a site’s

growth rate is g.

.)()()( /∑ ⋅=
i

ss igPigNPNP

,)0()(
)( 0 t

ss
tg

eNtN
υ+⋅
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Therefore,

Since each particular growth rate gives rise to a power-law distribution with a specific

value of the exponent, the above sum is of the form

Thus, the probability P(Ns) follows an inverse power-law with an exponent given by

the smallest power present in the series.

Huberman and Adamic studied the Web crawls of Alexa and Infoseek search engines,

covering 259,794 and 525,882 sites respectively. The value of exponent γ was found to

be in the range [1.647, 1.853] as the 95% confidence interval for the Alexa crawl. For the

Infoseek crawl, γ was estimated to lie in the range [1.775, 1.909] as the 95% confidence

interval. Using the value of γ in the power-law equation, the expected number of pages

at any site can be estimated. The probability distribution of the number of pages per site

for the two Web crawls is shown in Figure 6.

.
)()()(
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In a short note, Adamic and Huberman [2] criticized the preferential-attachment model

based on its prediction that older pages have larger in-degree than newer pages. Empiri-

cal data appears to show no correlation between the age of a page in the WWW and its in-

degree. They argue that the growth rate of degree of a page depends on the current degree

of a page and not on its age. However, the two models make different assumptions about

the creation of new links and the appearance of new pages.

3.5 An Evolving Web-Graph Model

Kumar et al. [42, 43] have proposed an evolving random-graph model using two different

growth methods. The model evolves over a discrete time step t = 1, 2, ⋅⋅⋅ . The Web
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graph is expressed as Gt = (Vt, Et) at time t, and the number of nodes at time t, Nt = |Vt|.

At each time step, new nodes are added given by function fv(Vt, t) and new edges given by

fe (fv, Gt, t).

Thus,

Vt + 1 = Vt ∪ fv(Vt, t), and

Et + 1 = Et ∪ fe(fv, Gt, t).

Two models have been proposed based on the time when a new edge can be connected

to a newly formed node.

In the linear-growth model, a new node is added at each time step and new edges can

be connected to the new node immediately. Therefore, at time step t, a new node u is

added and it may be connected to any of the (t – 1) nodes created in earlier steps. There-

fore,

fv(Vt, t) = 1, and Nt + 1 = Nt + 1.

There is a copy factor ρ ∈ (0, 1) and a constant out-degree +d ≥ 1 associated with

every node. At each time step, a node u is added with +d outgoing edges. A prototype

node v ∈ Vt is chosen randomly from existing nodes. For creating the ith outgoing edge

from the newly added node u, the destination node is chosen uniformly at random from

the existing set of nodes Vt with a probability ρ. With a probability (1 - ρ), node u has an

outgoing edge that is copied from the prototype node v. The edge-copying process means

that if there is an edge directed from a node v to a node w, then a new edge from the

newly added node u to node w is created. The edge-copying Bernoulli process reflects the

creation of hyperlinks in a new Web page. Some of the hyperlinks from a new Web page,
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on a specific topic, connect the existing Web pages on that topic and remaining hyper-

links may connect to Web pages that are not yet recognized for the topic.

An example of the linear-growth model is shown in Figure 7. Initially there is a null

graph (Figure 7(a)) with three nodes. The probability ρ is 0.66. Each new node has out-

degree of 3. Node d is added in Figure 7(b). Node e is added with two edges connected

to nodes a and b (Figure 7(c)). The prototype node is selected to be node d. As node d

has an edge directed to node c, the third edge from node e connects node c. Figure 7(d)

illustrates the addition of node f with two edges connected to randomly-selected nodes d

and e. The prototype node is node e. As node e has an edge connected to node b, the third

edge from node f has end-node as node b.
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The exponential-growth model takes into account the fact that newly added Web pages

are noticed only after some period. Hence, any node created at time t will not have any

incoming edge until a certain number of time steps have elapsed. The number of new
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b

Figure 7 (a). Initial Null Graph
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Figure 5(b). Node d Added

Figure 7. Evolving Web-Graph Model
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nodes created at time step (t + 1) is a constant fraction of the number of nodes at time t.

This model has a constant growth factor g > 0, self-loop factor χ > 1, tail-copy factor

χ΄ ∈ (0, 1), and out-degree factor κ > 0. The number of nodes added at time step (t + 1) is

expressed as a binomial distribution fv(Vt, t) ∼ B(Vt, g). The model assumes N1 = 1 and

Nt = (1 + g)t. The number of nodes added at time step (t + 1) is g ⋅ Nt.

Hence,

fv(Vt, t) = g ⋅ Nt , and Nt + 1 = Nt + g ⋅Nt .

The new edges at time (t + 1) are created as follows. Each new node is created with χ

self-loop edges. For each edge directed to node u ∈ Vt at time t, a new edge is created

with probability
)( χκ

κ
+

⋅ g
directed to node u. Assuming that the expected number of

edges at step t is (κ + χ) ⋅ Nt, the number of edges added at step (t + 1) by this process

will be (κ ⋅ g⋅ Nt). The tails of the (κ ⋅ g⋅ Nt) new edges are chosen according to two dif-

ferent probabilities. The tails of some of the new edges are chosen uniformly at random

from among the g ⋅ Nt new nodes created during the time step (t + 1), with probability

(1 - χ΄). The tails of the remaining new edges are chosen at random from among the

nodes created in previous steps, with probability χ΄; the tail nodes are chosen with prob-

abilities proportional to their current out-degree. Therefore, at time step (t + 1), the num-

ber of edges existing is (κ + χ) ⋅ Nt+1 , which is (κ + χ) ⋅ g⋅ Nt.



26

3.6 The Alpha-Beta Model

Aielo et al. [3] have proposed a model for random graphs that follows a scale-free power

law for degree. This power-law random-graph model P(α, β) has n nodes each with de-

gree d. The degree distribution depends on α and β where α is the logarithm of number

of nodes with degree one and β is the log-log rate of decrease for number of nodes with a

given degree. Here, n and d satisfy the relationship log n = α - β log d . The model is

closer to the conventional random-graph theory and is based on a distribution over all

graphs satisfying certain parametric constraints.

4. EMPIRICAL STUDIES

Empirical study is a useful technique for understanding the structure of the Web. Pirolli

et al. [57] performed the earliest study of link structure of the Web. They studied three

kinds of graphs to represent the strength of association among Web pages: (1) Hypertext-

link topology, (2) Inter-page text similarity, and (3) Usage paths or flows of users through

a locality. By incorporating the usage statistics and page meta-information in these

graphs, they studied the Xerox PARC Web server and Xerox’s URL www.xerox.com to

develop techniques for identifying aggregates (clusters) and determining relevancy of hy-

pertext content. Claffy [21] monitored the Internet traffic through network-link infra-

structure at a variety of protocol layers. He used a tracking tool called skitter to analyze

the topology of Internet connection of more than 30,000 sites. Kumar et al. [40] studied

results of a 1997 crawl from Alexa, Inc. covering about 40 million pages. The original

data was text-only HTML source and represented the content of over 200 million Web
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pages. They pruned the original data by including only the links pointing to Web pages

of other sites (i.e., the Web sites different from the link under consideration). In addition,

links pointing to pages having identical content were discarded. They found that despite

the chaotic nature of content creation on the Web, there exist well-defined communities.

These communities can provide reliable and comprehensive information to an interested

user. In addition, Web portals can reach their targeted audience effectively by exploiting

these Web communities. Albert et al. [5] analyzed the induced graph of 325,729-node

nd.edu and extrapolated the expected distance between any two nodes in the Web graph

to be about 19. They also found the inverse power-law characteristic of the degree distri-

bution of a Web page. Huberman and Adamic [35] studied the crawler data comprising

259,794 sites from Alexa, and 525,882 sites from Infoseek search engine. They found

that the probability that a Web site has certain number of Web pages follows inverse-

power law. Kleinberg et al. [39] report the distribution of bipartite cores on the Web

from the result of Alexa crawl (using same data as Kumar et al. [40]).

4.1 The Bowtie Empirical Study

In one of the most extensive studies, Broder et al. [14] analyzed the link structure of a

Web subgraph with 203 million pages and 1.5 billion links. Three different sets of ex-

periments were conducted using two AltaVista Web crawls.

The first experiment verified the power-law distribution of in-degree (incoming links)

of a Web page as reported by Barabási et al. [8] and Kumar et al. [40]. The exponent of

the power law for in-degree was found to be 2.1: the same value as reported by Barabási
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et al. [8] and Kumar et al. [40]. The out-degree (outgoing links) distribution was also

found to exhibit the power law, except in the initial segment.

The second set of experiments explored the connected components of the undirected

Web subgraph obtained by ignoring the edge directions. It was found that about 91% of

the nodes are connected together and form a weakly connected component (WCC). In

addition, the nodes with high in-degree do not affect connectivity of the Web subgraph.

These high in-degree nodes are embedded in the graph, which is well connected without

Figure 8. Bowtie map of Web-Page Topology
(Courtesy Broder et al. [14])
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them. These experiments also analyzed the strongly connected component (SCC) in the

directed Web subgraph. There exists a single, large SCC consisting of only 28% (56 mil-

lion) of total number of Web pages in the experiment.

The third experiment performed Breadth-First Search (BFS) from each of 570 ran-

domly-chosen starting nodes twice: in forward and backward directions. These searches

reveal that for some starting nodes, either the forward or the backward BFS traversal cov-

ered 100 million nodes and for some starting nodes, both forward and backward travers-

als covered 100 million nodes. The starting nodes in the latter case lie in the SCC. The

nodes in connected component found in the undirected sense (91% of entire sample) form

four distinct regions. The first region is the giant SCC. There are directed paths from

each node in the SCC component to all other nodes in the SCC. There is a set of newly-

formed nodes called IN having only outgoing links and another set of introvert nodes

called OUT having only incoming links (e.g., some of the corporate and e-commerce

sites). There are directed paths from each node in IN to (all nodes in) SCC and directed

paths from (all nodes in) SCC to each node in OUT. There is another set of nodes called

TENDRILS, which neither has any directed path going to the SCC nor has any directed

path coming from the SCC. There exists a directed path from nodes in IN to TENDRILS

and from TENDRILS to nodes in OUT. Each of IN, OUT, and TENDRILS region oc-

cupy about 21% of total number of nodes. Finally, some nodes in TENDRILS from the

IN region have edges going to nodes in TENDRILS in the OUT region forming a TUBE.

A small group of remaining nodes are part of disconnected components, which make up

about 8% of the Web. Figure 8 shows the regions of the Web graph that form a bowtie-

like structure.
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The diameter of the graph studied was found to be greater than 500, and the diameter

of the SCC region was estimated to be at least 28. The study shows that only 24% of the

time there exists a directed path between any two randomly chosen nodes, and if it exists,

the average distance between them is about 16. In addition, ignoring the edge directions

(undirected graph), the average distance between any two randomly chosen nodes was

found to be 6.83.

4.2 Sampling the Web Through Random Walk

A random walk on a regular, connected, and undirected graph generates a close to uni-

formly distributed sample of nodes. Therefore, a random walk on the Web can produce

an almost uniformly distributed sample of the Web pages. An accurate sampling of the

Web helps us to determine the domain-name distribution of Web pages, coverage of

search engines, and many important properties of the Web such as average number of

links per page and average size of each Web page. Bar-Yossef et al. [7] studied random

walks on the Web for uniform sampling using the 1996 crawler data of Alexa. Their

method simultaneously walks the Web and dynamically generates a regular, undirected

graph. They conducted walks on the union of SCC and OUT regions (which is con-

nected) described in Section 4.1. However, the graph G formed by the union of SCC and

OUT regions is neither regular nor undirected. The edges of this graph G are made bi-

directional so that both forward and backward traversal is possible. In addition, number

of self-loops are added to each node, so that every node has same degree as that of the

node with maximum degree. These modifications make the graph G regular and undi-

rected. The random walk on the connected, regular, and undirected graph, G, can be ab-
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stracted as a Markov chain. The mixing time t (number of steps in the walk needed to

reach a close to uniform distribution) for an ideal walk is bounded by )log
1

( 2 nO
δ

steps,

where, n = total number of nodes in graph G,

δ = eigenvalue gap |λ1| - |λ2|,

λ1 = largest eigenvalue of the transition matrix of the Markov chain, and

λ2 = second largest eigenvalue of the transition matrix of the Markov chain.

A large eigenvalue gap (δ) indicates that there are a few isolated parts in the graph.

Bar-Yossef et al. estimated the value of δ to be 10-5 for the undirected, regular graph ex-

tracted from the 1996 crawler data of Alexa. This implies that the mixing time needed for

sampling a Web graph with one billion nodes is about three million steps. In the crawler

data, only 1 in 30,000 steps of the random walk was not a self-loop and hence, required a

hyperlink traversal. Therefore, only 100 Web access is needed for sampling a Web graph

with one billion nodes. In the implementation of random walk called WebWalker,
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Figure 9(a). A Random Graph
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Figure 9(b). Graph Made Regular by Adding Self Loops
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Figure 9(c). An Example of Random Walk
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d-regular, undirected graph was built using the resources such as HTML text analysis,

search engines, and the random walk itself. In order to determine the domain-name dis-

tributions, 21 runs of WebWalker with 146,133 hyperlink traversals were performed. It

was found that 49.15% of the Web pages were in the .com domain, 8.28% were in the

.edu domain, 6.55% were in the .org domain. This domain-name distribution matches a

similar study conducted by Inktomi [68] in February, 2000. The WebWalker study also

found that average size of a static HTML page is 11,655 bytes and each page has an aver-

age of 9.56 hyperlinks.

Figure 9 shows an example of a random walk performed on a graph. The undirected

graph in Figure 9(a) is made regular by addition of self-loops so that each node has de-

gree equal to the degree of node g (Figure 9(b)). A random walk starting from node a is

illustrated in Figure 9(c).

5. PROPERTIES OF THE WEB GRAPH

Recent empirical and analytical studies of the Web graph have revealed many of its inter-

esting properties. Some of the properties have been established empirically, though there

is no theoretical basis discovered until now. We present some important features of the

Web graph in this section.
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5.1 Power-Law Distribution

Albert et al. [4], Broder et al. [14], and Kumar et al. [40] studied the degree distribution

of nodes in the Web graph. They performed empirical studies using graphs of sizes rang-

ing from 325,729 nodes (University of Notre Dame) [4] to 203 million nodes (AltaVista

crawler data) [14]. It was found that both the in-degree and out-degree of nodes on the

Web follow power-law distribution. The number of Web pages having a degree i is pro-

portional to 1/(iϕ) where ϕ >1. This implies that the probability of finding a node with a

large degree is small yet significant. Both [4] and [14] estimated the exponent of in-

degree distribution to be 2.1. According to [4], the out-degree distribution has an expo-

nent of 2.45. The empirical study in [14] shows that the exponent for out-degree distribu-

tion is 2.72, though the initial segment of the distribution deviates significantly from
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power law. The average degree of a node in the Web has been found to be seven [39].

5.2 Diameter of the Web Graph

Diameter of the Web graph is important, as it provides an upper bound on the number of

clicks needed to reach from one Web page to another. Albert et al. [4] calculated the di-

ameter of subgraph induced by the University of Notre Dame site (325,729 nodes and

1,469,680 edges). They consider the diameter as the average distance between any two

pair of nodes. It was found that the average diameter of their graph can be expressed as

0.35 + 2.06 log10 n, where n is number of nodes in the graph. If we were to extend the

Notre Dame study to the entire Web graph of two billion nodes, average diameter of the

Web would be about 19. Thus the Web, despite its huge size, is a highly connected graph

with an average diameter of only 19. The more recent and comprehensive study in [14],

discussed in Section 4.1, for a Web subgraph of 203 million nodes and 1.5 billion edges

found that the diameter of the SCC portion of the directed Web subgraph was at least 28.

The average connected-distance for the directed subgraph was about 16, while the aver-

age connected-distance for the same undirected subgraph was found to be 6.83.

5.3 Connected Components

Broder et al. [14] studied the size of connected component in the Web through a Web

subgraph with 203 million nodes and 1.5 billion edges. They found that 91% of the

nodes in the undirected Web subgraph form a weakly connected component (WCC) and

their sizes follow a power-law distribution with an exponent of approximately 2.5. The
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study of the directed Web subgraph discovered that only 28% of the nodes form a

strongly connected component (SCC). The sizes of SCCs also follow the power-law

distribution. In their analytical study, Aiello et al. [3] investigated the emergence of

connected component in random-graph models with power-law distribution.

5.4 Size and Growth Characteristics

Monitoring the continuous growth of the Web reveals many interesting facts. The study

in [49] shows that 7.3 million Web pages are being added each day. This study analyzed

the live growth and acceleration rates of the Web as compared to use of static data by

Figure 11. Growth of the Web
(Courtesy Moore and Murray [49])
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other studies. The average size of a Web page was found to be 10,060 bytes. On an av-

erage, each Web page has 14.38 images on it. As shown in Figure 11, it was predicted

that the Web is going to double its size to four billion nodes by February 2001. The ex-

pected diameter of the Web increases logarithmically in terms of the size of the Web. If

the Web grows from its size of 2.1 billion nodes to 20 billion nodes, the diameter will

increase only by 2 from 19.5 to 21.5, respectively. Thus, the diameter grows very slowly

with the size of the Web.

5.5 Changing Contents of a Web Page

In a search engine, the index is updated periodically through its crawler. If the crawler

knows how often the Web pages change, it may revisit only those page having high prob-

ability of change, instead of refreshing the entire search-engine index. A mathematical

model for changes to a Web page can aid comparison of different crawling policies.

Hence, understanding the lifespan of a Web page can improve the present search-engine

technology. Cho and Garcia-Molina [19] studied the change pattern of 720,000 Web

pages from 270 Web sites selected from various domains (com, edu, gov, net, org) every

day for four months. They found that the average change-interval of a Web page is about

four months (approximately). In their study, more than 70% of the Web pages remained

unchanged for about one month. It took about 50 days for 50% of the Web pages to

change or be replaced by a new page. Changes to a Web page are random events that can

be modeled as a Poisson process and this was verified for the Web pages in their sample

data.
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In another study, to understand how and when the pages change, Brewington and Cy-

benko [12] studied the contents of over two million Web pages at the rate of 100,000

pages per day for about seven months. In their study, the lifetime of a Web page has been

defined as the time between changes made to the page. They modeled the time between

modifications of a typical Web page as an exponential distribution characterized by the

rate of changes in the page content. This understanding of changes to a Web page is help-

ful in optimizing the indexing of a search engine. In a (X, Y)-current search engine hav-

ing a set of Web pages in its index, a randomly chosen page in the index is current for Y

time with a probability of at least X. The study shows that a (0.95, 1-week)-current

search engine must re-index its database at the rate of at least 45 million pages daily.

6. SEARCH ENGINES

The enormous size and rapid growth of the Web makes it difficult for an individual to

locate information and navigate by just employing Web addresses. A search engine is

useful for locating information in the vast space of the Web. According to beau-

coup.com, currently there are more than 2,500 search engines (16,240 according to

searchpower.com), but searching on the Web is still far from perfect.

Bharat and Broder [9] performed one of the earliest studies about the coverage and

overlap of search engines. In November 1997, the most comprehensive search engine

AltaVista covered only 48% of the Web. However, as of March 2000, the coverage of

Altavista has dropped (Table 1, Section 6.2). Another comparative study of search en-

gines appears in Chu and Rosenthal [20]. The authors compared three major search en-
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gines AltaVista, Excite, and Lycos based on their Boolean logic, truncation, field search,

word/phrase search, precision, and response time. They found that AltaVista offered the

best precision results.

In July 1999, Lawrence and Giles [45, 46] found that no search engine indexed more

than 16% of the 800-million node Web. Metasearch engines provide a scalable technique

to search the ever-growing Web. The metasearch engines send search query to multiple

search-engines and show all the results simultaneously. Inquirus [44, 47] and Savvy-

Search [27] are metasearch engines that aim at overcoming the drawbacks of search en-

gines such as low coverage of the Web, inconsistent and inefficient user interfaces, and

poor relevance ranking and precision. Inquirus downloads the individual Web pages and

analyzes them in real time. It is reported to outperform AltaVista, Excite, Hotbot, and

many other search engines.

6.1 Architecture of a Search Engine

Search engines consist of three major components: spider, index, and search engine pro-

gram. The spider or crawler starts with an initial set of URLs called seed URLs, retrieves

the Web pages of the seed URLs, and follows the links to other sites from those pages

[18, 19]. Keywords found on a Web page are added to the index or catalog of the search

engine. The coverage of index, update frequency, and contents of indexed field are im-

portant aspects of any search-engine index. The search-engine program finds the relevant

pages, from the millions of pages recorded in its index, which match a query and returns

them to the user after ranking them in order of relevance.
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A search engine (e.g., google.com) has distributed crawlers that fetch the Web pages

of the URLs sent to it by a URL server [13]. The fetched pages are sent to a store server

that compresses and stores the Web page into a repository. A tag is assigned to every

Web page in the repository. The indexer of search engine retrieves the compressed Web

pages from the repository, uncompresses the Web pages, and parses them. Each page is

converted into a set of word occurrences called hits that record the word, position in the

Web page, font size, and capitalization. The indexer also parses the links in every Web

page and stores information in an anchor file. This anchor file contains information about

the end nodes of each link, and the text of the link. A URL resolver converts the relative

URLs in anchor file into absolute URLs and generates a database of links. A PageRank is

determined for all Web pages in the links database and this PageRank is used to evaluate

the relevance of a result (for PageRank algorithm, see Section 7.4.1).

Search engines can increase their speed of indexing Web pages and coverage by opti-

mizing crawler. Chakrabarti et al. [17] introduced a goal-directed crawler called focused

crawler to achieve this. A focused crawler is designed to find the links that are most

relevant for the crawl, and avoid the irrelevant regions of the Web, thereby saving hard-

ware, and network resources. The focused crawler selectively finds pages that are rele-

vant to a pre-defined set of topics. This crawler has two components: a classifier which

evaluates the relevance of a Web page with respect to the focus topics, and a distiller

which identifies nodes that can be good access points to many relevant nodes within few

links.
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6.2 Issues in the Design of Effective Search-Engines

Ranking the pages returned by a search engine according to relevance is extremely impor-

tant, especially for queries returning large number of pages. This is done by ranking-

function heuristics, which are based on the frequency of occurrence of keywords, and

sometimes on the position of keywords in the page. However, such strategies may not

deliver correct information. For example, some Web pages may have a keyword repeated

many times to attract Web traffic or gain favorable ranking.

One of the factors in the effectiveness of a text-based search engine is the number of

Web pages indexed in its database. As shown in Table 1 [66, 67], the search engine with

the largest index (Google) covers fewer than 35 % of the present Web pages and this

disparity is going to increase in future.

The keyword searches performed by the current search engines typically turn up large

volumes of irrelevant responses. Vast inconsistency in number of hits for two similar

queries on a search engine is another serious problem. For example, a query for “Oscar

award” on AltaVista search engine resulted in 1,480 hits while “award Oscar” yielded

Search Engines Database Size in
Million Pages

Google 1,346
FAST 575

Webtop 500
Inktomi 500

AltaVista 350
Northern Light 265

Excite 250

Table 1. Index Size of Major Search Engines (as of March 2001)
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1,208,710 hits. More examples of inefficient search-engine result can be found in Deo et

al. [26] and Greenlaw et al. [32].

7. GRAPH-THEORETIC WEB ALGORITHMS

A higher level of abstraction above a Web page is helpful in understanding the Web to-

pology. In this section, we explore how this abstraction can be used as a tool to identify

order and hierarchy in the Web. This understanding is crucial for developing novel

search algorithms and enhancing the present search-engine technology. In 1991, Bota-

fogo and Shneiderman [11] were one of the first to apply graph-theoretic techniques for

identifying aggregate component among hypertext documents. Their method was based

on locating the articulation points in the undirected Web graph and removing them to cre-

ate a set of subgraphs.

7.1 The WWW Communities

Above the level of a page in the WWW, there are many choices for aggregation of pages.

A WWW site has conventionally meant not an IP address, but rather a collection of pages

defined by design. Usually this amounts to a topical significance; e.g., pages pointed by

some anchor page, often referred to as a home page. In some cases, a site is coherent with

respect to some semantical interpretation, i.e., the pages are all about different aspects of

one ‘thing’ but more often the home page is just the hub of the collection.
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A WWW site can be also defined through link counting. Here, we consider some no-

tion of locality, e.g., some subnet IP address range and then measure the ratio of the links

among all pages inside the range to all the links going outside the range. The threshold of

this ratio for assigning pages to a single collection is arbitrary. A more precise formula-

tion can be obtained by computing SCCs. However, in some situations pages related to a

main topic might not point outside of themselves, so that the SCC condition could be too

stringent to capture many collections of pages that should be identified as sites. Gibson et

al. [30, 31] have identified two kinds of pages that together make possible a computa-

tional concept of a WWW community of pages. This notion is similar to that of a cluster

in the Newman-Moore-Watts small-world model. One kind of pages represent authorities

AuthorityHub

Authority

Figure 12. Hubs and Authorities
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focusing on a topic while the other kind represent hubs, which point to many authorities.

The abstract community of hubs and authorities arise due to abundance of Web pages

that can be returned for any broad-based query. The goal of a search method is to return a

small set of “authoritative” pages for the query and this can be achieved by examining the

link structure of the Web graph. There is a considerable element of human judgment in-

volved during creation of any hyperlink. These hyperlinks can be exploited for under-

standing the inherent Web communities. A link from a page u to page v can be viewed as

conferral of authority on page v. However, there are many links created which have no

meaning with respect to conferral of authority. Counting the incoming links to any Web

page is not the complete solution to the problem of identifying authority. This is because

there can be pages like yahoo.com or google.com with very large in-degree, but these

Web pages do not form an authority. They are more popular, and hence there can be a

popular, but irrelevant Web page.

7.2 HITS Algorithm

Kleinberg [36] proposed an iterative algorithm, called HITS (Hyperlink Induced Topic

Search), for identifying authorities and hubs using the adjacency matrix of a subgraph of

the WWW. For a broad-topic search, the algorithm starts with a root set S of pages re-

turned by a text-based search engine. The set S induces a small subgraph focused on the

query topic. This induced subgraph is then expanded to include all nodes that are succes-

sors of each node in set S. In addition, a fixed number of predecessors of each node in the

set S are also included. Let G be the graph induced by the nodes in this expanded node
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Figure 13(b). Set S Expanded to Form set R

Figure 13(a). Initial Graph S
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set. It should be noted that the links that are used purely for navigation within a Web site

are not included in this graph G. Figures 13(a) and 13(b) illustrate the creation of induced

graph S and its expansion into graph G, respectively.

For each node, x, in the graph G a non-negative authority weight a(x) and a non-

negative hub weight h(x) are computed. The authority and hub weights of all the nodes in

graph G may be expressed as vectors a() and h(), respectively. The elements of vectors

a() and h() are initialized to one. In each iteration, a(x) is replaced by the sum of h(xi)’s

of all the nodes i predecessors to node x, and h(x) is replaced by the sum of the a(xj)’s of

all the nodes j successors of node x. The iterations may be expressed as

∑=
→xv

vhxa )()( , and ∑=
→wx

waxh )()( , (see Figure 14).

The authority and hub scores are normalized in each iteration so that 1))(( 2 =∑ xa ,

Figure 14. HITS Algorithm

Node x

v3 w2

v4

v2

v1

w3

w1

a(x) = h(v1) + h(v2) + h(v3) + h(v4), (vi ∈ pred(x))
h(x) = a(w1) + a(w2) + a(w3), (wi ∈ succ(x))
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and 1))(( 2 =∑ xh . This iterative process converges to yield the authority and hub vector

for the initial query. If M is the adjacency matrix of the graph G, then the iterative steps

can be viewed as

a = MT⋅h , and h = M⋅a.

This step can be written as

a = MT⋅h = MT⋅M⋅a = (MT⋅M)⋅a, and

h = M⋅a = M⋅MT⋅a = (M⋅MT)⋅a.

Therefore, the iterations of vector a are equivalent to that of multiplying the initial

vector a with powers of MTM. These iterations of vector a when normalized, converge to

the principal eigenvector of MTM. Similarly, the multiple iterations of normalized vector

h converge to the principal eigenvector of MMT. Thus, HITS applies a link-based compu-

tation for identifying the hubs and authorities on a query topic.

7.3 Mining Knowledge-Bases

Communities on the Web can be viewed as forming a bipartite core. A bipartite core Ci, j

in a graph consists of two (not necessarily disjoint) sets of nodes Nx and Ny such that

every node in set Nx has an edge connected to every node in set Ny, where set Nx has i

nodes and set Ny has j nodes (e.g., Figure 15). Such bipartite cores form knowledge bases

that can be better start points for search and navigation. Kumar et al. [41] proposed an

elimination/generation algorithm for identifying the core Ci,j. The algorithm starts with

an initial Web subgraph derived from the crawl of a search engine. In the elimination

step, nodes whose in-degree or out-degree is a less than a threshold value are pruned from
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initial graph and a residual subgraph is obtained, e.g., for C4,4 nodes with in-degree or

out-degree smaller than four are eliminated. In the generation step, nodes that barely

qualify for inclusion are identified and added to the residual subgraph, e.g., if a node u

has in-degree exactly four, then it is included in the C4,4 core, if and only if the four nodes

that point to u have a neighborhood of size at least four. The iterative phases of elimina-

tion and generation result in a core Ci,j. Each core is further expanded to form a commu-

nity by including all the successors of nodes in set Ny and all the nodes that point to at

least two nodes in set Nx. The HITS algorithm (Section 7.2) is applied to identify the au-

thorities and hubs for the community. The communities are then indexed according to

the most frequent terms used to describe its authority and hub pages. Thus, a knowledge

base is built using the graph structure.

www.ford.com

www.toyota.com

www.jaguar.com

Figure 15. Bipartite Core
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7.4 Web-Page Evaluation

A common problem with search engines, that evaluate Web page relevance based on

frequency of keywords, is that they can be biased by deliberate inflation of keywords in

the Web pages. Another problem, that reduces the likelihood of finding relevant

information, is that many Web pages do not contain the keywords that best describe what

the Web page is known for or the services it provides. For example, a query for “search

engine” at Altavista produces none of the major search engines like Yahoo, Lycos, Excite,

or Northern Light in the top 20 results [36]. Examining Yahoo will show that there is

nothing on its Web page describing itself as a search engine.

Evaluating the importance of a Web page, using the graph structure of the Web, can

solve both these problems. We now present three algorithms for measuring the impor-

tance of a Web page.

7.4.1 PageRank Algorithm

Conventional search-engines have relied on matching keywords and strings in the Web

pages to index and search the Web for information. Google, developed at Stanford Uni-

versity, uses the graph structure of the Web to produce better search results. It uses an

algorithm called PageRank [13, 55] that attempts to give a ranking to a Web page, regard-

less of its content, based solely on its location in the Web graph.

Here,

u = a node (Web page) in the Web graph,

di
+ = out-degree of node i,
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w1, w2, …, wk = nodes pointing to node u,

η = normalization constant (η < 1), and

PR(u) = PageRank of a Web page u.

The PageRank of a page u is given as

The PageRank algorithm starts with assigning equal rank of one to all pages and recur-

sively computes the PageRank value for each page. The rank of a page is divided equally

among its outgoing links. Thus, the PageRank of a page propagates through the link

structure of the Web. A page has high PageRank if pages having high PageRank point to

it. The PageRank vector PR() corresponds to the principal eigenvector of normalized

link-matrix of the Web graph. PR(u) is the probability that a random surfer visits a page

u. Normalization constant ,η , is the probability that the random surfer does not follow an

).
)()()(

()1()(
2

2

1

1

k

k

d

wPR

d

wPR

d

wPR
uPR +++ +⋅⋅⋅++⋅+−= ηη
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0.6

B

0.3

C

0.6

0.3

0.3

D

0.6

0.3

0.6

Figure 16. PageRank Computation
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outgoing link on page u and selects another page randomly. The quantity η also solves

the rank-sink problem caused by the cut nodes in the Web graph. Consider a page u hav-

ing an outgoing link to a page v, and pages v and w have links pointing to each other. If

pages v and w have no outgoing link, then v and w accumulate rank during the PageRank

iteration, without distributing any rank, and a rank sink is created.

An example of the PageRank Computation is shown in Figure 16. The PageRank of

page A is divided equally amongst its successors B and C. Since C is also a successor of

B, C has effective PageRank of 0.6. Page D has PageRank 0.6 as it is a successor of node

C.

7.4.2 Page Reputation

Computing reputation ranks relies on the model of a random “Web surfer”, who is brows-

ing the Web looking for pages relating to a certain topic τ. At each step, the surfer either

jumps to a random page that contains the term τ, or follows a random outgoing link from

the current page. As this process continues, a reputation value is computed, equal to the

number of visits that the random surfer makes to a particular page.

One-Level Reputation Rank Algorithm

This algorithm converges to produce reputation ranks for each page w and term τ. Rafiei

and Mendelzon [58] provide more detail as well as an algorithm for computing two-level

reputation ranks (hub and authority reputation). This algorithm provides a probabilistic

formulation for finding the topics that a given Web page is an authority on.



52

The reputation of a page w on topic τ is defined as the probability that a random surfer

looking for τ visits page w. The notations used in the Rafiei and Mendelzon algorithm

are:

Nτ = total number of pages on the Web containing the term τ,

+
xd = number of outgoing hyperlinks from page x,

p = probability that a random surfer selects a page uniformly at random from a set of

pages containing the term τ,

(1 – p) = probability that a random surfer follows an outgoing link from the current

page, and

R = a matrix where a row corresponds to a Web page and a column corresponds to

each term that appear in the Web page. Each element of the matrix, R(w, τ), is the reputa-

tion value of the Web page w with respect to term τ.

The probability that the random surfer visits a page w at each step in a random jump is

p/Nτ, if page w contains term τ and is zero otherwise. If a page x is a predecessor of page

w, then the probability that the surfer visits page w at k steps after visiting page x is

),()
)1(

( )1( τxR
d

p k

x

−
+
−

where, ),()1( τxR k− is the probability that the surfer visits page x at

step (k - 1). The algorithm calculates the probabilities iteratively.
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For every page w and term τ

If τ appears in page w

R(w, τ) = 1/Nτ

Else R(w, τ) = 0

while R has not converged

set R’(w, τ) = 0 for every page w and term τ

For each link x→w

R’(w, τ) = R’(w, τ) + R(x, τ)/ +
xd

For every page w and term τ

R(w, τ) = (1 - p) * R’(x, τ)

If term τ appears in page w

R(w, τ) = R(w, τ) + p/Nτ

7.4.3 Markov-Chain-Based Rank Method

Zhang and Dong [61] have proposed another ranking algorithm based on the Markov-

chain model. The rank function of a Web page (referred as Web resource) is defined as

rank: NV x Q, where NV represents a set of Web pages and Q represents a set of user

queries. NV can be viewed as a set of Web pages returned by a search engine. The set of

Web pages NV and the hyperlinks among its Web pages form a Web subgraph G = (V, E).

This algorithm takes into account four parameters: relevance, authority, integrativity, and

novelty. The similarity between the contents of a Web page and the user’s query q is

measured by relevance (ω). The authority of a Web page (µ) is a measure of references
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made to the Web page. Integrativity (θ) is a measure of references made in the Web page.

This parameter is similar to the hub weight of a page. The novelty metric (ε) measures

how a Web page is different from other pages.

While surfing, a user jumps from one page to another and this process can be modeled

as a Markov chain. For a query q, NV = {nv1, nv2, ⋅⋅⋅, nvn} denotes the set of related Web

pages found by the search engine. NV can be viewed as the state space, where a Web

page corresponds to a state. For a user surfing the Web at a time t, pi(t) is the probability

that the user is browsing page nvi and pij is the probability that the user jumps to another

Web page nvj by following an out-going link from page nvi. Thus, surfing of the Web can

be abstracted as a homogeneous Markov chain.

Consider a random surfer viewing a Web page nvi at time t. Then at time (t + 1), the

random surfer has four choices: continue viewing Web page nvi, click on a link on Web

page nvi and reach another page, use the “Back” option of browser to return to the previ-

ous page, or select another Web page from the results (NV) of the search engine. The

tendency matrix takes into account all these four choices available to the user by using

relevance (ω), authority (µ), integrativity (θ), and novelty (ε). The tendency matrix W,

derived from the graph G, is represented as










∈
∈

=⋅

=

.,

),(if,

),(if,

if),,(

Otherwise

Evv

Evv

jiqnvsim

W
ij

ji

i

ij

ε
θ
µ

ω
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Here, sim(nvi, q) is the relevance of result nvi to the query q, 0 < ω, µ, θ, ε < 1, and

ω+ µ + θ + ε = 1.

Normalizing the tendency matrix W results in transition probability matrix T for the set

of Web pages NV.

Therefore,

∑
=

=

n

j ij

ij

W

W
T ij

1

, and nnijTT ×= )( .

A homogeneous Markov chain’s behavior can be determined by its initial distribution

vector T(0) and its transition probability matrix T, T(t) = T(0) T t . A holomorphic and

homogeneous Markov chain, {xt, t ≥ 0}, with NV = {nv1, nv2, ⋅⋅⋅, nvn} as its state space, T

as its transition probability matrix, and T(0) as its initial distribution vector, converges to

a unique distribution, i.e.,

DtT
t

=
∞→

)(lim .

The ultimate distribution vector D = {π1, π2, ⋅⋅⋅, πn} is the unique solution of the

equation DT = D that satisfies πi > 0, 1
1
=∑

=

n

i
iπ . This ultimate distribution vector D is the

rank of the Web pages. This method calculates the rank of a Web page without any

iteration.
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7.5 Small-World Algorithmics

Kleinberg [37, 38] proposed an algorithm for finding the shortest or near-shortest path

from one node to another in a graph with small expected-diameter. He considered a

model of two-dimensional grid with directed edges. Each node in the grid has a directed

edge to every other node within a fixed distance l, called its local contacts. In addition,

each node u has a directed edge to Θ other nodes called long-range contacts of node u; the

ith directed edge from node u has end-node v with a probability proportional to [L(u, v)] –r

, (r ≥ 0), where L(u, v) is the distance between nodes u and v. Thus, the long-range con-

tacts of a node are clustered in its vicinity by increasing r, where r is the structural pa-

rameter that defines the degree distribution. An example of the two-dimensional grid

with l = 1 and Θ = 2 is shown in Figure 17. The nodes in the model can be viewed as

individuals that have local neighbors as well as a few long-distant acquaintances distrib-

u = (2,4)

v = (4,2)

Figure 17. Near-Shortest Path in 2-Dimensional Grid
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uted geographically. Using an extension of the Watts-Strogatz small-world model,

Kleinberg devised a decentralized algorithm that finds a near-shortest path in expected

time, polylogarithmic in terms of the size of the graph. The algorithm considers the prob-

lem of passing a message from a node u to another node v using only local information.

It assumes that every node knows the location of the target node in the network. In addi-

tion, every node knows the locations and long-range contacts of all nodes that have met

the message. In each step, an intermediate node i passes the message to its adjacent node

that is as close to the target node v as possible. Kleinberg proved that at r = 2 , the decen-

tralized algorithm takes advantage of the geographic structure of grid and generates paths

having length proportional to log n, where n is the number of nodes in the grid. As r in-

creases, the long-range contacts of a node become less useful in moving the message.

The model can be extended to k-dimensional grid, and this decentralized algorithm gener-

ates the best polylogarithmic-length path for r = k.

7.6 Related-URL and Topic Distillation Algorithms

The graph topology of the Web can be exploited to discover novel search-techniques.

Smart Web-agents, that can comprehend the link structure, can be employed to comple-

ment the use of search engines. Currently, most search-engine databases are relatively

static; as a result, finding most recent information is difficult. Link-based approaches are

less susceptible to the keyword-inflating technique applied to influence the search-engine

ranking algorithm.
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Dean and Henzinger [23] developed a new search paradigm based on hyperlink struc-

ture of the Web. They proposed an algorithm for finding Web pages related to a URL. A

related Web page is one that addresses the same topic as the original page, but is semanti-

cally different. The steps in the Dean-Henzinger algorithm are:

1. Build a vicinity graph for a given URL, i.e., node U.

The vicinity graph is an induced, edge-weighted digraph that includes the URL

node U, up to B randomly selected predecessor nodes of U, and for each predeces-

sor node up to BF successor nodes different from U. In addition, the graph in-

cludes F successor nodes of U, and for each successor node up to FB of its prede-

cessor nodes different from U. There is an edge in the vicinity graph if a hyper-

link exists from a node v to node w, provided nodes v and w do not belong the

URL U

B = 3

BF = 2

F = 3

FB = 2

Figure 18(a). Vicinity Graph Formation in Related-URL Algorithm
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same Web site. Figure 18(a) illustrates the creation of vicinity graph for B = 3, BF

= 2, F = 3, and FB = 3.

2. Eliminate duplicate and near-duplicate nodes.

Duplicate nodes are same Web pages on mirror sites or different aliases for same

Web page. Two nodes are defined as near-duplicate nodes if they have more than

95% of links in common and each have more than 10 links. The near-duplicate

nodes are replaced by a node with links that are union of links of all the near-

duplicate nodes.

3. Compute edge weights based on connections between Web sites.

An edge between nodes on same Web site is assigned a weight 0. If there are m1

edges directed from a set of nodes on a one Web site to a single node on another

Web site, then each edge is given an authority weight 1/m1 . If there are m2 edges

directed from a single node on a one Web site to a set of nodes on another Web

site, each edge is assigned a hub weight 1/m2 . This prevents the influence of a

single Web site on the computation. Figure 18 (b) and 18 (c) illustrate the assign-

ing of edge authority-weight and edge hub-weight to multiple edges from one host

to another host.

4. Compute a hub and an authority score for each node in the graph.

The ten top-ranked authority nodes are returned as the pages that are most related

to the start page U (modified version of HITS algorithm, Section 7.2).
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Bharat and Henzinger [10] proposed a search-engine enhancement algorithm, based on

the Web topology, called Topic distillation. Topic distillation is defined as the process of

finding quality Web pages (more relevant) related to a query topic. The topic distillation

algorithm solves three problems associated with the HITS algorithm (Section 7.2). The

first problem is mutually-reinforced relationship between Web sites (false authority

conferral by a set of nodes to another node) where hub and authority score of nodes on

each Web site increase. The other two problems are automatically generated links (links

carrying no human judgment) and presence of non-relevant nodes. If there are m1 edges

directed from a set of nodes on one Web site to a single node on another Web site, then

Host 1 Host 2

1/m1

1/m1

1/m1

Host 1 Host 2

1/m2

1/m2

1/m2

Figure 18(b). Edge-Weight Added for a
set of m1 Edges From Host 1 to Host 2

Figure 18(c). Edge-Weight Added for a
set of m1 Edges From Host 1 to Host 2
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rected from a set of nodes on one Web site to a single node on another Web site, then

each edge is assigned an authority weight (edge_auth_wt) of 1/m1 . Similarly, if there are

m2 edges directed from a single node on one Web site to a set of nodes on another Web

site, then each edge is assigned a hub weight (edge_hub_wt) of 1/m2 . In addition, iso-

lated nodes are eliminated from the graph. The hub weight and authority weight of each

node is calculated iteratively as:

∑ ×=
∈∀

∈ Euv
uvwtauthedgevhua

Vu

),(
),(__)()(

,
, and ∑ ×=

∈ Evu
vuhub_wtedgevauh

),(
),(_)()( .

This modification to the HITS algorithm eliminates the mutually-reinforcing relation-

ship problem. The similarity between the query and the node returned by a search engine

is defined as the relevance weight of the node. The relevance weight of each node is

computed and nodes whose relevance weights fall below a threshold level are eliminated.

The elimination step addresses the other two problems.

8. CONCLUSION

The topology of the World Wide Web exhibits the characteristics of a new type of ran-

dom graph, which at present, is only dimly understood. In this proposal, we have consid-

ered several models that help describe the growth of the Web, and we have pointed out

some of the features of the Web graph. Recent studies have uncovered only a few fun-

damental properties of the Web graph. We believe there are still more subtle, but impor-

tant graph-theoretic properties yet to be discovered about the Web.
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Structural analysis of Web connectivity can help its understand the complex regions.

This understanding coupled with the information about user traffic traversing the hyper-

links can be applied for Web proxy-caching and design of adaptive Web sites. This can

also help us design router protocols for prevention of security threats such as denial of

services.

The rapid growth of the Web poses a challenge to the present search-engine technol-

ogy. The solution for improving search quality involves more than just scaling the size of

the search-engine index database. Graph-theoretic algorithms, that take into account the

link structure of the Web graph, will lead to development of better search engines and

smart agents for providing relevant information to the end user, with efficiency and com-

prehensiveness.
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APPENDIX I  DEFINITIONS, ABBREVIATIONS, AND SYMBOLS

Graph G = (V, E): A graph G = (V, E) consists of a set of objects V = {v1, v2, ⋅⋅⋅} called
nodes, and another set E = {e1, e2, ⋅⋅⋅} called edges, such that each edge ek is identified
with an unordered pair (vi, vj) of nodes.

Directed Graph: A directed graph (or digraph) G = (V, E) consists of a set of nodes
V = {v1, v2, ⋅⋅⋅}, a set of edges E = {e1, e2, ⋅⋅⋅}, and a mapping ψ that maps every edge
onto some ordered pair of nodes (vi, vj).

Null Graph: A graph G = (V, E) having an empty set of edges E is called null graph. All
nodes in a null graph have no incident edge and are isolated.

Subgraph: A graph g is said to be a subgraph of a graph G if all the nodes and all the
edges of g are in G, and each edge of g has the same end nodes in g as in G.

Induced Subgraph: A subgraph G′ = (V′, E′) of G = (V, E) said to be induced by the
node set V′ ⊆ V if E′ consists of all edges of E whose both end nodes are in V′.

Connected Graph: A graph in which there is at least one path between every pair of
nodes is called a connected graph.

Incident: If a node v is an end node of an edge e, v and e are said to be incident on each
other.

Degree of a node: The number of edges incident on a node v is called degree, d(v), of
node v.

In-Degree: The number of edges incident into a node v is called in-degree d −(v) of v.

Out-Degree: The number of edges incident out of a node v is called out-degree d+(v) of
v.

Clique: A graph in which there exists an edge between every pair of nodes is called a
complete graph or a clique.

Diameter: The diameter of a connected graph is the largest distance between any two
nodes in the graph, where distance between the two nodes is defined as the number of
edges in the shortest path between the two nodes.

Strongly Connected Component: A directed graph is said to be strongly connected if
there is at least one directed path from every node to every other node.
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Weakly Connected Component: A directed graph is said to be weakly connected if its
corresponding undirected graph is connected, but the directed graph is not strongly con-
nected.

Web Site: A registered domain-name on the Internet is called a Web site (or a host), e.g.,
www.ucf.edu. Individual Web pages are arranged in a hierarchical, tree-like manner in
each Web site.

Abbreviations

BFS : Breadth First Search

CAIDA : Cooperative Association for Internet Data Analysis

FOLDOC : Free Online Dictionary of Computing

HITS : Hyperlink Induced Topic Search

HTML : Hypertext Markup Language

HTTP : Hypertext Transfer Protocol

IP : Internet Protocol

SCC : Strongly Connected Component

TCP : Transmission Control Protocol

URL : Uniform Resource Locator

WCC : Weakly Connected Component

WWW : World Wide Web
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List of Symbols

α : Logarithm of number of nodes with degree one

β : Log-log rate of decrease of number of nodes of a given degree

ρ : Copy factor ∈ (0, 1)

χ΄ : Tail-copy factor ∈ (0, 1) in exponential-growth model

χ : Self-loop factor in exponential-growth model (χ > 1)

δ : Eigenvalue gap

σ : Number of edges added to each node in each iteration

κ : Out-degree factor (κ > 0)

λ1, λ2: Largest and second largest eigenvalues of a matrix respectively

ϕ : Exponent of power-law distribution

ξ(t) : Brownian motion variable

γ : Exponent of scale-free inverse power-law and its range is [1, ∞]

η : Normalization constant

τ : Topic of a Web page

ω : Relevance

µ : Authority

θ : Integrativity

ε : Novelty

υ : Weiner process

Θ : Number of long-range contacts (nodes) of a node

a(x) : Authority weight for a page x

A : Coefficient proportional to the square of average degree of the network

B : Set of nodes predecessors to a URL node U

BF : Set of nodes successors to each node in set B

c : Constant

C : Clustering coefficient

Ci,j : Bipartite core in a graph
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d : Degree of a node

−
id : In-degree of a node i

+
id : Out-degree of a node i

D : Ultimate distribution vector D = {π1, π2, ⋅⋅⋅, πn }

edge_auth_wt(u, v): Edge authority-weight of edge (u, v)

edge_hub_wt(u, v): Edge hub-weight of edge (u, v)

Et : Set of edges in graph Gt = (Vt, Et)

f : Fraction of nodes populated by individuals who will contract a disease

F : Set of nodes successors to URL node U

FB : Set of nodes predecessors to each node in set F

g(t) : Universal growth rate, which is independent of a site

g0 : Basic, constant growth rate of a Web site

g : Constant growth factor

h(x) : Hub weight of a Web page x

Gt : Graph Gt = (Vt, Et) at time t

i : Randomly chosen node

j : Number of nodes in a cluster

k : Positive integer

L(u, v) : Distance between nodes u and v

Lrandom : Length of shortest path averaged over all pair of nodes

L : Characteristic-path length that measures the separation between two nodes

l : Distance between any two nodes in a graph

m : Number of edges in the Web graph

m0 : Number of edges added in each step of the preferential-attachment model

m1 , m2 : Number of edges from one Web site to another

M : Adjacency matrix of a graph

MT : Transpose of matrix M

n : Number of nodes in the Web graph

n0 : Number of nodes in a null graph

Ns(t) : Number of Web pages at site s at time step t
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Nx, Ny : Sets of nodes

Nτ : Total number of pages on the Web containing the term τ

NV : Set of Web pages returned by a search engine

p : Uniform probability of edge formation between a pair of nodes

pc : Critical probability (Erdos-Renyi random graph)

(1 - p) : Probability that a random surfer follows an outgoing link from the current page

pi(t) : Probability that the user is browsing page wi at time t

pij : Probability that a user jumps from a Web page wi to another Web page wj

pred(x): Set of nodes that are predecessors of node x

P(j) : Probability that a randomly chosen node i belongs to a connected cluster of j nodes

P(Ns) : Probability that a given site with an unknown growth rate has Ns pages

PR(u) : PageRank of a node u

Q : Set of user queries

r : Structural parameter that defines the degree distribution

R : Matrix such that R(w, τ) is the reputation value of page w with respect to term τ

s : Web site (registered domain name on the Internet)

succ(x): Set of nodes that are successors of node x

S : Root set of Web pages

sim(Ni, q) : Relevance of result Ni to the query q

t : Time step

T : Transition probability matrix

u, v, w : Nodes in graph

U : URL (Web address)

x, w : Web page

var(g) : variance of growth rate g of a Web site

Vt : Set of nodes in graph Gt = (Vt, Et)

W : Tendency matrix

(X, Y)-current Search Engine : Search engine in which a randomly chosen page in its

index is current for Y time with a probability of at least X

IN, OUT, TENDRILS, TUBES : Regions of the Web graph


