
and
g to
sys-
4.).
pro-

elop-
base

ass-
ifies
lass)
:

r in-
e and
Languages and Tools to Specify
Hypertext Views on Databases1

G. Falquet, J. Guyot, L. Nerima

Centre universitaire d’informatique, University of Geneva, Switzerland
falquet | guyot | nerima @cui.unige.ch

http://cuiwww.unige.ch/db-research/hyperviews

Abstract. We present a declarative language for the construction of hypertext
views on databases. The language is based on an object-oriented data model and
a simple hypertext model with reference and inclusion links. A hypertext view
specification consists in a collection of parameterized node schemes which spec-
ify how to construct node and link instances from the database contents. We show
how this language can express different issues in hypertext view design. These in-
clude: the direct mapping of objects to nodes; the construction of complex nodes
based on sets of objects; the representation of polymorphic sets of objects; and
the representation of tree and graph structures. We have defined sublanguages
corresponding to particular database models (relational, semantic, object-orient-
ed) and implemented tools to generate Web views for these database models.

1 Introduction

The hypertext navigation paradigm [4] has proven highly efficient for easily sharing
accessing information without having to learn any specific query language or havin
know the information storage structure (see for example most of the on-line help
tems of recent software products or the World-Wide-Web global information system
Moreover, database systems become universally used for storing, retrieving, and
cessing large amounts of data in an efficient and secure way. This lead to the dev
ment of so-called “database publishing” tools which make the content of a data
accessible through a Web interface or to data browsing tools.

A hypertext view is a (virtual) hypertext derived from the database relations or cl
es. From the view concept it borrows the idea of a view definition language that spec
how to compute the view. But instead of producing a derived database element (c
it produces nodes and links that form a hypertext. The aim of a hypertext view are

• to represent a part of the content of a database and

• to replace traditional query operations (selections, joins, projections) by a
reasonable number of navigation steps in the hypertext.

The last goal implies that the hypertext structure must be carefully designed. Fo
stance, it is not sufficient to simply map each database object onto a hypertext nod

1. This work was partially supported by the Swiss National Science Founda-
tion, grant no. 21-45791.95

ent-

r hy-
alyze
an be
ics of

rtext
n lan-
pertext
ls for

e mod-
ider

n

itance

class
ects

s, an-

-

e, it

ei-
ruc-
that
each object relationship to a hypertext link. We have defined a language and implem
ed tools to simplify and study the task of producing hypertext views.

The rest of this paper is organized as follows: In the next section we present ou
pertext view definition language for object-oriented databases. In section 3 we an
several issues that arise when designing hypertext views and we show how they c
handled with our language. In section 4 we present the formal syntax and semant
the language and in section 5 we compare our approach with others.

2 The Models and the Hypertext View Definition Language

Building hypertext views consists essentially in mapping database objects to hype
objects. We chose simple database and hypertext models to base the view definitio
guage on. These models can then be easily mapped to other database and hy
models to build concrete tools. For instance, we have implemented concrete too
viewing relational databases and O2 databases on the Web.

2.1 The Database Model

The database model is an object-based model which is a subset of the O2 databas
el [11][1]. In this model each object has an identity (oid) and a value. We only cons
objects whose value are tuples [name1: value1, name2: value2, …, namen: valuen] where
each namei is an attribute name and each valuei is either: an atomic value (of typein-

teger , boolean , float , string , etc.); or a reference to another object; or a collectio
of references (set, list, bag). Adatabase schemais a set of class definitions which are
composed of a class name and a type (we do not consider methods) and an inher
relationship. The type of a class constrains the values of its objects. Adatabase instance
is a set of objects and a set of named collections. Each object is an instance of a
and its value belongs to its class type. A named collection is a set (or list) of obj
which are instances of a class or of one of its subclasses.

2.2 The hypertext model

We consider a simple hypertext model whose structural part is composed of node
chors, and links.

Eachnode has a unique identity and a content.
Thecontentof a node is a sequence ofelementswhich may be character strings, im

ages, etc.
An anchoris an element or a sequence of elements within the content of a nod

serves as a starting or ending point of a link.
A link is defined by its starting and ending anchors and by its category which is

ther ‘reference’ or ‘inclusion’. Reference links are intended to create a navigation st
ture within the nodes. Inclusions links are intended to create nested structures
represent complex contents (structured documents).

from
inks
ach
the

he in-

tion
the
fol-

-
ital-

arget

ents

e

This model can easily be mapped to the Web model. The only problem comes
inclusion links because, in HTML, the <A HREF...> tag corresponds to reference l
and there are no inclusion links (except for images, with the IMG tag). The appro
we took when creating tools for the Web, was to represent in a single HTML page
content of a node and of all its subnodes and to use embedded list tags to show t
clusion structure (Fig. 2 shows an example).

2.3 The Hypertext View Definition Language

A hyperview specification consists of set of node schemes which specify the collec
from which the node’s content is to be drawn; the selection and ordering criteria;
elements that form the content; and links to other nodes. A node definition takes the
lowing form:

node <node-name> [<parameters>] is
<field-list>

from <collection>
selected by <expression>
ordered by <expression>

Each<field> of the<field-list> can be either a literal constant (string, inte
ger, etc.) or an attribute name. Fields may contain presentation functions (bold(),
ic(), break(), paragraph(), heading1(), etc.) which generate markup tags for the t
hypertext system.

Content of a node.The content of a node is based on a collection specified in thefrom

<collection> clause. The sequence of fields specifies how to construct the elem
that represent every selected object. For example, letemployeesOfDept be defined as:

node employeesOfDept[d: Department] is
" No: ", bold(no), " => " ,
bold(name), break(),
" Hire date: ", hire_date

from EMP selected by dept = d
ordered by emp_name

The content of a node instanceemployeesOfDept[sales] is obtained by
• selecting all the objects in the collection EMP which have the valuesales

for their attributedept

• ordering these objects according to the values of attributename

• for each object creating the sequence of elements corresponding to: th
string“No: “ , the value of attributeno (surrounded by and tags),
the string“=>” , etc.

It will appear as shown in Fig. 11

the
fica-
n ex-

m-
a sub-
t by
way
sion
Reference Links.Links are specified through thehref statement. The starting point
(anchor) of a link is always a field. The anchor text will form an active element in
starting node which can trigger the navigation to the referenced node. A link speci
tion refers to a node through its schema name and a list of parameter values. It is a
pression of the form:

href <schema_name> [<value>, ...] <field>

For instance, consider the following node definition:

node dept_in[loc: String] is
no, ": ", bold (name), " ",
href employeesOfDept [self] " Employees: "
...

from DEPT selected by location = loc
ordered by no

(Note: the pseudo variableself iterates over the sequence of selected objects).

The representation of each selected departmentd will have an anchor text “Employ-
ees:” that is the starting point of a link to the nodeemployeesOfDept[d] .

Inclusion Links. An inclusion link between two nodes determines a compound-co
ponent relationship between these nodes. The target node is to be considered as
node of the source node of the link. This fact should normally be taken into accoun
the hypertext interface system which should present inclusion links in a particular
(generally by including the sub-node contents within the node presentation). Inclu

1. Illustrations are snapshots of Web pages dynamically generated with the
LAZY system. A description of this implementation can be found in http://cui-
www.unige.ch/db-research/hyperviews/

Figure 1. A simple node instance

om-

k

ition,
t dis-
cate
nce
in

n

1] for
views
take

ioned in
at. For
pdate
g the
gth of
rough
asic
links are particularly useful to create multi-level hierarchical nodes to represent c
plex entities.

The figure below shows an instance of a nodedept_in2 which has the same defi-
nition asdept_in except for the reference link which is replaced by the inclusion lin
include employeesOfDept[self] " Employees:"

The content of an included node may depend on a distance parameter. By defin
a node is at distance 0 from itself and a node included in a node at distance i is a
tance i + 1. A visibility can be associated with each field of a node schema to indi
the maximum distance from which this field is visible. The content of a node at dista
d is composed of all the fields with a visibility greater or equal to d. As we will see
the next section, this mechanism has useful applications such as:

• avoiding infinite inclusion structures (at a given maximum distance all in-
cluded nodes become empty);

• including summaries or outlines of nodes to reduce the number of navigatio
steps.

3 Designing Hypertext Views

Hypertext design is a complex problem, which has attracted many research (see [2
instance). More recently, methodologies have been developed to design hypertext
of databases [2][9][8]. In the case of hypertext views of databases the design can
advantage of the data semantics expressed in the database schema but, as ment
[2], the distance between the database schema and the hypertext structure is gre
instance, a good database structure should minimize data redundancy to avoid u
anomalies. On the contrary, redundancy may help the hypertext user by reducin
number of navigation steps to reach some information. In database design, the len
logical access paths is not important since the database is generally accessed th
application programs or high level interfaces (e.g. forms). In hypertexts, since the b

Figure 2. A node with an inclusion link

n to

ases.

nsists
situa-
that

nting
rms

tion

:

Mul-
cts.

sh to
ation
lection

l

action is the navigation step, the number of links to traverse is an important criterio
determine the usability of the system.

In this section we will show how our language can be used in several design c

3.1 Direct Object Mapping

The most straightforward way to map database entities to a hypertext structure co
in taking each object o of the database to create a hypertext node node(o). In this
tion, the attributes with an atomic value form the content of the node. An attribute
refers to another object o' gives rise to a reference link to node(o'). A multivalued at-
tribute generates a link to an index node which in turn points to the nodes represe
the individual objects. Thus the structure of the hypertext view is isomorphic (in te
of graph) to the database structure.

The direct object mapping can be specified in the following way: for each collec
C of type c with attributes a1, …, ak (atomic), s1: D1, …, sr: Dr (single valued referenc-
es), and m1: set(E1), …, mt : set(Et) (multi-valued references) define a node schema

node C [me: c] is
a1, …, a k
href D 1[s 1],
…,
href D r [s r]
include E 1Index[m 1],
…,
include E t Index[m t]

from C selected by self = me ordered by 1

Each instance of this node schema represents a single object of the collectionC. Sin-
gle valued attributes yield references to the node representing the referred object.
tivalued attributes yield inclusions of index nodes which point to all the referred obje
The index nodes have the following schema:

node E i Index [e: set E i] is
href E i [self]

from e

3.2 Mapping Homogeneous Sets of Objects to Nodes

In order to reduce the number of navigation steps, the hypertext designer may wi
present several (or all) objects of a collection in a single node. This type of present
is directly supported by the language since each node represents a subset of a col
(from <collection>) specified by a predicate (selected by <predicate>).

For instance, a node instanceemployeesOfDept[s] (defined in 2.3) represents al
the employees of departments (from EMP selected b y d = dept) . Thus a ref-

t-

sible
ema.

c

jects
f ob-
col-

ties
ored in
ntity
flect

era-

e fol-
re to
erence link toemployeesOfDept[s] can lead in a single step from a node represen
ing departments to a node representing all its employees.

3.3 Derived Links

Since the selection predicate of a node is not limited to reference attributes, it is pos
to create new (computed) links that do not appear explicitly in the database sch
This is shown on the following example:

node CitiesNear[c: Coordinates] is
name, ...

from CITIES selected by
location.distance(c) < 100

node City is
name, population, ...
href CitiesNear[location] "nearby cities"

from CITIES ...

The reference link fromCity to CitiesNear leads from a node representing a city
to a node representing all the cities which are less than 100km from c.

3.4 Mapping Sets of Heterogeneous Objects to Nodes

In the previous section we have shown how to define nodes by selecting sets of ob
from the same collection. We now consider aggregation nodes which are made o
jects coming from different collections. In this case grouping occurs along the inter-
lection axis instead of the within-collection axis.

This type of node construction is particularly useful to reconstruct complex enti
which have been decomposed and represented as several interrelated objects st
different collections. It is natural to group all the objects that represent a complex e
in a single hypertext node. The node’s content can be organized hierarchically to re
the structural composition of the complex object. The main advantage of this mapping
lies in its compact presentation of related information, thus avoiding navigation op
tions among the different components of the complex entity.

To create aggregation nodes we use inclusion links that point to subnodes. Th
lowing example shows the construction of a complex node with a nested structu
represent courses stored in a university database.

Database schema:

class Course(class Offering(
code : String, code : String,
title : String, course : Course,
credits : Int, semester : String
description : String,)
prerequisites : set(Course))

class Professor(class Teaching(
name : String, offering : Offering,
... professor : Professor

))

COURSES : set(Course); OFFERINGS : set(Offering);
TEACHINGS : set(Teaching); PROFESSORS : set(Professor);

Node schemes:

node Course [c : Course] is
 heading1(code, " * ", title),
 "credits: ", credits,
 heading3("Description"),
 description,
 heading3("Prerequisites"),
 include Prereqs [prerequisites] ,
 heading3("Offerings"),
 include Offerings[self]
from COURSES
 selected by self = c ordered by code

node Prereqs [pre : set Course]
 list_type: enumeration(" ")
 is
 href course[self] code, " (", title, ")"
from pre

node Offerings[c : course]
 list_type: definition
 is
 bold(code), " (", semester, ") ",
 include Teaching[self]
from OFFERINGS
 selected by course = c order by code

node Teachings[o : Offering]
 list_type: enumeration(" ")
 is
 include ProfessorName[professor]
from TEACHINGS
 selected by offering = o

node ProfessorName [p : Professor]
 list_type: none
 is
 href Professor[self] name
from PROFESSORS

ctly

e,
r this
en-
Fig-

which

since
g.
TheCourse node is the top of the nested structure, it contains data coming dire
from Course objects (credits, description) and it includes nodesPrereqs andOffer-

ings which contains the lists of prerequisites and offerings respectively. The nodeOf-

ferings displays information about particular offerings for this course (cod
semester). It includes a node Teaching which displays the list of professor names fo
offering. Note that the “list_type” statement allows to specify different types of pres
tations (bullet lists, definition lists, enumerations with a separator character, etc.).
ure 3 shows a typical instance ofCourse .

Aggregation can also occur on objects which are not related in the database. For
instance, a university home page may point to courses, research, and social events
are not related entities of the database.

3.5 Recursive Inclusions (Static and Dynamic)

The following node schema is recursive since it has an inclusion link to itself

node EmpWithMgr [e : Emp] is
" No: ", bold(no), " => " , bold(name),
break(), " Hire date: ", hire_date,
include EmpWithMgr [manager]

from Employees selected by self = e
ordered by empno

However this does not generate a cyclic inclusion structure at the instance level
the graph of themanagerrelation is acyclic (i.e. there is no cycle at the data level). Fi
4 shows an instance of that node schema.

Figure 3. A node with a nested structure

cre-
ition
m

sent
e the

llec-
nism.
cific
bjects
When there are cycles in the data, the visibility distance mechanism prevents the
ation of recursive inclusions at the instance level. Since each field in a node defin
has a maximum visibility distance, it implies that there is a level of inclusion fro
which all the included nodes become empty.

Thus, recursive inclusion can be employed to specify hypertext views that repre
data having a tree or graph structure. This representation may significantly reduc
number of navigation steps, compared to the direct object mapping.

3.6 Representing Specialized Entities (Union Nodes)

Collections may contain objects of different classes which are subclasses of the co
tion’s class. To represent such polymorphic sets one can use the inclusion mecha
A top node is used to represent the common attributes, it has inclusion links to spe
nodes used to represent the specific parts. Each specific node selects only the o
which have a given type.

// generic node
node emp [e: employee] is

name, address, ... // common attributes
include driver[self]
include secretary[self]

from EMP

// specific nodes
node driver [e: employee] is

max_km, license_no, ...
from EMP/Driver selected by self=e

node secretary[s: employee] is
...

from EMP/Secretary selected by self=s

An expression of the formcollection/classrepresents all the objects incollection
which are instances ofclass or instances of a subclass ofclass.

Figure 4. Recursive inclusions of nodes

f M
ch-
on

uery
ces-

-

or a
odes,

ndix).
logic

and

rom
3.7 Previewing and Outlining Linked Nodes [10]

Previewing a node M from a node N consists in including in N part of the content o
and a reference link to M. The partial inclusion can be obtained with the visibility me
anism (some field must have visibility 0). The aim of previewing is to give informati
about the content of a node without having to navigate to it.

4 Formal Semantics of the Language

The definition of the semantics is quite similar to the specification of database q
languages but it must also take into account the notion of node identity which is ne
sary to specify the semantics of links. The identity of a node instance is a triple (schema
name; actual parameter values, inclusion level). This differs from the semantics of usu
al query languages which do not create new objects as the result of a query.

To formally define the semantics of the definition language we must specify, f
given database instance, how to interpret a node instance expression in terms of n
links, anchors and contents (the complete syntax of the language is given in appe
To keep the description small, we will suppose that the semantics of arithmetic and
expressions is given and we will not take into account presentation functions.

Let D be the node definition:

nodeN [p1:T1, p2: T2, …, pk: Tk]
f1, …, fn
from C
selected byS(self, p1, p2, …, pk)
ordered by O(self, p1, p2, …, pk)

where each fieldfj is

level lj [(href | include) N'j[expr'1, expr'2, …, expr'sj]] ej

The interpretation of a node instance expressionE = N[expr1, expr2, …, exprk] at a
given inclusion depthd is composed of anode identityI id(E, d), a node contentIC(E,
d), and aset of linksI L(E, d).

The identity of a node consists of the node’s name, the value of its parameters
its inclusion depth.

I id(E, d) = (N, [I (exp1), I (exp2), …, I (expk)], d).

In order to define the content of the node, we first define the set of objects f
which the content will be drawn:

S0 = {o ∈ C | I (S)(o, I (expr1), I (expr2), …, I (exprk)) = true}.

It is the set of objects o that belong to C and satisfy the predicate S.

ate-

ta-
s that

rver-
ML

n 3.1.
ating
spe-
be
ThenS1 is a sequence <o1, o2, …, or> such that

oi ∈ S1 <=> o i ∈ S0 and

I (O)(oi, I (expr1), I (expr2), …, I (exprk)) ≤ I (O)(oi+1, I (expr1), I (expr2), …, I (exprk)).

ThusS1 is the setS0 ordered by the expressionO.
The contentIC(E, d) of the node is the sequence of elements obtained by conc

nating the sequences <IC((f1, oi, d), …, IC(fn, oi, d)> (i = 1, r) whereIC(fj, oi, d) is the
content of fieldfj for objectoi at depthd. It is defined as follows:

– IC (level lj <link-specification>ej, oi, d) = <empty> if the visibility levellj is less
thand,

– IC (level lj <link-specification>k, oi, d) = k if k is a constant,

– IC (level lj <link-specification>a, oi, d) = oi.a.toString()if a is an attribute name
(wheretoString is a method that maps an object to its string representation).

The set of linksI L(E, d) is the union of the sets {I L((f1, oi, d), …, I L(fn, oi, d)> (i =
1, r) where

– I L(level lj ej, oi) = the null link

– I L(level lj href N'j[expr'1, expr'2, …, expr'sj] ej, oi) is a reference link with
starting node id:I id(E, d) (the id of this node instance),
ending node id:I id(N'j[expr'1, expr'2, …, expr'sj], d),
starting anchor: (i–1)n + j (the sequence number of this element),

– I L(level lj include N'j[expr'1, expr'2, …, expr'sj] ej, oi) is an inclusion link with
starting node id:I id(E, d)
ending node id:I id(N'j[expr'1, expr'2, …, expr'sj], d+1)
starting location: (i–1)n + j

5 Comparison with Related Work

Database publishing.Several ways have been explored to publish the content of da
bases on the Web. The procedural approach consists in writing database program
generate HTML pages (e.g. Oracle Web Server [14], CGI scripts, Java/JDBC se
side applications, etc.). Another approach consists in automatically generating HT
pages from the database schema (e.g. O2Web [23]).

This last approach corresponds to the direct object mapping described in sectio
It can be improved by defining a collection of views over the database and gener
the hypertext from these views; it is also possible to overload generic methods with
cific ones. However, it is not clear that features like (recursive) inclusion links can
easily expressed with this technique.

e to
tro-

ent
es can
crip-
tatic
d by
s to se-

site
data
-

tem-

L
MG

phs.

evel
and

re-
links,

ture)
nks).
des
er-

p-
ion
ting

t are
truc-
dif-
plex

tation
eme
Toyama and Nagafugi [18] define and extension of the SQL query languag
present the result of a query as a structured document (e.g. HTML, LaTeX). They in
duce connectors and repeaters in place of the SQL target list of a query.

Virtual documents. The virtual document approach consists in extending a docum
definition language with database querying features. For instance, database queri
be embedded into HTML pages [13]. In [15] Paradis and Vercoustre propose a pres
tion language to specify the static and dynamic content of a virtual document. The s
content is expressed with the usual HTML tags. The dynamic content is obtaine
evaluating queries on (heterogeneous) data sources. The language has operator
lect and combine information from different query results.

Web site management.In [8], Fernandez et al. describe a system to produce a Web-
(a set of HTML pages) from different data sources integrated through a graph based
model. A specific query language (STRUQL) is used to query the data graph and con
struct a graph that forms the content of the Web-site. A second language (HTML-
plate language) is used to specify the presentation of each object.

In [16] Siméon and Cluet extend the YAT system to build HTML pages. The YAT
language allows to specify graph conversions between the input data model (OD
objects, XML documents, …) and the output model (HTML pages) viewed as gra

Methodology for the Design of Web Applications.The Araneus methodology pro-
posed by Atzeni et al. [2] distinguishes three levels: the hypertext conceptual l
(Navigation Conceptual Model); the hypertext logical level (Araneus Data Model);
the presentation level (HTML templates). It is possible to analyze our language with
spect to these levels. The conceptual level corresponds to node names, reference
base collections, and selection predicates. The logical level (internal node struc
corresponds to the specification of node fields (constants, attributes and inclusion li
A node with a complex ADM type can be represented by a hierarchy of included no
(see 3.4). Finally, the markup functions (or strings with HTML tags) define the gen
ated document’s markup which will be used to present the document.

In [9] Fraternali and Paolini introduce the HDM-lite methodology which is an ada
tation of the Hypermedia Design Methodology for Web applications. Their navigat
model includes navigation modes (index, guided tour, showall, …) to help naviga
within collections of objects.

6 Conclusion

Language properties.The language we have presented has several properties tha
important to develop hypertext views: it is non-procedural, it has the capacity to res
ture the database information, i.e. to present it in different forms (corresponding to
ferent points of view), it has the capacity to create structured node contents (com
hierarchical nodes or structured documents), it has the capacity to create orien
structures like indices, outlines, node previews, etc., it has a node identification sch

o store

ery
pends
can be

ct-
sent
ion

ZY
the de-
ition
node

cally
pro-

rver,

se-
a and
the

n O
al me-

and

om-

s”.In

ses
that enables other applications to access the generated nodes and that permits t
hypertext views independently of the database.

A view definition is relatively robust with respect to schema updates since ev
node schema depends only on its base collection. In addition, a node schema de
only on the name and the parameter of the node it refers to. Thus node schemes
changed without affecting the rest of the hypertext view.

From a more theoretical point of view, we have already shown in [7] that sele
project-outer-join queries can be represented by nodes with inclusion links. To repre
select-project-join queries it is necessary to slightly modify the semantics of inclus
links.

Prototypes.We have developed several tools to generate hypertext views. The LA
system generates Web pages over a relational database, it implements a subset of
scribed view language. The implementation relies on two components: a node defin
compiler and a node server connected to a HTTP server. The compiler translates
definitions into relational views and stored procedures. The node server dynami
generates HTML pages by querying the generated views and/or calling the stored
cedures. We are currently working on a portable implementation of the node se
written in Java and based on JDBC.

The MetaLAZY tool is an implementation of the hypertext view language for a
mantic data model. It translates a semantic data schema into a relational schem
generates LAZY nodes for this schema. It uses multiple levels of inclusion to hide
auxiliary relations that represent many-to-many relationships.

We have also developed a tool to produce materialized hypertext views over a2
database. These views consist in sets of HTML pages that can be stored on extern
dia (CD-ROM, etc.) independently of the database.

Future plans include the addition of navigation modes [9] to node schemes
mechanisms to update the database through hypertext views.

Aknowledgement

We would like to thank the anonymous referees for their insightful and valuable c
ments.

7 References

1. S. Abitboul, R. Hull, V. Vianu.Foundations of Databases, Addison-Wesley, 1995.

2. P. Atzeni, G. Mecca, P. Merialdo. “Design and Maintenance of Data-Intensive Web Site
Proc. of the EDBT’98 Conf., Valencia, 436-450, 1998

3. T. Barsalou, N. Simabela, A. Keller, G. Wiederhold. “Updating Relational Databa
through Object-Based Views”. In Proc. ACM SIGMOD, Denver, 248-257, 1991.

ide

7-

op-

del:
eat-

ing
’98

the

IG-

". In

”. In

b”.

op,

rku,

ts on

”. In
4. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, A. Secret. “The World-W
Web”. Comm. of the ACM, Vol. 37, No. 8, 76-82, 1994..

5. S. Bobrowski.Oracle7 Server Concepts Manual, Oracle Corp., Redwood City, CA, 1992.

6. J. Conklin. ”Hypertext: An Introduction and Survey”. IEEE Computer, Vol. 20, No. 9, 1
42, 1987.

7. G. Falquet, L. Nerima, J. Guyot. “A Hypertext View Specification Language and its Pr
erties”. CUI Technical report #102, University of Geneva, 1996.

8. M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu. “Catching the Boat with Stru
Experiences with a Web-Site Management System”. In Proc. ACM SIGMOD Conf., S
tle, 414-425, 1998.

9. P. Fraternali, P. Paolini. “A Conceptual Model and a Tool Environment for Developp
More Scalable, Dynamic, and Customizable Web Applications”. In Proc. of the EDBT
Conf., Valencia, 421-435, 1998.

10. S. Ichimura, Y. Matsushita. "Another Dimension to Hypermedia Access". In Proc. of
Hypertext'93 Conf., Seattle, 63-72, 1993.

11. C. Lécluse, P. Richard, F. Velez. "O2, an Object-Oriented Data Model ". In Proc. ACM S
MOD, Chicago, 1988.

12. J. Nanard, M. Nanard. "Shoud Anchors Be Typed Too? An Experiment with MacWeb
Proc. of the Hypertext'93 Conf., Seattle, 51-62, 1993

13. T. Nguyen, V. Srinivasan. “Accessig Relation al Databases from the World Wide Web
Proc. ACM SIGMOD Conf., 529-540, 1996.

14. Oracle Inc. home page: http://www.oracle.com

15. F. Paradis, A-M. Vercoustre. “A Language for Publishing Virtual Documents in the We
In Proc. of the WebDB Workshop, Valencia, 1998.

16. J. Siméon, S. Cluet. “Using YAT to Build a Web Server”. In Proc. of the WebDB Worksh
Valencia, 1998.

17. J. Teuhola. “Tabular Views on Object Databases”. Tech. Rep. R-93-11, University of Tu
Finland, 1993

18. M. Toyama, T. Nagafuji. “Dynamic and Structured Presentation of Database Conten
the Web”, In Proc. of the EDBT’98 Conf., Valencia, 451-465, 1998.

19. C. A. Varela, C. C. Hayes. “Zelig: Schema–Based Generation of Soft WWW Database
Proc. W3 Conf., 1994.

20. Special Issue: Advanced User Interfaces for Database Systems. SIGMOD Record, Vol. 21,
No. 1, 1992.

21. Special section: Hypermedia Design, CACM, Vol. 38, No. 8, 1995.

22. “The O2 System”. Comm. of the ACM, Vol. 34, No. 10, 1991

23. “O2 Web Presentation”, O2Technology, Versailles, France, 1995.

Appendix

Syntax of the LAZY language

HypertextView = define { Node-schema } end

Node-schema = node node-name ["[" Parameter-list "]"]
List-Markup
is
Field-list
from collection ["/" type-name]
[selected by Expression]
[ordered by Expression-list]

Field-list = Field { "," Field }

Field = [Level] [Link-spec] Markup-Element

Markup-element = Element | Markup "(" Markup-element ")"

Element = ε | Constant | attribute-name

Link-spec = (href | include) node-name ["[" Expression-list "]"

Parameter-list = Parameter { "," Parameter }

Parameter = [set] param-name ":" type-name

Expression-list = Expression { "," Expression }

Expression = Term | Term Op Term

Term = Atom | "(" Expression ")"

Atom = Constant | attribute-name | self

Op = "=" | "<" | ">" | "+" | "-" | and | or | ...

Constant = string | number

Markup = bold | italic | break | ... | heading1 | heading2 | …

List-markup = list_type: (ordered | unordered | definition | enumeration | none) [(sep-
arator)]

Level = level "0" | ... | "9"

	Languages and Tools to Specify Hypertext Views on Databases
	1 Introduction
	2 The Models and the Hypertext View Definition Language
	2.1 The Database Model
	2.2 The hypertext model
	2.3 The Hypertext View Definition Language

	3 Designing Hypertext Views
	3.1 Direct Object Mapping
	3.2 Mapping Homogeneous Sets of Objects to Nodes
	3.3 Derived Links
	3.4 Mapping Sets of Heterogeneous Objects to Nodes
	3.5 Recursive Inclusions (Static and Dynamic)
	3.6 Representing Specialized Entities (Union Nodes)
	3.7 Previewing and Outlining Linked Nodes [10]

	4 Formal Semantics of the Language
	5 Comparison with Related Work
	6 Conclusion
	7 References

