Variab les indicées et tab leaux Structure de tab leau

Pour désigner une séquence d’éléments de méme type Pour représenter des vecteurs/n-tuples d’éléments de type T (occupant s cellules)
Notation habituelle : Représentation immédiate : séquence contiglie de Ts
Vi, V2, V3, ..., Vp adresses  contenus

On parle de vecteur

Exemples a Ki
point dans I'espace : (6, 5, —2) a+s K,
prix moyen du carburant & chaque trimestre : (1.29, 1.34, 1.31, 1.28) a+2s Ks

Autres e xemples :

a+(n-1)s K,
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Utilisation des tab leaux Opérations globales sur les tab leaux
Sélection d’un élément : Affectation globale
X « t[K] V « (el,e2,...,en)

équivalent a V[1] — el, V[2] — e2, ...
Affectation d’'une valeur & un élément (I'ancienne est effacée) VW
équivalent a V[1] — W[1], V[2] - W[2], ...

tk] < e Temps d’exécution proportionnel a la taille de V.

Affectation de tranc hes
V[i...jl < (eg, ---,€p)
équivalent & V[i] — eq, V[i+1] — ey, ..., V[j] < &,

r=i-j
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Un exemple: vérifi cation de date

Probléme: écrire un algorithme qui vérifie si une date (jour, mois, année) est correcte

fonction vérifDate(j, m, a)
si(j<1oum<1oum > 12) retourne faux
bisextile — a modulo 4=0 /Il correct entre 2000 et 2099)
sim=1retournej<31
si m = 2 et bisextile retourne j< 29
si m = 2 et non bisextile retourne j < 28

sim =3 retournej< 31

sim =12 retourne j < 31

retourne faux
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En Java

class GestionDates {
static int[ ] nbJours = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

static boolean verifDate(int j, int m, int a) {
if<1||m<21]]m>12)return false;
if (@ % 4 ==0) nbJours[2]=29
else nbJours[ 2 ] = 28;

return j <= nbJours[ m ]
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Le méme avec un tab leau

On crée un tableau des nombres de jours.

nbJours[1..12] ~ (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Qu’on utilise dans la fonction

fonction vérifDate(j, m, a)
si(j<1oum<1oum > 12) retourne faux
si (a modulo 4= 0) nbJours[2] = 29 sinon nbJours[2] = 28

retourne j< nbJours[m]

G. Falguet, CUI, Université de Genéve

Tableau # Ensemble !

Ordre

ensembles : {a, ¢, g} ={g, ¢, a}
tableaux : (a,r,g)# (r, g, @)

Accés

tableaux : 1% élément, 2°, 3¢ etc.
ensembles : ---

Nb d’occurences

ensembles : {a, c, a, b, a} ={a, ¢, b}
tableaux : (a, a, a, a) #(a)
Opérations

ensembles : union, intersection, différence

tableau : affectation d’une valeur a un élément

G. Falquet, CUI, Université de Genéve
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Exemple : le crib le d’Eratosthéne

Pour trouver tous les nombres premiers de 2 a n (encore !)

Faire une liste des nombres

Barrer tous les multiples de 2 supérieurs a 2
Barrer tous les multiples de 3 supérieurs a 3
4 est déja barré

Barrer tous les multiples de 5 supérieurs a 5
6 est déja barré

Barrer tous les multiples de 7 supérieurs a 7
8 est déja barré

9 est déja barré

10 est déja barré

Barrer tous les multiples de 11 supérieurs a 11

etc. Les nombres qui restent sont premiers (ils ne sont multiples de personne)

G. Falquet, CUI, Université de Genéve
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Structure de données : tableau de booléens

au début

ffffffffffffffffl

N
w
IN
()]
o

7 8 91011121314151617

barrer les multiples de 2

f f v f v f v f v f v f v f v f

N
w
IN
)]
o
~
(o]

910111213141516 17

puis ceux de 3

ffvafvvvafvvvf|
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Algorithme semi-f ormel

faire une liste des nombres de 2 an
p<-2
tantque (p*p<n){

barrer tous les multiples de p

p <-- le plus petit nombre non barré supérieur a p

Remarque

Tout nombre < n qui n'est pas premier est multiple d’'un nombre inférieur a JF\

Donc on peut arréter I'algorithme quand p * p > n.

G. Falguet, CUI, Université de Genéve

Algorithme a vec un tab leau de booléens

pour ide2an{Barré[i] <--faux }
p <2
max <-- racine carrée de n
tant que (p < max) {
si (non Barré [p] ) {
/I Barrer les multiples de p
i<-p+p
tantque isn{Barré[i]<--vrai;i<-i+p}
}
p<-p+l

G. Falquet, CUI, Université de Genéve
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Comple xité en temps

Vn fois
tant que (p < max) {
TU(Vn) fois si (non Barré [p]) {
i<-p+p
n/p-1fois :tantqueisn{Barré[i]<—-vrai;i<--i+p}
}
p<-p+1
}

TUX) = nombre de nb. premiers inférieurs a X

nb opérations [] =n/2 + n/3 + n/5 + n/7 + n/11 + ... + n/p, = TU(Vn}

(py = plus grand nombre premier inférieur & vn)
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Acceés associatif / rec herche

But : trouver une valeur dans un tableau T

Le meilleur algorithme : regarder successivement dans T[0], T[1], ... etc.

Complexité : O(taille de T)

Donc

Tout algorithme basé sur I'accés associatif est inefficace

(a2 moins d’avoir beaucoup de processeurs en paralléle)
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Le calcul de la comple xité ... est comple xe

nb opérations [] = n/2 + n/3 + n/5 + n/7 + n/11 + ... + n/p,— T{(Vn}
(p = plus grand nombre premier inférieur avn)
On sait

1/p; + 1/py + 1pg + ... + 1/py ~= log(log(K))
Mais que vaut k ?
Combien y a-t-il de nombres premiers inférieurs a vn ?
Legendre a trouvé :

TU(X) ~= X/ (log(X) — 1.0836) (Legendre)

Donc
nb. opérations ~= n log(log(vn / (log(vn — 1.08))
= n log(log(¥n)) — n log(log(log(vVn — 1.08)))
0 O(n log(log(vn)))

G. Falguet, CUI, Université de Genéve

Algorithmes 1

T un tableau indicé de 0 & n-1
résultat = 1ére position de x dans T

résultat = -1 si x n'est pas dansT

fonction recherche (x, T) {
i-0
tantque (i<netT[i]#x)i<i+1

si i = nretourne —1 sinon retourne i

Cet algorithme est faux.

G. Falquet, CUI, Université de Genéve
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Algorithmes 2 Algorithmes 3

T un tableau indicé de 0 & n-1 T un tableau indicé de 0 & n-1
résultat = 1eére position de x dans T résultat = 1ére position de x dans T
résultat = -1 si x n'est pas dans T résultat = -1 si x n'est pas dans T
fonction recherche (x, T) { fonction entiére recherche (x, T) {
tantque (i<n){ tantque (i<netensuite T[i]#x)i~i+1
si T[i] =x retourne i si i = n retourne —1 sinon retourne i
sinon i «i+1 }
}
retourne -1 Utilise I'évaluation par tielle des expressions booléennes.
} Opérateur && en Java.
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Recherche dans un tab leau trié Algorithme
On cherche 6.25 Précondition : x est trié par ordre croissant des valeurs.

Invariant : si x se trouve dans T, il est entre les positions inf et sup.
fonction dichotomique(T, x) {

sup

inf<-- 0 ; sup <-- taille T - 1;
tant que inf <= sup {
millieu <-- (sup +inf) / 2 ;

si (T[ millieu ] = x) retourner millieu

millieu _ _ . .
sinon si (T[ millieu ] > x) sup <-- millieu - 1

sup sup etc.
I:I< millieu sinon inf <-- millieu + 1
inf }
< millieu
retourner -1 [* pas trouvé */
; }
inf inf
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Comple xité Tableaux et tris

Nombre d'itérations = On considére un tableau A d’éléments de type T
sin=2X On suppose qu'il y a une opération < qui permet de comparer deux T

au maximum k itérations (2k, 2"‘1, Zk‘z, .., 8,4,2,1) (relation d’ordre total)
k = logy(n)
On veut produire un nouveau tableau A'tel que
o - les éléments de A’ sont les mémes que ceux de A
Complexité : O(logy(n))
« si0<i<j<nalors ATi] <A'j]

G. Falquet, CUI, Université de Genéve G. Falguet, CUI, Université de Genéve
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Tri par rec her che du plus petit Algorithme - par rec herche du plus petit

Principe : trier (tableau de n éléments A)

« chercher le plus petit élément de A pouride 0an-2{

+ I'échanger avec A[ 0] min « i

« chercher le plus petitdans A[ 1 .. n-1] pour jde i+l an-1{

« l'échanger avec A[ 1] siA[j]<A[min]{min - j}

« chercher le plus petit dans A[ 2 .. n—1] }

+ l'échanger avec A[ 2 ] t— A[i];A[i]< A[min];A[min] < t

. etc. }

. Comple xité

Nombre de comparaisons :
n-1+n-2+..+2+1
=n(n-1)/2
00(n?)
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Recherche du plus petit - preuve

pouride 0an-2{

min « i

pourjde i+l an-1{
SiA[j]<A[min]{min «j}
->A[min] <Alk](i<k<))

}

->A[min]<A[k](i<ksn-1)

t— A[i];A[i] « Almin];A[min] «t

->A[i]<AlKk] (i ks n-1)

}
~>Ali]<Alk](i<ksn-1) (0 <i<n-2)

G. Falquet, CUI, Université de Genéve

Exemple
—
1--4--7--21--22--6--44--12
—

-21--22--6--44--12

~ N\
~-21--6--22--44--12
7~ N\
- 6--21--22--44--12

7
7
7
N

- 6--T7-21--22--44--12
6
6

1
7 -21--22--44--12
1
7 -21--22--44--12
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Tri par b ulles

pouride 0an-2({
SiA[i+1]<A[i]{
/ mettre A [i+1] a sa place
j<--i
tant que j= 0 et ensuite A[j] > A [j+ 1]{
échanger A[j]etA[j+1]

<1
}
}
}
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Tri "Shellsor t"
Une succession de (pseudo) tris pas bulle
Avec des écarts E de 2", 2" 22 4,21
E <-- de plus gde puissance de 2 inférieure a N
tantque E>0
pouride0an-E
SiIA[I+E]<ATI]
/l "descendre" A[i+E]
j<--i
tant que j = 0 et ensuite A[j] > A[j+ E]
échanger A[j]etA[j+E]
j<-j-E
E<-E/2
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Quic ksort

procedure Trier (T, a, b)
si b —a < 3: trier par échange
sinon {
<< Choisir une valeur pivot p dans T[a ... b]
(p.ex. la 1ére ou au hasard) >>
<< (Partition) déplacer les éléments de T[a ... b]
de telle maniére que
Tm]=p
T[a... m=1]ne contient que des valeurs < p
T [m+1 ... b] ne contient que des valeurs > p >>
Trier(T, a, m-1) ; Trier(T, m+1, b)

G. Falquet, CUI, Université de Genéve

Comple xité de Quic ksor t

Dans le meilleur des cas : on divise en deux parties égales a chaque fois
T(a, b)=0(b—a) + T(a, m—1) + T(m+1, b)

T(a, m-1) = O(m-1 —a) + T(a, k-1) + T(k+1, m-1)

T(m+1, b) = O(b — m-1) + T(m+1, r—1) + T(r+1, b)

T(a, b) = 1 répartition + 2 tris

= 1 répartition + 2 répartitions + 4 tris

= 1 répartition + 2 répartitions + 4 répartitions + 8 tris
etc.

On a logy(b—a) "étages"

==> Complexité T(a, b) : O( log,(b-a) (b—a))

Théoreme . Un tri basé sur la comparaison ne peut faire mieux (en moyenne).

G. Falquet, CUI, Université de Genéve
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Technique de déplacement

Déplacer les éléments de T[a ... b] de telle maniere que
Tla..m=1]<p;T[m]=p;T[m+l..b]>p
Algorithme
i<-a;j<-b
p <--T[(a + b) /2] // pivot
tantquei<j{
tantquej=aetensuite T[j]2p{j<-j—-1}
tantquei<betensuite T[i]<p{i<--i+1}
sii<j{
X<--T[i];T[i]<--T[j];T[j]<--x/l échange
i<-i+l;j<—-j-1
}

Complexité en temps : O(b — a)

G. Falguet, CUI, Université de Genéve

Mauvais cas

Si on n'a pas de chance, les partitions sont déséquilibrées
Au pire : T[a ... b] --> T[a], T[a+1 ... b]

On en revient au tri par recherche du plus petit : O(n2)

Comment bien choisir le pivot ?
T[a] :mauvais si T est déja trié
T[(a+b)/2] :bon si T est déja trié

médiane d’un échantillon de valeurs (évite le pire cas)
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