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Variab les indicées et tab leaux

Pour désigner une séquence d’éléments de même type

Notation habituelle :

v1, v2, v3, …, vn

On parle de vecteur  

Exemples

point dans l’espace : (6, 5, –2)

prix moyen du carburant à chaque trimestre : (1.29, 1.34, 1.31, 1.28)

Autres e xemples :

__
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Structure de tab leau

Pour représenter des vecteurs/n-tuples d’éléments de type T (occupant s cellules)

Représentation immédiate : séquence contigüe de Ts

K1

K2

K3

Kn

adresses      contenus

a

a + s

a + 2s

a + (n-1)s
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Utilisation des tab leaux

Sélection d’un élément : 

x ← t[k]

Affectation d’une valeur à un élément (l’ancienne est effacée)

t[k] ← e
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Opérations globales sur les tab leaux

Affectation globale

V ← (e1, e2, …, en) 

équivalent à V[1] ← e1, V[2] ← e2, …

V ← W 

équivalent à V[1] ← W[1], V[2] ← W[2], …

Temps d’exécution proportionnel à la taille de V.

Affectation de tranc hes

V[i…j] ← (e0, …, er)

équivalent à V[i] ← e0, V[i+1] ← e1, …, V[j] ← er

r = i - j
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Un exemple:  vérifi cation de date

Problème: écrire un algorithme qui vérifie si une date (jour, mois, année) est correcte

.

fonction vérifDate(j, m, a)

si (j < 1 ou m < 1 ou m > 12) retourne faux

bisextile ← a modulo 4= 0 // correct entre 2000 et 2099)

si m = 1 retourne j ≤ 31

si m = 2 et bisextile retourne j ≤ 29

si m = 2 et non bisextile retourne j ≤ 28

si m = 3 retourne j ≤ 31

...

si m = 12 retourne j ≤ 31

retourne faux
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Le même avec un tab leau

On crée un tableau des nombres de jours.

nbJours[1..12] ← (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Qu’on utilise dans la fonction

fonction vérifDate(j, m, a)

si (j < 1 ou m < 1 ou m > 12) retourne faux

si (a modulo 4= 0) nbJours[2] = 29 sinon nbJours[2] = 28

retourne j ≤ nbJours[m]

G. Falquet, CUI, Université de Genève 7 de 32

En Java

class GestionDates {

static int[ ] nbJours = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

static boolean verifDate(int j, int m, int a) {

if (j < 1 || m < 1 || m > 12) return false;

if (a % 4 == 0) nbJours[ 2 ] = 29 

else nbJours[ 2 ] = 28;

return j <= nbJours[ m ]

}

}
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Tableau ≠ Ensemb le !

Ordre

ensembles : {a, c, g} = {g, c, a}

tableaux : (a, r, g) ≠ (r, g, a)

Accès

tableaux : 1er élément, 2e, 3e, etc.

ensembles : ---

Nb d’occurences

ensembles : {a, c, a, b, a} = {a, c, b}

tableaux : (a, a, a, a) ≠ (a)

Opérations

ensembles : union, intersection, différence

tableau : affectation d’une valeur à un élément
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Exemple :  le crib le d’Eratosthène

Pour trouver tous les nombres premiers de 2 à n (encore !)

Faire une liste des nombres

Barrer tous les multiples de 2 supérieurs à 2

Barrer tous les multiples de 3 supérieurs à 3

4 est déjà barré

Barrer tous les multiples de 5 supérieurs à 5

6 est déjà barré

Barrer tous les multiples de 7 supérieurs à 7

8 est déjà barré

9 est déjà barré

10 est déjà barré

Barrer tous les multiples de 11 supérieurs à 11

etc. Les nombres qui restent sont premiers (ils ne sont multiples de personne)
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Algorithme semi-f ormel

faire une liste des nombres de 2 à n

p <-- 2

tant que ( p * p ≤ n) {

barrer tous les multiples de p

p <-- le plus petit nombre non barré supérieur à p

}

Remarque

Tout nombre < n qui n’est pas premier est multiple d’un nombre inférieur à .

Donc on peut arrêter l’algorithme quand p * p > n.

n
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Structure de données :  tableau de booléens

1  2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17

v  f  f   f   f   f   f  f   f   f   f   f   f   f   f   f   f

1  2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17

v   f  f  v  f  v  f  v  f  v   f  v  f   v  f   v  f   

1  2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17

v   f  f  v  f  v  f  v  v  v   f  v  f   v  v  v  f  

au début

barrer les multiples de 2

puis ceux de 3

etc.
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Algorithme a vec un tab leau de booléens

pour  i de 2 à n { Barré[ i ] <-- faux }

p <-- 2

max <-- racine carrée de n

tant que  ( p ≤ max) {

si ( non Barré [p] ) {

// Barrer les multiples de p

i <-- p + p

tant que  i ≤ n { Barré[ i ] <-- vrai ; i <-- i + p }

}

p <-- p + 1

}
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Comple xité en temps

π(x) = nombre de nb. premiers inférieurs à x

nb opérations [ ]  = n/2 + n/3 + n/5 + n/7 + n/11 + … + n/pk – π(√n}

(pk = plus grand nombre premier inférieur à √n)

tant que ( p ≤ max) {

si ( non Barré [p] ) {

i <-- p + p

tant que i ≤ n { Barré[ i ] <-- vrai ; i <-- i + p }

}

p <-- p + 1

}

√n fois

n / p – 1 f ois

π (√n) fois
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Le calcul de la comple xité … est comple xe

nb opérations [ ]  = n/2 + n/3 + n/5 + n/7 + n/11 + … + n/pk – π(√n}

(pk = plus grand nombre premier inférieur à √n)

On sait 

1/p1 + 1/p2 + 1/p3 + … + 1/pk ~= log(log(k))

Mais que vaut k ?

Combien y a-t-il de nombres premiers inférieurs à √n ?

Legendre a trouvé : 

π(x) ~= x / (log(x) – 1.0836) (Legendre)

Donc

nb. opérations ~= n log(log(√n / (log(√n – 1.08))

= n log(log(√n)) – n log(log(log(√n – 1.08)))

∈ O(n log(log(√n)))
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Accès associatif / rec herche

But : trouver une valeur dans un tableau T

Le meilleur algorithme : regarder successivement dans T[0], T[1], … etc.

Complexité : O(taille de T)

Donc

Tout algorithme basé sur l’accès associatif est inefficace

(à moins d’avoir beaucoup de processeurs en parallèle)
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Algorithmes 1

T un tableau indicé de 0 à n-1 

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction recherche (x, T) {

i ← 0

tant que ( i < n et T[ i ] ≠ x ) i ← i + 1

si i = n retourne –1 sinon  retourne i

}

Cet algorithme est faux .
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Algorithmes 2

T un tableau indicé de 0 à n-1 

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction recherche (x, T) {

i ← 0

tant que  ( i < n ) {

si  T[ i ] = x retourne i

sinon  i ← i + 1

}

retourne –1 

}
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Algorithmes 3

T un tableau indicé de 0 à n-1 

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction entière recherche (x, T) {

i ← 0

tant que  ( i < n et ensuite T[ i ] ≠ x ) i ← i + 1

si i = n retourne –1 sinon  retourne i

}

Utilise l’évaluation par tielle  des expressions booléennes.

Opérateur && en Java.
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Recherche dans un tab leau trié

On cherche 6.25

12.4

sup

inf

12.4
sup

inf

3.5

millieu

millieu

12.4
sup

inf
3.5

millieu
etc.
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Algorithme

Précondition : x est trié par ordre croissant des valeurs.

Invariant : si x se trouve dans T, il est entre les positions inf et sup.

fonction  dichotomique(T, x) {

inf <-- 0 ; sup <-- taille T – 1;

tant que  inf <= sup {

millieu <-- (sup + inf) / 2 ;

si (T[ millieu ] = x) retourner millieu

sinon  si  (T[ millieu ] > x) sup <-- millieu - 1

sinon  inf <-- millieu + 1

}

retourner -1 /* pas trouvé */

}
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Comple xité

Nombre d’itérations =

si n = 2k

au maximum k itérations (2k, 2k–1, 2k–2, …, 8, 4, 2, 1)

k = log2(n)

Complexité : O(log2(n))
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Tableaux et tris

On considère un tableau A d’éléments de type T

On suppose qu’il y a une opération ≤ qui permet de comparer deux T

(relation d’ordre total)

On veut produire un nouveau tableau A’ tel que

• les éléments de A’ sont les mêmes que ceux de A

• si 0 ≤ i < j < n alors A’[i] ≤ A’[j]
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Tri par rec her che du plus petit

Principe : 

• chercher le plus petit élément de A

• l’échanger avec A[ 0 ]

• chercher le plus petit dans A[ 1 .. n–1 ]

• l’échanger avec A[ 1 ]

• chercher le plus petit dans A[ 2 .. n–1 ]

• l’échanger avec A[ 2 ]

• etc.

•
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Algorithme - par rec herche du plus petit

trier (tableau de n éléments A)

pour i de 0 à n-2 {

min ← i

pour j de i+1 à n–1 {

si A[ j ] < A[ min ] { min ← j }

}

t ← A[ i ] ; A[ i ] ← A[ min ] ; A[ min ] ← t

}

Complexité

Nombre de comparaisons : 

n–1 + n–2 + … + 2 + 1 

= n(n–1)/2 

∈ O(n2)
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Recherche du plus petit - preuve

pour i de 0 à n-2 {

min ← i

pour j de i+1 à n–1 {

si A[ j ] < A[ min ] { min ← j }

--> A[ min ] ≤ A[ k ] (i ≤ k ≤ j)

}

--> A[ min ] < A[ k ] (i ≤ k ≤ n–1)

t ← A[ i ] ; A[ i ] ← A[ min ] ; A[ min ] ← t

--> A[ i ] ≤ A[ k ] (i ≤ k ≤ n–1)

}

--> A[ i ] ≤ A[ k ] (i ≤ k ≤ n–1) (0 ≤ i ≤ n–2)
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Tri par b ulles

pour i de 0 à n–2 {

si A[ i+1 ] < A [ i ] {

// mettre A [ i+1 ] à sa place

j <-- i

tant que j ≥ 0 et ensuite A[ j ] > A [j+ 1] {

échanger A[ j ] et A [ j+1 ]

j <-- j–1

}

}

}
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Exemple

1 -- 4 -- 7 -- 21 -- 22 -- 6 -- 44 -- 12

1 -- 4 -- 7 -- 21 -- 22 -- 6 -- 44 -- 12

....

....

....

1 -- 4 -- 7 -- 21 -- 6 -- 22 -- 44 -- 12

1 -- 4 -- 7 -- 6 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12
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Tri "Shellsor t"

Une succession de (pseudo) tris pas bulle

Avec des écarts E de 2n, 2n–1, 2n–2, …, 4, 2, 1

E <-- de plus gde puissance de 2 inférieure à N

tant que E > 0 

pour i de 0 à n – E 

si A[ i+E ] < A [ i ] 

// "descendre" A [ i + E ] 

j <-- i

tant que j ≥ 0 et ensuite A[ j ] > A[ j+ E ] 

échanger A[ j ] et A [ j+E ]

j <-- j – E 

E <-- E / 2
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Quic ksor t

procedure Trier (T, a, b)

si  b – a < 3 : trier par échange

sinon  {

<< Choisir une valeur pivot p dans T[a … b] 

(p.ex. la 1ère ou au hasard) >>

<< (Partition) déplacer les éléments de T[a … b] 

de telle manière que

T[ m ] = p

T [ a … m–1 ] ne contient que des valeurs ≤ p

T [ m+1 … b ] ne contient que des valeurs > p >>

Trier(T, a, m–1) ; Tr ier(T, m+1, b)

}
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Technique de déplacement

Déplacer les éléments de T[a … b] de telle manière que

T [ a … m–1 ] ≤ p ; T[ m ] = p ; T [ m+1 … b ] > p

Algorithme

i <-- a ; j <-- b

p <-- T[(a + b) / 2] // pivot

tant que i ≤ j {

tant que j ≥ a et ensuite T[ j ] ≥ p { j <-- j – 1}

tant que i ≤ b et ensuite T[ i ] < p { i <-- i + 1}

si i < j { 

x <-- T[ i ] ; T[ i ] <-- T[ j ] ; T[ j ] <-- x // échange

i <-- i+1 ; j <-- j–1

}

Complexité en temps : O(b – a)
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Comple xité de Quic ksor t

Dans le meilleur des cas : on divise en deux parties égales à chaque fois

T(a, b) = O(b – a) + T(a, m–1) + T(m+1, b)

T(a, m–1) = O(m–1 – a) + T(a, k–1) + T(k+1, m–1)

T(m+1, b) = O(b – m–1) + T(m+1, r–1) + T(r+1, b)

T(a, b) = 1 répartition + 2 tris

= 1 répartition + 2 répartitions + 4 tris

= 1 répartition + 2 répartitions + 4 répartitions + 8 tris

etc.

On a log2(b–a) "étages"

==> Complexité T(a, b) : O( log2(b–a) (b–a))

Théorème . Un tri basé sur la comparaison ne peut faire mieux (en moyenne).
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Mauvais cas

Si on n’a pas de chance, les partitions sont déséquilibrées

Au pire : T[a … b] --> T[a], T[a+1 … b]

On en revient au tri par recherche du plus petit : O(n2)

Comment bien choisir le pivot ?

T[a] : mauvais si T est déjà trié

T[(a+b)/2] : bon si T est déjà trié

médiane d’un échantillon de valeurs (évite le pire cas)


