Variab les indicées et tab leaux Structure de tab leau

Pour désigner une séquence d’éléments de méme type Pour représenter des vecteurs/n-tuples d’éléments de type T (occupant s cellules)
Notation habituelle : Représentation immédiate : séquence contiglie de Ts
Vi, V2, V3, ..., Vp adresses contenus

On parle de vecteur

Exemples a Ki
point dans I'espace : (6, 5, —2) a+s K,
prix moyen du carburant & chaque trimestre : (1.29, 1.34, 1.31, 1.28) a+2s Ks

Autres e xemples :

a+(n-1)s K,
G. Falquet, CUI, Université de Genéve 1de32 G. Falguet, CUI, Université de Genéve 2 de 32
Utilisation des tab leaux Opérations globales sur les tab leaux
Sélection d’un élément : Affectation globale
X « t[K] V « (el,e2,...,en)

équivalent a V[1] — el, V[2] — e2, ...
Affectation d’'une valeur & un élément (I'ancienne est effacée) VW
équivalent a V[1] — W[1], V[2] - W[2], ...

tk] < e Temps d’exécution proportionnel a la taille de V.

Affectation de tranc hes
V[i...jl < (eg, ---,€p)
équivalent & V[i] — eq, V[i+1] — ey, ..., V[j] < &,

r=i-j

G. Falquet, CUI, Université de Genéve 3de32 G. Falquet, CUI, Université de Genéve 4 de 32

Un exemple: vérifi cation de date

Probléme: écrire un algorithme qui vérifie si une date (jour, mois, année) est correcte

fonction vérifDate(j, m, a)
si(j<1oum<1oum > 12) retourne faux
bisextile — a modulo 4=0 /Il correct entre 2000 et 2099)
sim=1retournej<31
si m = 2 et bisextile retourne j< 29
si m = 2 et non bisextile retourne j < 28

sim =3 retournej< 31

sim =12 retourne j < 31

retourne faux

G. Falquet, CUI, Université de Geneve 5 de 32

En Java

class GestionDates {
static int[] nbJours = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

static boolean verifDate(int j, int m, int a) {
if<1||m<21]]m>12)return false;
if (@ % 4 ==0) nbJours[2]=29
else nbJours[2] = 28;

return j <= nbJours[m]

G. Falquet, CUI, Université de Genéve 7 de32

Le méme avec un tab leau

On crée un tableau des nombres de jours.

nbJours[1..12] ~ (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Qu’on utilise dans la fonction

fonction vérifDate(j, m, a)
si(j<1oum<1oum > 12) retourne faux
si (a modulo 4= 0) nbJours[2] = 29 sinon nbJours[2] = 28

retourne j< nbJours[m]

G. Falguet, CUI, Université de Genéve

Tableau # Ensemble !

Ordre

ensembles : {a, ¢, g} ={g, ¢, a}
tableaux : (a,r,g)# (r, g, @)

Accés

tableaux : 1% élément, 2°, 3¢ etc.
ensembles : ---

Nb d’occurences

ensembles : {a, c, a, b, a} ={a, ¢, b}
tableaux : (a, a, a, a) #(a)
Opérations

ensembles : union, intersection, différence

tableau : affectation d’une valeur a un élément

G. Falquet, CUI, Université de Genéve

6 de 32

8 de 32

Exemple : le crib le d’Eratosthéne

Pour trouver tous les nombres premiers de 2 a n (encore !)

Faire une liste des nombres

Barrer tous les multiples de 2 supérieurs a 2
Barrer tous les multiples de 3 supérieurs a 3
4 est déja barré

Barrer tous les multiples de 5 supérieurs a 5
6 est déja barré

Barrer tous les multiples de 7 supérieurs a 7
8 est déja barré

9 est déja barré

10 est déja barré

Barrer tous les multiples de 11 supérieurs a 11

etc. Les nombres qui restent sont premiers (ils ne sont multiples de personne)

G. Falquet, CUI, Université de Genéve

9 de 32

Structure de données : tableau de booléens

au début

ffffffffffffffffl

N
w
IN
()]
o

7 8 91011121314151617

barrer les multiples de 2

f f v f v f v f v f v f v f v f

N
w
IN
)]
o
~
(o]

910111213141516 17

puis ceux de 3

ffvafvvvafvvvf|

G. Falquet, CUI, Université de Genéve

N
w
IN
()]
~
(0]

910111213141516 17

etc.

11 de 32

Algorithme semi-f ormel

faire une liste des nombres de 2 an
p<-2
tantque (p*p<n){

barrer tous les multiples de p

p <-- le plus petit nombre non barré supérieur a p

Remarque

Tout nombre < n qui n'est pas premier est multiple d’'un nombre inférieur a JF\

Donc on peut arréter I'algorithme quand p * p > n.

G. Falguet, CUI, Université de Genéve

Algorithme a vec un tab leau de booléens

pour ide2an{Barré[i] <--faux }
p <2
max <-- racine carrée de n
tant que (p < max) {
si (non Barré [p]) {
/I Barrer les multiples de p
i<-p+p
tantque isn{Barré[i]<--vrai;i<-i+p}
}
p<-p+l

G. Falquet, CUI, Université de Genéve

10de 32

12de 32

Comple xité en temps

Vn fois
tant que (p < max) {
TU(Vn) fois si (non Barré [p]) {
i<-p+p
n/p-1fois :tantqueisn{Barré[i]<—-vrai;i<--i+p}
}
p<-p+1
}

TUX) = nombre de nb. premiers inférieurs a X

nb opérations [] =n/2 + n/3 + n/5 + n/7 + n/11 + ... + n/p, = TU(Vn}

(py = plus grand nombre premier inférieur & vn)

G. Falquet, CUI, Université de Genéve 13 de 32

Acceés associatif / rec herche

But : trouver une valeur dans un tableau T

Le meilleur algorithme : regarder successivement dans T[0], T[1], ... etc.

Complexité : O(taille de T)

Donc

Tout algorithme basé sur I'accés associatif est inefficace

(a2 moins d’avoir beaucoup de processeurs en paralléle)

G. Falquet, CUI, Université de Genéve 15 de 32

Le calcul de la comple xité ... est comple xe

nb opérations [] = n/2 + n/3 + n/5 + n/7 + n/11 + ... + n/p,— T{(Vn}
(p = plus grand nombre premier inférieur avn)
On sait

1/p; + 1/py + 1pg + ... + 1/py ~= log(log(K))
Mais que vaut k ?
Combien y a-t-il de nombres premiers inférieurs a vn ?
Legendre a trouvé :

TU(X) ~= X/ (log(X) — 1.0836) (Legendre)

Donc
nb. opérations ~= n log(log(vn / (log(vn — 1.08))
= n log(log(¥n)) — n log(log(log(vVn — 1.08)))
0 O(n log(log(vn)))

G. Falguet, CUI, Université de Genéve

Algorithmes 1

T un tableau indicé de 0 & n-1
résultat = 1ére position de x dans T

résultat = -1 si x n'est pas dansT

fonction recherche (x, T) {
i-0
tantque (i<netT[i]#x)i<i+1

si i = nretourne —1 sinon retourne i

Cet algorithme est faux.

G. Falquet, CUI, Université de Genéve

14de 32

16de 32

Algorithmes 2 Algorithmes 3

T un tableau indicé de 0 & n-1 T un tableau indicé de 0 & n-1
résultat = 1eére position de x dans T résultat = 1ére position de x dans T
résultat = -1 si x n'est pas dans T résultat = -1 si x n'est pas dans T
fonction recherche (x, T) { fonction entiére recherche (x, T) {
tantque (i<n){ tantque (i<netensuite T[i]#x)i~i+1
si T[i] =x retourne i si i = n retourne —1 sinon retourne i
sinon i «i+1 }
}
retourne -1 Utilise I'évaluation par tielle des expressions booléennes.
} Opérateur && en Java.
G. Falquet, CUI, Université de Genéve 17 de 32 G. Falguet, CUI, Université de Genéve 18de 32
Recherche dans un tab leau trié Algorithme
On cherche 6.25 Précondition : x est trié par ordre croissant des valeurs.

Invariant : si x se trouve dans T, il est entre les positions inf et sup.
fonction dichotomique(T, x) {

sup

inf<-- 0 ; sup <-- taille T - 1;
tant que inf <= sup {
millieu <-- (sup +inf) / 2 ;

si (T[millieu] = x) retourner millieu

millieu _ _ . .
sinon si (T[millieu] > x) sup <-- millieu - 1

sup sup etc.
I:I< millieu sinon inf <-- millieu + 1
inf }
< millieu
retourner -1 [* pas trouvé */
; }
inf inf
G. Falquet, CUI, Université de Genéve 19 de 32 G. Falquet, CUI, Université de Genéve 20de 32

Comple xité Tableaux et tris

Nombre d'itérations = On considére un tableau A d’éléments de type T
sin=2X On suppose qu'il y a une opération < qui permet de comparer deux T

au maximum k itérations (2k, 2"‘1, Zk‘z, .., 8,4,2,1) (relation d’ordre total)
k = logy(n)
On veut produire un nouveau tableau A'tel que
o - les éléments de A’ sont les mémes que ceux de A
Complexité : O(logy(n))
« si0<i<j<nalors ATi] <A'j]

G. Falquet, CUI, Université de Genéve G. Falguet, CUI, Université de Genéve

21 de 32 22de 32
Tri par rec her che du plus petit Algorithme - par rec herche du plus petit

Principe : trier (tableau de n éléments A)

« chercher le plus petit élément de A pouride 0an-2{

+ I'échanger avec A[0] min « i

« chercher le plus petitdans A[1 .. n-1] pour jde i+l an-1{

« l'échanger avec A[1] siA[j]<A[min]{min - j}

« chercher le plus petit dans A[2 .. n—1] }

+ l'échanger avec A[2] t— A[i];A[i]< A[min];A[min] < t

. etc. }

. Comple xité

Nombre de comparaisons :
n-1+n-2+..+2+1
=n(n-1)/2
00(n?)

G. Falquet, CUI, Université de Geneve 23 de 32 G. Falquet, CUI, Université de Geneve 24de 32

Recherche du plus petit - preuve

pouride 0an-2{

min « i

pourjde i+l an-1{
SiA[j]<A[min]{min «j}
->A[min] <Alk](i<k<))

}

->A[min]<A[k](i<ksn-1)

t— A[i];A[i] « Almin];A[min] «t

->A[i]<AlKk] (i ks n-1)

}
~>Ali]<Alk](i<ksn-1) (0 <i<n-2)

G. Falquet, CUI, Université de Genéve

Exemple
—
1--4--7--21--22--6--44--12
—

-21--22--6--44--12

~ N\
~-21--6--22--44--12
7~ N\
- 6--21--22--44--12

7
7
7
N

- 6--T7-21--22--44--12
6
6

1
7 -21--22--44--12
1
7 -21--22--44--12

G. Falquet, CUI, Université de Genéve

Tri par b ulles

pouride 0an-2({
SiA[i+1]<A[i]{
/ mettre A [i+1] a sa place
j<--i
tant que j= 0 et ensuite A[j] > A [j+ 1]{
échanger A[j]etA[j+1]

<1
}
}
}
25 de 32 G. Falquet, CUI, Université de Geneve 26de 32
Tri "Shellsor t"
Une succession de (pseudo) tris pas bulle
Avec des écarts E de 2", 2" 22 4,21
E <-- de plus gde puissance de 2 inférieure a N
tantque E>0
pouride0an-E
SiIA[I+E]<ATI]
/l "descendre" A[i+E]
j<--i
tant que j = 0 et ensuite A[j] > A[j+ E]
échanger A[j]etA[j+E]
j<-j-E
E<-E/2
27 de 32 G. Falquet, CUI, Université de Geneve 28de 32

Quic ksort

procedure Trier (T, a, b)
si b —a < 3: trier par échange
sinon {
<< Choisir une valeur pivot p dans T[a ... b]
(p.ex. la 1ére ou au hasard) >>
<< (Partition) déplacer les éléments de T[a ... b]
de telle maniére que
Tm]=p
T[a... m=1]ne contient que des valeurs < p
T [m+1 ... b] ne contient que des valeurs > p >>
Trier(T, a, m-1) ; Trier(T, m+1, b)

G. Falquet, CUI, Université de Genéve

Comple xité de Quic ksor t

Dans le meilleur des cas : on divise en deux parties égales a chaque fois
T(a, b)=0(b—a) + T(a, m—1) + T(m+1, b)

T(a, m-1) = O(m-1 —a) + T(a, k-1) + T(k+1, m-1)

T(m+1, b) = O(b — m-1) + T(m+1, r—1) + T(r+1, b)

T(a, b) = 1 répartition + 2 tris

= 1 répartition + 2 répartitions + 4 tris

= 1 répartition + 2 répartitions + 4 répartitions + 8 tris
etc.

On a logy(b—a) "étages"

==> Complexité T(a, b) : O(log,(b-a) (b—a))

Théoreme . Un tri basé sur la comparaison ne peut faire mieux (en moyenne).

G. Falquet, CUI, Université de Genéve

29 de 32

31de32

Technique de déplacement

Déplacer les éléments de T[a ... b] de telle maniere que
Tla..m=1]<p;T[m]=p;T[m+l..b]>p
Algorithme
i<-a;j<-b
p <--T[(a + b) /2] // pivot
tantquei<j{
tantquej=aetensuite T[j]2p{j<-j—-1}
tantquei<betensuite T[i]<p{i<--i+1}
sii<j{
X<--T[i];T[i]<--T[j];T[j]<--x/l échange
i<-i+l;j<—-j-1
}

Complexité en temps : O(b — a)

G. Falguet, CUI, Université de Genéve

Mauvais cas

Si on n'a pas de chance, les partitions sont déséquilibrées
Au pire : T[a ... b] --> T[a], T[a+1 ... b]

On en revient au tri par recherche du plus petit : O(n2)

Comment bien choisir le pivot ?
T[a] :mauvais si T est déja trié
T[(a+b)/2] :bon si T est déja trié

médiane d’un échantillon de valeurs (évite le pire cas)

G. Falquet, CUI, Université de Genéve

30de 32

32de 32

