
G. Falquet, CUI, Université de Genève 1 de 32

Variab les indicées et tab leaux

Pour désigner une séquence d’éléments de même type

Notation habituelle :

v1, v2, v3, …, vn

On parle de vecteur

Exemples

point dans l’espace : (6, 5, –2)

prix moyen du carburant à chaque trimestre : (1.29, 1.34, 1.31, 1.28)

Autres e xemples :

__

G. Falquet, CUI, Université de Genève 2 de 32

Structure de tab leau

Pour représenter des vecteurs/n-tuples d’éléments de type T (occupant s cellules)

Représentation immédiate : séquence contigüe de Ts

K1

K2

K3

Kn

adresses contenus

a

a + s

a + 2s

a + (n-1)s

G. Falquet, CUI, Université de Genève 3 de 32

Utilisation des tab leaux

Sélection d’un élément :

x ← t[k]

Affectation d’une valeur à un élément (l’ancienne est effacée)

t[k] ← e

G. Falquet, CUI, Université de Genève 4 de 32

Opérations globales sur les tab leaux

Affectation globale

V ← (e1, e2, …, en)

équivalent à V[1] ← e1, V[2] ← e2, …

V ← W

équivalent à V[1] ← W[1], V[2] ← W[2], …

Temps d’exécution proportionnel à la taille de V.

Affectation de tranc hes

V[i…j] ← (e0, …, er)

équivalent à V[i] ← e0, V[i+1] ← e1, …, V[j] ← er

r = i - j

G. Falquet, CUI, Université de Genève 5 de 32

Un exemple: vérifi cation de date

Problème: écrire un algorithme qui vérifie si une date (jour, mois, année) est correcte

.

fonction vérifDate(j, m, a)

si (j < 1 ou m < 1 ou m > 12) retourne faux

bisextile ← a modulo 4= 0 // correct entre 2000 et 2099)

si m = 1 retourne j ≤ 31

si m = 2 et bisextile retourne j ≤ 29

si m = 2 et non bisextile retourne j ≤ 28

si m = 3 retourne j ≤ 31

...

si m = 12 retourne j ≤ 31

retourne faux

G. Falquet, CUI, Université de Genève 6 de 32

Le même avec un tab leau

On crée un tableau des nombres de jours.

nbJours[1..12] ← (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

Qu’on utilise dans la fonction

fonction vérifDate(j, m, a)

si (j < 1 ou m < 1 ou m > 12) retourne faux

si (a modulo 4= 0) nbJours[2] = 29 sinon nbJours[2] = 28

retourne j ≤ nbJours[m]

G. Falquet, CUI, Université de Genève 7 de 32

En Java

class GestionDates {

static int[] nbJours = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

static boolean verifDate(int j, int m, int a) {

if (j < 1 || m < 1 || m > 12) return false;

if (a % 4 == 0) nbJours[2] = 29

else nbJours[2] = 28;

return j <= nbJours[m]

}

}

G. Falquet, CUI, Université de Genève 8 de 32

Tableau ≠ Ensemb le !

Ordre

ensembles : {a, c, g} = {g, c, a}

tableaux : (a, r, g) ≠ (r, g, a)

Accès

tableaux : 1er élément, 2e, 3e, etc.

ensembles : ---

Nb d’occurences

ensembles : {a, c, a, b, a} = {a, c, b}

tableaux : (a, a, a, a) ≠ (a)

Opérations

ensembles : union, intersection, différence

tableau : affectation d’une valeur à un élément

G. Falquet, CUI, Université de Genève 9 de 32

Exemple : le crib le d’Eratosthène

Pour trouver tous les nombres premiers de 2 à n (encore !)

Faire une liste des nombres

Barrer tous les multiples de 2 supérieurs à 2

Barrer tous les multiples de 3 supérieurs à 3

4 est déjà barré

Barrer tous les multiples de 5 supérieurs à 5

6 est déjà barré

Barrer tous les multiples de 7 supérieurs à 7

8 est déjà barré

9 est déjà barré

10 est déjà barré

Barrer tous les multiples de 11 supérieurs à 11

etc. Les nombres qui restent sont premiers (ils ne sont multiples de personne)

G. Falquet, CUI, Université de Genève 10 de 32

Algorithme semi-f ormel

faire une liste des nombres de 2 à n

p <-- 2

tant que (p * p ≤ n) {

barrer tous les multiples de p

p <-- le plus petit nombre non barré supérieur à p

}

Remarque

Tout nombre < n qui n’est pas premier est multiple d’un nombre inférieur à .

Donc on peut arrêter l’algorithme quand p * p > n.

n

G. Falquet, CUI, Université de Genève 11 de 32

Structure de données : tableau de booléens

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

v f f f f f f f f f f f f f f f f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

v f f v f v f v f v f v f v f v f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

v f f v f v f v v v f v f v v v f

au début

barrer les multiples de 2

puis ceux de 3

etc.

G. Falquet, CUI, Université de Genève 12 de 32

Algorithme a vec un tab leau de booléens

pour i de 2 à n { Barré[i] <-- faux }

p <-- 2

max <-- racine carrée de n

tant que (p ≤ max) {

si (non Barré [p]) {

// Barrer les multiples de p

i <-- p + p

tant que i ≤ n { Barré[i] <-- vrai ; i <-- i + p }

}

p <-- p + 1

}

G. Falquet, CUI, Université de Genève 13 de 32

Comple xité en temps

π(x) = nombre de nb. premiers inférieurs à x

nb opérations [] = n/2 + n/3 + n/5 + n/7 + n/11 + … + n/pk – π(√n}

(pk = plus grand nombre premier inférieur à √n)

tant que (p ≤ max) {

si (non Barré [p]) {

i <-- p + p

tant que i ≤ n { Barré[i] <-- vrai ; i <-- i + p }

}

p <-- p + 1

}

√n fois

n / p – 1 f ois

π (√n) fois

G. Falquet, CUI, Université de Genève 14 de 32

Le calcul de la comple xité … est comple xe

nb opérations [] = n/2 + n/3 + n/5 + n/7 + n/11 + … + n/pk – π(√n}

(pk = plus grand nombre premier inférieur à √n)

On sait

1/p1 + 1/p2 + 1/p3 + … + 1/pk ~= log(log(k))

Mais que vaut k ?

Combien y a-t-il de nombres premiers inférieurs à √n ?

Legendre a trouvé :

π(x) ~= x / (log(x) – 1.0836) (Legendre)

Donc

nb. opérations ~= n log(log(√n / (log(√n – 1.08))

= n log(log(√n)) – n log(log(log(√n – 1.08)))

∈ O(n log(log(√n)))

G. Falquet, CUI, Université de Genève 15 de 32

Accès associatif / rec herche

But : trouver une valeur dans un tableau T

Le meilleur algorithme : regarder successivement dans T[0], T[1], … etc.

Complexité : O(taille de T)

Donc

Tout algorithme basé sur l’accès associatif est inefficace

(à moins d’avoir beaucoup de processeurs en parallèle)

G. Falquet, CUI, Université de Genève 16 de 32

Algorithmes 1

T un tableau indicé de 0 à n-1

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction recherche (x, T) {

i ← 0

tant que (i < n et T[i] ≠ x) i ← i + 1

si i = n retourne –1 sinon retourne i

}

Cet algorithme est faux .

G. Falquet, CUI, Université de Genève 17 de 32

Algorithmes 2

T un tableau indicé de 0 à n-1

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction recherche (x, T) {

i ← 0

tant que (i < n) {

si T[i] = x retourne i

sinon i ← i + 1

}

retourne –1

}

G. Falquet, CUI, Université de Genève 18 de 32

Algorithmes 3

T un tableau indicé de 0 à n-1

résultat = 1ère position de x dans T

résultat = -1 si x n’est pas dans T

fonction entière recherche (x, T) {

i ← 0

tant que (i < n et ensuite T[i] ≠ x) i ← i + 1

si i = n retourne –1 sinon retourne i

}

Utilise l’évaluation par tielle des expressions booléennes.

Opérateur && en Java.

G. Falquet, CUI, Université de Genève 19 de 32

Recherche dans un tab leau trié

On cherche 6.25

12.4

sup

inf

12.4
sup

inf

3.5

millieu

millieu

12.4
sup

inf
3.5

millieu
etc.

G. Falquet, CUI, Université de Genève 20 de 32

Algorithme

Précondition : x est trié par ordre croissant des valeurs.

Invariant : si x se trouve dans T, il est entre les positions inf et sup.

fonction dichotomique(T, x) {

inf <-- 0 ; sup <-- taille T – 1;

tant que inf <= sup {

millieu <-- (sup + inf) / 2 ;

si (T[millieu] = x) retourner millieu

sinon si (T[millieu] > x) sup <-- millieu - 1

sinon inf <-- millieu + 1

}

retourner -1 /* pas trouvé */

}

G. Falquet, CUI, Université de Genève 21 de 32

Comple xité

Nombre d’itérations =

si n = 2k

au maximum k itérations (2k, 2k–1, 2k–2, …, 8, 4, 2, 1)

k = log2(n)

Complexité : O(log2(n))

G. Falquet, CUI, Université de Genève 22 de 32

Tableaux et tris

On considère un tableau A d’éléments de type T

On suppose qu’il y a une opération ≤ qui permet de comparer deux T

(relation d’ordre total)

On veut produire un nouveau tableau A’ tel que

• les éléments de A’ sont les mêmes que ceux de A

• si 0 ≤ i < j < n alors A’[i] ≤ A’[j]

G. Falquet, CUI, Université de Genève 23 de 32

Tri par rec her che du plus petit

Principe :

• chercher le plus petit élément de A

• l’échanger avec A[0]

• chercher le plus petit dans A[1 .. n–1]

• l’échanger avec A[1]

• chercher le plus petit dans A[2 .. n–1]

• l’échanger avec A[2]

• etc.

•

G. Falquet, CUI, Université de Genève 24 de 32

Algorithme - par rec herche du plus petit

trier (tableau de n éléments A)

pour i de 0 à n-2 {

min ← i

pour j de i+1 à n–1 {

si A[j] < A[min] { min ← j }

}

t ← A[i] ; A[i] ← A[min] ; A[min] ← t

}

Complexité

Nombre de comparaisons :

n–1 + n–2 + … + 2 + 1

= n(n–1)/2

∈ O(n2)

G. Falquet, CUI, Université de Genève 25 de 32

Recherche du plus petit - preuve

pour i de 0 à n-2 {

min ← i

pour j de i+1 à n–1 {

si A[j] < A[min] { min ← j }

--> A[min] ≤ A[k] (i ≤ k ≤ j)

}

--> A[min] < A[k] (i ≤ k ≤ n–1)

t ← A[i] ; A[i] ← A[min] ; A[min] ← t

--> A[i] ≤ A[k] (i ≤ k ≤ n–1)

}

--> A[i] ≤ A[k] (i ≤ k ≤ n–1) (0 ≤ i ≤ n–2)

G. Falquet, CUI, Université de Genève 26 de 32

Tri par b ulles

pour i de 0 à n–2 {

si A[i+1] < A [i] {

// mettre A [i+1] à sa place

j <-- i

tant que j ≥ 0 et ensuite A[j] > A [j+ 1] {

échanger A[j] et A [j+1]

j <-- j–1

}

}

}

G. Falquet, CUI, Université de Genève 27 de 32

Exemple

1 -- 4 -- 7 -- 21 -- 22 -- 6 -- 44 -- 12

1 -- 4 -- 7 -- 21 -- 22 -- 6 -- 44 -- 12

....

....

....

1 -- 4 -- 7 -- 21 -- 6 -- 22 -- 44 -- 12

1 -- 4 -- 7 -- 6 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12

1 -- 4 -- 6 -- 7 -- 21 -- 22 -- 44 -- 12

G. Falquet, CUI, Université de Genève 28 de 32

Tri "Shellsor t"

Une succession de (pseudo) tris pas bulle

Avec des écarts E de 2n, 2n–1, 2n–2, …, 4, 2, 1

E <-- de plus gde puissance de 2 inférieure à N

tant que E > 0

pour i de 0 à n – E

si A[i+E] < A [i]

// "descendre" A [i + E]

j <-- i

tant que j ≥ 0 et ensuite A[j] > A[j+ E]

échanger A[j] et A [j+E]

j <-- j – E

E <-- E / 2

G. Falquet, CUI, Université de Genève 29 de 32

Quic ksor t

procedure Trier (T, a, b)

si b – a < 3 : trier par échange

sinon {

<< Choisir une valeur pivot p dans T[a … b]

(p.ex. la 1ère ou au hasard) >>

<< (Partition) déplacer les éléments de T[a … b]

de telle manière que

T[m] = p

T [a … m–1] ne contient que des valeurs ≤ p

T [m+1 … b] ne contient que des valeurs > p >>

Trier(T, a, m–1) ; Tr ier(T, m+1, b)

}

G. Falquet, CUI, Université de Genève 30 de 32

Technique de déplacement

Déplacer les éléments de T[a … b] de telle manière que

T [a … m–1] ≤ p ; T[m] = p ; T [m+1 … b] > p

Algorithme

i <-- a ; j <-- b

p <-- T[(a + b) / 2] // pivot

tant que i ≤ j {

tant que j ≥ a et ensuite T[j] ≥ p { j <-- j – 1}

tant que i ≤ b et ensuite T[i] < p { i <-- i + 1}

si i < j {

x <-- T[i] ; T[i] <-- T[j] ; T[j] <-- x // échange

i <-- i+1 ; j <-- j–1

}

Complexité en temps : O(b – a)

G. Falquet, CUI, Université de Genève 31 de 32

Comple xité de Quic ksor t

Dans le meilleur des cas : on divise en deux parties égales à chaque fois

T(a, b) = O(b – a) + T(a, m–1) + T(m+1, b)

T(a, m–1) = O(m–1 – a) + T(a, k–1) + T(k+1, m–1)

T(m+1, b) = O(b – m–1) + T(m+1, r–1) + T(r+1, b)

T(a, b) = 1 répartition + 2 tris

= 1 répartition + 2 répartitions + 4 tris

= 1 répartition + 2 répartitions + 4 répartitions + 8 tris

etc.

On a log2(b–a) "étages"

==> Complexité T(a, b) : O(log2(b–a) (b–a))

Théorème . Un tri basé sur la comparaison ne peut faire mieux (en moyenne).

G. Falquet, CUI, Université de Genève 32 de 32

Mauvais cas

Si on n’a pas de chance, les partitions sont déséquilibrées

Au pire : T[a … b] --> T[a], T[a+1 … b]

On en revient au tri par recherche du plus petit : O(n2)

Comment bien choisir le pivot ?

T[a] : mauvais si T est déjà trié

T[(a+b)/2] : bon si T est déjà trié

médiane d’un échantillon de valeurs (évite le pire cas)

