The Larch/Smalltalk Interface
Specification Language

YOONSIK CHEON and GARY T. LEAVENS
lowa State University

Object-oriented programming languages, such as Smalltalk, help to build reusable program
modules. The reuse of program modules requires adequate documentation—formal or informal.
Larch /Smalltalk is a formal specification language for specifying such reusable Smalltalk
modules. Larch /Smalltalk firmly separates specification from implementation. In Larch /Small-
talk the unit of specification is an abstract data type, which is an abstraction of the behavior
produced by one or more Smalltalk classes. A type can be a subtype of other types. which allows
types to be organized based on specified behavior, and also allows for inheritance of their
specifications. Larch /Smalltalk specifications are developed using specification tools integrated
in the Smalltalk programming environment.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements /Specifica-
tions—languages; F.3.1 [Logics and Meaning of Programs]: Specifying and Verifying and
Reasoning about Programs—assertions; invariants; pre- and postconditions; specification
techniques

General Terms: Design, Documentation, Languages

Additional Key Words and Phrases: Formal methods, interface specification, Larch /Smalltalk,
Smalltalk, specification inheritance, subtype, verification

1. INTRODUCTION

Object-oriented techniques encourage code reuse and modular design. In
Smalltalk [Goldberg and Robson 1983], code reuse is achieved by defining one
class to be a subclass of another class, called its superclass; the subclass
inherits its data definitions and methods, or extends an existing class by
adding new data definitions or new methods. To facilitate code reuse, the
Smalltalk system provides a huge number of reusable library classes. The
library is not fixed; it is constantly evolving as users write new classes and
methods or acquire them from others. Using this library, users can develop
applications with high productivity. To reuse the extended existing classes,
however, users need to understand their interfaces and behavior precisely.
Unfortunately, this is a hard task. One reason is that the original intention of

The work of both authors is supported in part by the National Science Foundation under the
Grant CCR-9108654.

Authors’ addresses: Department of Computer Science, 226 Atanasoff Hall, Iowa State University,
Ames, Iowa 50011-1040; email: cheon@ecs.iastate.edu and leavens@cs.iastate.edu.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

© 1994 ACM 1049-331X /94 /0700-0220 $03.50

ACM Transactions on Software Engineering and Mathodology, Vol 8, No 3, July 1994, Pages 221-253

222 . Y. Cheon and G. T. Leavens

implementors is not formally described anywhere. To infer it, one must read
the code, but in the code it is often difficult to distinguish essential from
accidental aspects. Smalltalk programs, moreover, are particularly hard to
understand by just reading the code. Some reasons are the following:

-—Since type checking is dynamic, it is hard to tell what kind of object a
method expects as its arguments and what kind of object it returns as its
result. The use of message passing, a kind of dynamic overloading, makes
type interface difficult—for both computer and human readers.

—An abstraction is often spread across several classes for the sake of code
reuse. For example, Booleans are implemented by three classes: Boolean,
True, and False, where both True and False are subclasses of Boolean.

—Subclass relationships are usually structured to give a high degree of code
sharing, rather than according to conceptual relationships.

—There are simply too many classes and methods that interact with one
another. In many cases, (abstract) superclasses depend on yet-to-be-known
subclasses methods, which sometimes require the user to read subclasses
to understand superclasses. The ParcPlace Objectworks \ Smalltalk sys-
tem contains in excess of 280 classes with over 2,000 methods. This makes
it difficult to keep all the necessary details in mind when reading the code.

These considerations argue for stating both the interfaces and the behav-
ioral characteristics of Smalltalk code in abstract terms, so that one may
understand and reuse existing modules without inspecting the code itself.
The user of an object-oriented system wants to understand the relationships
between classes and the operations relevant to an instance without having to
study their implementation. The description must be abstract so that irrele-
vant implementation choices and details are not exposed to clients. In short,
in an environment supporting reusability, we need the abstraction that can
be obtained by specification. Using a formal specification language increases
precision and avoids unintended ambiguity.

In Larch /Smalltalk [Cheon 1991], we have combined Larch-style specifica-
tions [Guttag and Horning 1993] and the notion of subtyping. The unit of
specification is called an abstract data type (or type, for short). A type is an
abstraction of one or more Smalltalk classes. A type specification consists of a
set of method specifications. The interface (its arguments and their types)
and behavior of each method are precisely specified. The behavior of a method
is specified by Hoare-style pre- and postconditions [Hoare 1969]. The vocabu-
lary for specifying pre- and postconditions comes from the used trait, speci-
fied in a mostly equational style in the Larch Shared Language (LSL) [Guttag
and Horning 1993]. The used trait describes the underlying mathematical
model for the specified type. Having such a mathematical model allows one to
reason about Smalltalk code without delving into the details of an object’s
implementation [Hoare 1972] (e.g., one does not need to know what its
instance variables are). The mathematical model gives each object an ab-
stract value in a given program state. To model mutation (e.g., assignment to

ACM Transactions on Software Engineering and Methodology, Vol 3, No 3, July 1994

Larch/Smalltalk . 223

instance variables), the object’s abstract value may change from one state to
another.

A type can be specified to be a subtype of some other types, called its
supertypes. We distinguish subtyping from subclassing in that a subtype
relationship is a behavioral relationship, based on type specifications, while a
subclass relationship is a code relationship. Subtyping is like inheritance of
behavior, while subclassing is inheritance of code. In Larch /Smalltalk a type
can be a subtype of more than one supertype, while in Smalltalk each class
has only one superclass. To allow sound reasoning about programs that use
subtypes, each object of such a subtype should behave like some object of each
of its supertypes [Leavens 1991; America 1991]. However, as verifying such
behavioral constraints is more properly part of a verification logic than of a
specification language, Larch /Smalltalk does not require specified subtype
relationships to be proven to be behaviorally correct. Therefore, in practice,
the subtype relationships stated in Larch /Smalltalk are used for organizing
specifications and for inheritance of specifications. Organizing specifications
according to subtype relationships allows us to see types based on their
conceptual relationships. This makes it easier for specifiers to maintain large
volumes of specifications and for clients to navigate through specifications for
possible reuse of program modules [LaLonde et al. 1986; LaLonde 1989].

A Larch/Smalltalk type can be parameterized by type parameters to
specify a set of related types. Type parameters can be restricted to subtypes
of given types [Cardelli and Wegner 1985].

The process of writing formal specifications is as error prone as the process
of programming. As programming tools are of great help to programmers,
specification tools, such as syntax and type checkers, will be a great help to
specifiers. They help specifiers to check and maintain the consistency of
formal text and to manage large numbers of specifications. Larch /Smalltalk
provides specification browsers integrated in the Smalltalk programming
system with a functionality similar to the Smalltalk class browsers. Figure 1
shows Larch/Smalltalk specification browsers [Cheon and Leavens 1994].
The main browsers, called type browsers, allow us to view, enter, modify,
delete, and check Larch /Smalltalk specifications, and ¢rait browsers allow us
to browse traits written in LSL, either directly from type browsers or inde-
pendently. Implementations (Smalltalk classes and methods) of currently
viewed specifications can be browsed by making proper selections on type
browsers. Like Smalltalk code, Larch/Smalltalk specifications are not just
plain text, but organized material accessed through specification browsers.
These tools allow specifications to be developed and used practically in the
programming process.

Our experience shows that unambiguous, precise, and abstract descriptions
of Smalltalk modules in Larch /Smalltalk can be written. Such specifications
would be the necessary starting point for formal verification, although formal
verification of Smalltalk is outside the scope of this paper.

In the next section, we give a short introduction to Larch-style specifica-
tions with a brief overview of LSL. In Section 3 we introduce language
constructs for specifying simple types. In Section 4, we formalize the notion of

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

224 . Y. Cheon and G. T Leavens

System Trait Browser

[~ “DirectedGraph 4=
Kernel-Objects Edge

Collections d_ Kemei- Objects ; ;
Magnitude Pair Magnitue DirectedGraph

m%ﬂm_ UndirectedGra § Coliections Edaa numOmModes

o removeNode

VG ; UndirectedGraph
Graph(G, N) trait
inckudes Set(SN for S, N for E), Set(SE for §, E for {v binstancd? mela_|
assumes Edge pidNode: n < Node
introduces requires not(includeNode(self,n))
empty -»G modifies at most self
addNode, removeNode G, N ->G ensures self post = addNode(self pre,n)
addEdge G,N,N ->G
includeNade =
nodes G -»,
; edges G -> | EPTeN Y T
q asserts E E DirectedGraph(Node)
G generate:] 3 UndirectedGraph(Node}

G partitione] addNode: aNode i
3 foralig G 13 "Add a node, aNode, 1o the

“<Ngde> - > <Boolean>" 4

nodes add aMode

Fig. 1. Larch/Smalltalk speaification browsers: a trait browser (left) and a type browser (right).
Also shown is a code (method) browser showing an implementation of the currently browsed
method specification.

subtyping and inheritance of specification in Larch /Smalltalk. In Section 5,
simple type specifications are extended to describe parameterized types. In
Section 6, we show several example specifications to give readers some flavor
of our specification language. We close with a discussion and some concluding
remarks.

2. THE LARCH APPROACH TO INTERFACE SPECIFICATION

The Larch family of specification languages [Guttag et al. 1985; Guttag and
Horning 1993] is related to both model-oriented specification and algebraic
specification. In this style, the specification of underlying abstractions is
separated from the specification of state transformations. Thus, a specifica-
tion of each program module consists of two components. The state transfor-
mations of the program, called the interface components, are specified in
predicate logic using pre- and postconditions, and describe the effect of
operation executions on a program state (e.g., changing an object’s value or
creating a new object). The interface specification provides the information
necessary to use the specified module and to write programs that implement
it. The underlying abstractions, called the shared components, are specified
in an equational (algebraic) style, and describe intrinsic properties that are
independent of the model of computation (e.g., a set is an unordered collection
of elements without duplicates). The idea is to make the interface language
dependent on a specific target programming language, and keep the shared
language independent of any programming language. The interface compo-
nents are specified in programming-language-specific Larch interface lan-
guages [Wing 1987; Guttag and Horning 1991; Cheon 1991; Jones 1991;

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 3, July 1994.

Larch / Smalltalk . 225

Leavens and Cheon 1992], and the shared components are written in the
Larch Shared Language (LSL) [Guttag and Horning 1993, chap. 4].

The interface specifications are model oriented while the shared compo-
nents are equational. In the Larch family, there is a clear distinction between
the specification of abstract models and the specification of interfaces of
program modules. Thus, an interface specification cannot be used to build
abstract values of another module, which implies that it also cannot be used
to write pre- and postconditions of another interface specification. This is
allowed in model-oriented specification languages like Z and VDM because
they do not specify language-specific interfaces. On the other hand, the
vocabulary for Larch interface specifications can be arbitrarily enriched since
it comes from the user-written shared components. Larch provides a set of
shared components (traits) in the form of LSL Handbook [Guttag and
Horning 1993, appendix Al.

Shown below is an interface specification of a method remove: of the
Smalltalk class Set. The shared component, trait Set, is shown in Figure 2.!

remove: e <: Elem
returns el <: Elem
requires ¢ € self , |
modifies self

ensures self = delete(self

post pre’e) Nel=e

The method takes an object of type Elem, denoted by e, and returns an
object of the same type, denoted by el. The name “self” denotes the receiver,
Le., the object to which the specified message is sent, and “self,,,” and
“self,, ;" denote the values of the receiver just before and after the method
invocation. The precondition in the requires clause says that e must be an
element of the receiver; that is, clients are assumed to invoke the method
within an element of the receiver. The postcondition in the ensures clause
asserts that the value of the receiver after method evaluation is the same as
(=) that of the receiver before method invocation with the argument e
deleted, and the value of the returned object is the same as the value of
the argument. The modifies clause asserts that the method may mutate only
the receiver, and nothing else. The precondition constrains the clients while
the modifies clause and the postcondition constrain the implementors. The
operators appearing in the requires and ensures clauses (e.g., €, =, and
delete) are defined precisely in the shared component (the trait Set).

Figure 2 shows the specification of the shared component, the trait Set,
which describes a mathematical notion of finite sets. The following is mainly
a summarization of Guttag and Horning [1993, chap. 4]. A trait specifies a
mathematical model for interface specifications and describes intrinsic prop-
erties that are independent of the model of computation; that is, there is no
concept of state, mutation, storage, etc. A trait is an equational specification

'The connection between the interface component and the shared component is not shown here.
How this connection is made is discussed in the following section.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994,

226 . Y. Cheon and G. T Leavens

Set(E,S): trait

includes Integer

introduces
{}:— S
insert: S, E — 5
delete: S, E — S
__€__: S, E— Bool
isEmpty: S — Bool
size: S — Int

asserts
S generated by {}, insert
S partitioned by isEmpty, €
forall s: S, e, el: E

delete({},e) == {}

delete(insert(s,e),el) == if e = el then delete(s.el) else 1nsert(delete(s.el).e}
(e € {})

e € insert(s,el) == if e = el then true else e € s

size({}) == 0

size(insert(s,e)) == if e € s then size(s) else size(e) + 1

isEmpty(s) == size(s) = 0

Fig. 2. A trait set specified in LSL.

with some additional constructs. It consists of two parts: operator declara-
tions and assertions. A set of operators with their signatures is introduced
first, and is followed by a set of assertions after the keyword asserts. The
assertion part specifies a set of constraints on the operators by means of
equations and other clauses. An equation consists of two terms of the same
sort, separated by = = ; the third equation is an abbreviation for —(e € {})
= = true.

A trait denotes a theory in typed first-order logic with equality. Each
theory contains the trait’s assertions, the conventional axioms of first-order
logic, everything that follows from them, and nothing else. A theory can be
strengthened by some additional constructs. A generated by clause adds an
inductive inference rule to trait’s theory. For example, saying that sort S is
generated by “{}” and “insert,” asserts that each term of sort ‘S” is equal to a
ground term whose only operators are “{}” and “insert.” A partitioned by
clause asserts that all distinct values of a sort can be distinguished by a given
list of operators; this adds a deductive inference rule to the theory. For
example, “insert(insert({}, 0), 1)” and “insert(insert({}, 1),0)” denote the same
value, i.e., the set (in a mathematical sense) with two elements “0” and “1.”

The includes clause in the second line says all of the trait Integer [Guttag
and Horning 1993, Appendix A] is made part of the trait Set; that is, the trait
Set simply adds trait functions, axioms, etc. to those in the trait Integer. This
is one way of combining traits in LSL. For example, the signature and the
meaning of “+” comes from the included trait Integer. Boolean operators
(true, false, =, A,V , = ,) and some heavily overloaded operators (if-

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3. July 1994

Larch / Smalitalk . 227

then-else, = , — =) are built into LSL; in other words, traits defining these
operators are implicitly included in every trait.

3. SIMPLE SPECIFICATIONS IN LARCH /SMALLTALK

A Larch/Smalltalk type is an abstraction of a set of Smalltalk classes. As a
class is the unit of modularity in Smalltalk, a type is the unit of modularity in
Larch /Smalltalk. There are several reasons for specifying in terms of types,
rather than of Smalltalk classes:

—A Smalltalk class is a unit of implementation, rather than a unit of
behavioral abstraction. As a result, an abstraction is often spread across
classes. For example, Booleans are implemented by three classes: Boolean,
True, and False. However, it is more intuitive to specify them as one type,
say Boolean.

—A class inherits implementations, not specifications. A superclass may
specify that subclasses must define a method that a particular subclass
does not define, or a subclass can redefine a method to make it inaccessi-
ble. We want specification inheritance to be based on behavior (subtyping),
not implementation (subclassing) [Cook 1989; Lalonde 1989; America
1991].

—We want multiple inheritance of specifications; that is, we want a type to
be a subtype of more than one type. However, classes in Smalltalk can
have only one superclass.

—Smalltalk classes are typically organized to give a high degree of code
sharing, not according to their logical relationships. We want to structure
our specifications based on their conceptual relationships (subtyping), as
opposed to the implementation relationships (subclassing). Clients find it
much easier to understand and remember relationships that are logical
than those that are side effects of particular implementation decisions
[LaLonde et al. 1986; LaLonde 1989].

There are two representations for Larch/Smalltalk specifications. In the
Larch /Smalltalk browser, specifications are not just plain text, but organized
material. A user writes a specification by editing templates given by the
browsers. Two templates are provided for interface specifications: one for type
specifications (the header part) and the other for method specifications. After
creating a type by filling in the type template in the browser, the user can
add, modify, and remove its method specifications as he or she typically does
with Smalltalk code browsers to browse classes and their methods. Because
the graphical interaction with a browser cannot be shown on paper, we use a
textual representation for Larch /Smalltalk specifications in this paper.

Figure 3 shows a specification of type IntegerSet? in our textual represen-
tation. The type IntegerSet models sets whose elements are integers. Syntac-
tically the specification consists of two parts: (1) a header giving the name of

2We use a type name to denote both the specified type and specification itself. This is also true
for a method name (method selector). The context should tell clearly whether we mean a type or
its specification.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3. July 1994.

228 . Y Cheon and G. T. Leavens

type

type IntegerSet
trait Set (IntegerSet for S. Integer for E)

meta methods

new
returns s <: IntegerSet
ensures s,,;; = {} A fresh(s)

instance methods

insert: n <: Integer
modifies self
ensures self,,.; = insert(self,,.,n)

remove: n <: Integer
requires n € self,.
modifies self
ensures self,..; = delete(self,...n)

includes: n <: Integer
returns b <: Boolean
ensures b = n € selfy,.

size
returns n <: Integer
ensures n = size(selfy,)

isEmpty
returns b <: Boolean
ensures b = isEmpty(selfy,.)

Fig. 3 A Larch/Smalltalk specification of type IntegerSet Note that some identifiers (insert,
size, and isEmpty) are overloaded to refer to both method sclectors and LSL operators. Since
there is no syntactic context in which both can appear. there is no ambiguity. However, to make
the distinction absolutely clear, we shall adopt the convention of writing selector names in a
typewr 1ter font.

the specified type and a link that connects the Smalltalk world and the LSL
(mathematical) world and (2) a body consisting of a set of method specifica-
tions. The header part is separated from the body by a horizontal line in our
textual representation. In the body, two kinds of methods are specified:
instance methods and metamethods. Metamethod specifications and instance
method specifications are separated by a horizontal line in the textual
representation, and the metamethod specifications precede instance method
specifications. In IntegerSet, all the method specifications are instance meth-
ods except for the method new. An instance method defines a message that is
sent to an instance of the specified type. A metamethod specification defines a

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 3, July 1994

Larch / Smalltalk . 229

message that is sent to an instance of the specified type’s metatype, i.e., to an
object that represents the type itself, not instances of the type. A metatype
corresponds to Smalltalk’s metaclass [Goldberg and Robson 1983]. A
metamethod typically specifies how to create an instance of the specified type.
In the specification browsers, a method specification is classified as an
instance or as meta when it is entered to the system by making an appropri-
ate selection with the mouse.

3.1 The Header Part

The header of a type specification establishes a connection to its shared
component, called the used trait. After the keyword trait the name of used
trait is given, which is followed by a type-to-sort mapping in parentheses (see
Figure 3). The type-to-sort mapping, which maps type names in the interface
specification to sort names in the used trait, identifies the set of abstract
values for each type in the specification. The abstract values of a type are the
equivalence classes of the algebraic terms of the corresponding sort. For
example, the used trait of type IntegerSet is the trait Set (see Figure 2); the
type-to-sort mapping says that the type IntegerSet is based on the sort S, and
the type Integer is mapped to the sort E. Thus, the abstract values of
IntegerSet are the equivalence classes of the terms {}, insert({}, 0), insert(in-
sert({}, 0), 1), and so on—terms of sort S in the trait Set.

The abstract values specified in the used trait are purely mathematical.
The domain of abstract values of a type can be restricted in the interface level
to a subset of the values defined by the used trait. This may be needed for
several reasons, e.g., to reuse existing traits or to cope with anticipated
implementation limits and restrictions. The invariant clause introduces a
predicate that must be preserved by all methods of the specified type. In
other words, the invariant restricts the abstract values of objects. It must
hold in the initial state (just after creation) of an object and must be left
invariant by each method. That is, the invariant must be true of the object’s
abstract value both before and after invoking any methods. Consequently, an
invariant will hold in all visible states that can be reached from an initial
state by means of message sending; it need not hold in all states, since it
might be violated temporarily during method evaluation. For example, if we
add

invariant size(self) > 0

to the specification of type IntegerSet, only nonempty sets would be abstract
values of the type IntegerSet; i.e., {} would not be a legal value for objects of
IntegerSet, though it is a term of sort S. (One would also need to rewrite the
specification of the methods new and remove: to preserve the invariant.) In
the invariant predicate, “self,” which is short for “self , ,” (see Section 3.2 and
Appendix B), denotes the abstract value of an object of type IntegerSet. We
use “self” so that the invariant can be thought of as being implicitly conjoined
to the pre- and postconditions of all method specifications. If no invariant is

specified, “true” is assumed by default.

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 8, July 1994

230 . Y. Cheon and G. T. Leavens

An object whose abstract value can change from state to state is said to be
mutable; one whose state cannot change is said to be immutable. A type is
mutable if some of its objects are mutable; otherwise it is immutable. For
example, integers and Booleans are immutable objects while integer sets are
mutable objects. So the types Integer and Boolean are immutable while the
type IntegerSet, as specified in Figure 3, is mutable. In Larch /Smalltalk, a
type is asserted to be mutable or immutable with a mutation clause. If this
clause 15 omitted, the specified type is assumed to be mutable by default. The
header part in Figure 3 is thus an abbreviation for

type IntegerSet
mutation true
trait Set (IntegerSet for S, Integer for E)

3.2 Method Specifications

A method specification defines a message that can be successfully sent to the
objects of the specified type (or metatype in the case of metamethod specifica-
tion). All the method specifications together describe the protocol of the type.
The behavior of a method is specified by the relationship between the inputs
in the initial state and the output (return value) in the final state by pre- and
postconditions [Hoare 1969]. As an example, consider the method includes:.

includes: n <: Integer
returns b <: Boolean
requires true
ensures b = n € self

The method takes an integer and returns a Boolean. Since the precondition
holds trivially, the method can be invoked in any state. The postcondition
asserts that “true” is returned if n is an element of self,,; otherwise, “false”
is returned. The notation “self,,,” means the value of the receiver (i.e., the
object to which the message includes: is sent) just before the method
invocation. The meaning of the LSL operator € is defined in the used trait.

Syntactically, a method specification consists of two parts: the header and
the body. The header provides the information necessary to invoke the
specified method while the body describes the behavior of the method, i.e., the
effect of sending a message that invokes the specified method. The header is
similar to that of Smalltalk methods except that we decorate the input
arguments with their types, and optionally name the returned object and
specify its type. If the returns clause is omitted, the receiver is assumed to
be returned by default. The body consists of a pair of assertions in the
first-order predicate calculus: a requires clause and an ensures clause. A
requires clause specifies the precondition that must hold to invoke the
specified method. If the precondition is not satisfied, nothing is guaranteed.
An omitted requires clause is interpreted as equivalent to “requires true”;
i.e., the method can be invoked in any state. An ensures clause states the
postcondition that the specified method must establish upon termination;i.e.,
the postcondition is guaranteed to hold when the method evaluation is

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3, July 1994

Larch / Smalltalk . 231

completed. The precondition constrains the clients while the postcondition
constraing the implementors.

The semantics of a method specification is a total correctness semantics;
that is, a method satisfies a method specification if, when it is invoked in a
state in which the precondition holds, the method evaluation terminates. In
general, a method specification M specifies a nondeterministic state transfor-
mation delivering an object as its result. This is formally modeled by a
ternary relation among two states and an object. If an (s, s,,0) is an
element of that relation, we say that an implementation of M terminates in
the initial state s, transforming s, to the final state s,, and returning o. If
for a given state s; there is no state s, and object o such that (s, s,,0) is an
element of the relation, we say that the implementation of M does not
terminate in the state s,. Thus total correctness of an implementation
requires that for each state s, in which the precondition is satisfied, there
must be at least one s, and o such that (s, s;,0) is an element of the
relation. In general, there may be more than one such element in the relation;
that is, a method specification need not specify a deterministic method.

The assertions in the pre- and postconditions are stated in the first-order
predicate calculus. Boolean connectives (=, A, V, = , and <), the universal
quantifier (V), and the existential quantifier (3) can be used to compose an
assertion. Identifiers and names that can be used in an assertion are

—the implicit input argument “self,” which denotes the receiver of the
specified message,

—the names of the formal arguments, the name of the formal result (the
returned object),

—locally bound logic variables, e.g., n in V(n:E)ln € s ® n € t], and
—operator names from the used trait (e.g., €, insert, delete, size, etc. in the
type IntegerSet).

The terms in assertions must be sort correct in the sense that operator
applications conform to their signatures specified in the traits [Cheon 1991]
(see Section 3.3). This is similar to the notion of type-correctness in program-
ming languages.

In the specification of a method that can mutate its arguments, it is usually
necessary to refer to the value of an object in two different states: the states
before and after the method invocation. Sometimes it is necessary to refer to
the identity of an object, that is, to say, the object itself, not its value. The
value of an object in the initial state is called its initial value; the value in
the final state is called its final value. Input arguments (including “self”) can
be qualified with the subscript pre, and both input arguments and the return
argument may be qualified with the other value qualifier: the subscript post.
An argument subscripted with a value qualifier denotes the value in the
appropriate state (0,,, denotes the initial value o, and o,,,, the final value).
Arguments can also be qualified with an object qualifier (subscript obj) to
denote their object identities. Thus o,,, denotes the object o as opposed to its
value. Qualifications are often redundant, so we adopt certain defaults de-
pending on the context in which an identifier appears. In both the requires

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

232 . Y. Cheon and G. T. Leavens

clause and emnsures clause we usually refer to values, so identifiers are
qualified with the subscript pre by default; one exception is that in the
ensures clause an output argument is qualified by post. On the other hand,
in the modifies clause (see below) and in the special predicate fresh one
refers to objects; hence, identifiers in these contexts are qualified by the
object qualifier (0bj) by default.

In Smalltalk, a method can mutate an object; i.e., a method can change the
state of an object (for example, by assigning to the object’s instance variables).
To help reasoning about mutation, we insert an optional modifies clause in
the body of a method specification. This clause asserts that only those listed
objects may be mutated as the result of method invocation. This is a strong
indirect assertion that no other objects, except for those listed, are allowed to
change their abstract values. An omitted modified clause is equivalent to
the assertion “modifies nothing,” meaning no objects are allowed to mutate
their values. As an example, consider

remove: n < Integer
requires n € gelf
modifies self

ensures self .,

= delete(self, n)

The method specification says that remove: takes an integer argument, and
may mutate the receiver to make its value, in the final state, equal to that of
deleting the argument from the initial value of the receiver. Since the
returns clause is omitted, the receiver (self ,) is assumed to be returned by
default. The method can change the value of the receiver, but can mutate
neither the arguments, nor any other objects. More formally, the meaning of
a method specification with a modifies clause can be given by the predicate:
requires-clause = (modifies-clause A ensures-clause), which must be satisfied
by the relation computed by an implementation. In an immutable type, “self”
must not appear in the modifies clause.

To specify object creation in the postcondition, a special predicate fresh is
used. The fresh predicate asserts that its arguments are newly created as
the result of the method invocation. That is to say, these objects do not exist
in the initial state, but do in the final state. If there is no fresh predicate in
the postcondition, the method is not allowed to create any new objects that
are visible in the final state. (Technically, in addition to those listed in the
fresh predicate, a method may create other new objects in the intermediate
* gtates that are not visible in the final state. These are temporary objects that
exist only for the duration of the method evaluation.) The set of objects
accessible in the final state must be a subset of the union of the set of objects
in the initial state and all those objects listed in fresh clauses. For example,
consider a method with selector union: which may be specified in the type
IntegerSet as:

union: g < :IntegerSet
returns t < :IntegerSet
“Return the union of s and the receiver.”
ensures fresh(c) A V(i:Int)[i €t e i € s V 1 € self]

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

Larch / Smalltalk . 233

[ident] Y H,z:5Fa: S8,
[bool] ¥, H & true:Bool, ; H I false : Bool
[neg] Y;HF E :Bool

S:Hbt =F :Bool

¥;H W Fy:Bool, X;HF F,:Bool

[logic] S H B, o By Bool for o € {A,V, =, &}
%, H,z: 5+ E :Bool
[quant] - -
Y, HEVY(Z:S)LE] :Bool, X; HF 3(£:S5)[F] : Bool
[cond] Y;HFFE{:Bool, L;HFEy: S, S;HEE;: S
Yy H b if Eythen E; else F3: 5
fequal] SiHVE T, S HbEy:T
1 SiHF E; = E;:Bool, %, HF E; —= E, : Bool
S HHE:S S+Hf:§—T
[opapp] =
S HEfE):T
(paren] S HFE:S
P S HT (E):S
. Y;HF E:S_0bj
[quali] S HF Epui - 5, S;HE By, : 5.0b) for vat € {ores posts any}
[fresh] Y, HE E: S 0bj

3 H F fresh(F) : Bool

Fig. 4. Sort inference rules for Larch /Smalltalk.

The method takes an integer set and returns another integer set. The result,
t, is a new set containing only those integers that are elements of either the
input argument set s, or the receiver. The result of sending the message
union: to an IntegerSet object would be a newly created set that did not exist
in the initial state; i.e., it is not an alias to an existing set object which
happens to have the same value.

As shown in the above example, comments are given in specifications by
placing them inside a pair of double quotes.

3.3 Sort Checking

This section describes how to check well-formedness of assertions in the pre-
and postconditions. Readers may skip this section at their first reading.
Assertions in the pre- and postconditions (also the invariants) must be sort
correct in the sense that LSL operator applications conform to their signa-
tures specified in the traits [Wing 1983]. Figure 4 shows the Larch /Smalltalk
sort inference rules for sort-checking assertions, based on the abstract syntax

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3, July 1994.

234 . Y. Cheon and G. T. Leavens

for assertions (see Appendix A). An inference rule of the form

hl: hZ

Cl’ C2

means that the truth of conclusions ¢, and ¢, follow from the truth of
hypotheses 2, and h,; that is, to prove ¢, and ¢, one needs to show that both
h, and h, hold. The hypotheses are optional; if omitted (in which case the
horizontal line is omitted, too), the rule becomes an axiom.

Sort checking as stated in the inference rules uses both a sort environment
H and a signature L. A sort environment H can be thought of as a set of sort
assumptions, pairs of identifier, and sort. An _assumption of the form x:T
means that the identifier x has sort 7, and ¥:S means that each x, has sort
S,. The notation “H, x:T” means H extended with the assumptlon x:T
(where the extension replaces all assumptions about x in H). A signature ¥
contains the signature information of all the LSL operators that can appear
in assertions of interface specifications. It is a set of LSL operators signatures
of the form: f: S - T and is obtained by collecting all the operator declara-
tions in all the used traits of the specified type, the argument types, and the
return type. Thus X is static in the sense that it is fixed while sort-checking a
given method specification, but different H’s are used to sort-check different
subexpressions. The notation “Y; H ~ E: T” means that given the signature
2 and the sort environment H, one can prove that the expression E has sort
T using the inference rules; hence ¥ is sort correct.

The first two rules ([ident] and [bool]) are axioms, inference rules without
hypotheses. The axiom [ident] says that one can always retrieve information
from ¥, and the axiom [bool] asserts that both true and false always have
the built-in sort Bool. Most rules are straightforward. For example, the rule
[quant] says that if E has sort Bool in the signature ¥ and the sort
environment H extended with assumption x:S, then the quantified terms
Y(x:S) E] and 3(x:S) E] are sort correct and have sort Bool.

The heart of the inference rules is the rule [opappl, which tells how to
sort-check LSL operator applications. If E has sort S and f has signature
S — T, then in the application of f to E, f(E) is sort correct and has sort 7.
If f is an infix operator, f(E) should be understood appropriately. The
notation ¥ + f: S — T' means that an LSL operator f with signature ST
is in the signature Y; this allows overloading of f with different arguments
sorts as in LSL. (There is no subsorting in LSL.)

There are two sorts associated with each type: an object sort and a value
sort. The object sort models the specified type’s objects, and the value sort
models the abstract values of the objects in a particular state. The introduc-
tion of an object sort is needed to treat a contained object as a part of the
value of a containing object, i.e., because of object sharing and mutation.
Objects are treated as a special kind of value. This is described in Figure 5,
which shows the Larch/Smaltalk view of Smalltalk program states. Let Obj
be a set of objects, partitioned into subsets according to their types, and let
Val be a sort-indexed family of sets of abstract values. The environment

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 3, July 1994

Larch / Smalltalk . 235

Store

En \ ‘ Va[e
VarNam __v% Obj *Oi},}

Val
Fig. 5. The Larch /Smalltalk view of program states.

component (Env) of the state maps program variable names (VarNam) to the
objects (Obj) denoted by the variables, and store (Store) maps objects to their
values. Since objects are also values, the store can map an object (a contain-
ing object) to another object (a contained object), which can be mapped to yet
another object (a contained object of the contained object) and so on.

The sort of a term denoting the value of an object is a value sort—it can be
an object sort because the object can contain another objects (i.e., an object
sort 1s a special kind of value sort). The sort of a term denoting an object itself
must be an object sort. If a type T is mapped to a sort S by the type-to-sort
mapping, T’s object sort is denoted by S_0Ob+, and T’s value sort is denoted
by S_val, which is abbreviated as S. The inference rule [quali] shows the
relationship between object sorts and value sorts. If E is a term of sort
S _0bj, then a value-qualified E (e.g., E,.,) is of sort S. For example, if x is
a program variable of type 7', and T' is mapped to a sort S, then Xop, 18 @
term of sort S_0Obj (because x,,, denotes the object x), and x,,,, x,,,,, and
%,,, are of sort S (because they denote the values of the object x).> In the
sort inference rules, we assume that terms are fully qualified. Refer to
Appendix B for the default qualification rules for self and formal arguments.

4. SPECIFICATION INHERITANCE AND SUBTYPING

Larch/Smalltalk is the first interface specification language that permits
inheritance of specifications [Cheon 1991]. Inheritance of specifications per-
mits specifiers to construct specifications incrementally. To specify a type
incrementally, we state how it differs from other types, called supertypes, by
adding additional features; this makes the new type a subtype of other types.
Syntactically this is done with the supertypes clause in the type header.
After the keyword supertypes, all the direct supertypes of the specified type
are listed; if the supertypes clause is omitted, the specified type is assumed
to be a direct subtype of the type Object, the ultimate supertype of all types.
For example, assuming the existence of type Collection, an abstraction of

*The term E,,, denotes the value of E in some unknown state; this form is used to refer to an

object’s value in the invariant clause.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

236 . Y. Cheon and G. T. Leavens

collection types such as lists and arrays, the header part of IntegerSet can be
respecified as follows:

type IntegerSet
supertypes Collection
trait Set(IntegerSet for S, Integer for E)

The type IntegerSet is a direct subtype of the type Collection, thus inheriting
its properties (e.g., method specifications). Aside from inherited methods, only
additional methods and changed methods need to be specified in the subtype.
Specifying a type in terms of its differences from its supertypes leads to
shorter specifications, and such specifications are easier to maintain. To start
things off, a large number of type specifications are provided in the system,
structured into a hierarchy based on their conceptual relationships [Cook
1992], with the most general type Object at the root. The type Object specifies
properties concerned with all objects; it has no method specification.

If type S is specified to be a direct subtype of type T' (i.e.,, T is a direct
supertype of S), then S inherits the specified properties of 7. That is, S
inherits the invariant and method specifications of T, if any. A subtype’s
invariant is the conjunction of all of its supertypes’ invariants and the
invariant stated explicitly in the subtype with invariant clause. An instance
method with the same selector specified by more than one supertype in
different subtyping chains must be respecialized by the subtype to resolve
potential conflicts; that is, the method must be specified in the subtype. An
alternative approach to resolving multiple inheritance conflicts would be to
disjoin the preconditions, conjoin the postconditions, and intersect the modi-
fies clauses of all the conflicting method specifications; this would ensure the
behavioral subtyping. However, when the objects listed in the modifies
clauses of conflicting method specifications differ, such a method specification
would usually be unsatisfiable, because the postcondition would require
objects to change states that no longer appear in the modifies clause.

What does an inherited method specification mean? The basic problem is to
ensure that the operators used in the inherited method specification, which
were written for abstract values of the supertype, can be applied to the
abstract values of the subtype [Leavens 1993]. The simplest and most general
answer, adopted by Larch /Smalltalk, is to view inheritance as textual expan-
sion and to require the subtype’s used trait to provide a meaning for the
operators used in inherited method specifications. That is, the meaning of an
inherited method specification is given by reinterpreting the text of the
inherited specification with the subtype’s used trait. {This technique is also
the foundation of specification inheritance in Larch/C++ [Leavens and
Cheon 1992].) This technique requires two conditions to be satisfied by the
subtype’s used trait. Syntactically, the signature of the subtype’s used trait
must be a superset of that of the supertype’s used trait. Semantically, the
theory of the subtype’s used trait must include that of the supertype’s used
trait. If some property of the supertype’s abstract values was not preserved
by the subtype’s used trait, such as an operation that was idempotent failing
to be so in the subtype’s used trait, then one could not correctly reason about

ACM Transactions on Software Engineering and Methodology, Vol 3, No 3, July 1994

Larch / Smalltalk . 237

the abstract values of subtype objects using the inherited specifications.
Therefore, to allow such reasoning about inherited specifications, the theory
of a subtype’s used trait should be a consistent extension of the theories of its
supertypes’ traits. One way to ensure this is to define the trait functions that
apply to abstract values of the subtype by a homomorphic coercion function
from subtype abstract values to supertype abstract values [Reynolds 1980;
Goguen and Meseguer 1987; Bruce and Wegner 1990; America 1991]. The
advantage to the more general approach taken in Larch/Smalltalk is that
the homomorphic coercion functions can be used whenever possible, but the
specifier is not limited to this technique. (For example, one can use homomor-
phic relations instead of functions.)

Subtype relationships are not only useful in easing specification, they may
also be used to aid verification or informal reasoning about programs. To
fulfill this role, whenever S is a subtype of T', each object of type S must act
like some object of type T, when used from the perspective of T’s specifica-
tion. In the specification terms this means, that for each method M specified
both in S and 7', (1) the precondition of M in T implies the precondition of M
in S and (2) the postcondition of M in S implies the postcondition of M in T.
Formal requirements for such behavioral subtyping [Meyer 1988a;
Leavens and Weihl 1990; America 1990; Leavens 1991; Liskov and Wing
1993a; 1993b] involve either semantic modeling or theorem proving. The
Larch proof assistant LP [Guttag and Horning 1993, chap. 7], because it
accepts LSL syntax, could be used to prove such properties. Larch /Smalltalk
itself checks only for the traditional syntactic constraints, which we call the
syntactic subtyping rule. The syntactic subtyping rule says that for each
subtype S of a supertype T, if an instance method M is specified in both S
and 7, the following conditions must hold [Cardelli and Wegner 1985;
Schaffert et al. 1986]:

—TFor every input argument of M except for the implicit argument “self,” its
type in T must be a subtype of the corresponding type in S.

—The return type of M in S must be a subtype of the return type of M in T.

That is to say, an argument type of a method can only be generalized in a
subtype, whereas the result type can only be specialized. The reversal of
direction for arguments is why this rule is called contravariant. Contravari-
ance seems a bit awkward in practice, because a programmer typically wants
to specialize rather than to generalize arguments. An alternative is to use
covariance, which means that argument types can also be specialized. Such
type systems are not statically sound and are hard to reason about [Cook
1989]. Additionally, contravariance does not seem to cause many problems at
the specification level. The syntactic subtyping rule, together with specifica-
tion inheritance, guarantees that a message understood by objects of a type is
also understood by objects of its subtypes. However, the effects of receiving
messages are not guaranteed to be the same. Semantic correctness (legal
subtyping) is left in the hands of the specifiers.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

238 . Y. Cheon and G. T Leavens

Set(Flem)

type Set
parameters Elem
trait Set (Set(Elem) for S, Elem for E)

meta methods

new
returns s <: Set(Elem)
ensures s,,;; = {} A fresh(s)

instance methods

insert e <: Elem
modifies self
ensures selfp,;; = insert(self, . ,e)

Fig. 6. The parameterized type specification Set.

In Larch/Smalltalk, a subtype does not have to be implemented by a
subclass, and a subclass does not have to implement a subtype. This separa-
tion of subtyping from subclassing gives a great freedom both in design and
implementation. The decoupling of subtyping from subclassing is the feature
that most clearly distinguishes Larch/Smalltalk from other object-oriented
specification languages.

5. PARAMETERIZED SPECIFICATIONS

5.1 Simple Parameterized Specification

In Section 3 we specified sets whose elements are integers. Of course,
integers are not the only element types; there are many applications in which
we want to have sets with elements other than integers. We would like to
have a single specification that captures all these different kinds of sets. A
parameterized type specification provides a simple way to do this. The major
idea introduced by parameterized type specifications is that of a type parame-
ter. For example, in the specification of Set (see Figure 6), Elem is a type
parameter representing the type of element objects. A type parameter is a
place holder that is replaced by an actual type later, when the specification is
instantiated. It can be used freely in places where a type name is expected.

The parameterized type specification can be viewed as a notational abbre-
viation from which specifications are generated by supplying a concrete type
for the type parameters. For example, supplying Integer to the specification
Set produces type Set(Integer), the type of sets whose elements are of type
Integer. Similarly, it can be instantiated to Set(Character), Set(String), and
so on. All the instantiated specifications will have a similar property, e.g.,

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3, July 1994

Larch / Smalitalk . 239

they will have the same set of methods. In itself, Set is not a type (there are
no objects of type Set), but rather a type generator in the sense that it can
generate types by instantiation.

The introduction of the type parameter Elem makes it possible to specify
methods that take arguments or return results of type Elem. That is, for each
instantiation the argument or return type will be different, depending on the
actual parameter type. For example, in Set(Integer) the insert: method
takes an integer as its argument, whereas in Set(String) it takes an object of
type String.

5.2 Bounded Quantification

The simple parameterized type specification introduced in the previous sec-
tion cannot make any assumptions about the objects of their type parameters
since any type could be used for these parameters. In implementation terms,
this means that a parameterized type cannot send any message to an object
of its type parameters, because it is not known whether the actual types for
the parameters have an appropriate method. In reasoning, this means that
we cannot assert anything about the type parameters. In many applications,
however, it is useful to have more information about the type parameters, for
instance, the presence of certain methods. To help reason about parameter-
ized types, we can combine the idea of type parameters and subtyping into a
notion called bounded quantification [Cardelli and Wegner 1985]. Each type
parameter is bounded by a type. Only subtypes of a given type (upper bound)
are allowed in place of type parameters. For example, the header part of
specification Set in Figure 6 can be replaced by the following:

type Set
parameters Elem < ObjectWithEquality
supertypes ObjectWithEquality
trait Set (Set(Elem) for S, Elem for E)

The type parameter Elem is bounded by the type ObjectWithEquality, a
direct subtype of the type Object with a specification for the binary method =
(equal). Only subtypes of ObjectWithEquality are allowed as the actual types
for the parameter. For example, Set(Object) is not well formed because Object
is not a subtype of ObjectWithEquality. This restriction to the type parameter
is reasonable because the specification of Set assumes that two objects of type
Elem can be compared for equality. By default, an unbounded type parameter
is bounded by type Object, i.e., any type can be used in place of such a type
parameter. Thus, the simple parameterization introduced in the previous
section is a special case of bounded quantification in which all the type
parameters are bounded by the type Object.

6. AN EXTENDED EXAMPLE

To give some flavor of our specification language, we specify several interface
modules in Larch/Smalltalk. The chosen examples are graphs. Mathemati-
cally, a graph G is an ordered tuple (V(G), E(G)), consisting of a set V(G) of

ACM Transactions on Software Engineering and Methodology, Vol 3, No 3, July 1994

240 . Y. Cheon and G. T. Leavens

GraphTrait(N,G): trait
includes Set(N,SN), Set(E.SE)
G tuple of nodes: SN, edges: SE
E tuple of head: N, tail: N
introduces
includesNode, isolatedNode: G, N — Bool
asserts
forall g:G, sn: SN, se: SE, n,m,m1: N
includesNode(g,n) == n € g.nodes
isolatedNode([sn,{}],n)
isolatedNode([sn,(insert([m,m1]},se))],n) ==
~(n = m V n = ml) A isolatedNode([sn,se],n)

Fig. 7. The trait GraphTraut.

vertices and a set E(G) of edges, where an edge is a pair of (not necessarily
distinct) vertices of G. The first example of an edge is called the head, and
the second element is called the ¢ail. If the edges are ordered, the graph is
directed; otherwise it is undirected. For directed graphs, we use the term
arcs instead of edges.

We will specify two types, DirectedGraph and UndirectedGraph, which
describe directed graphs and undirected graphs, respectively. To take advan-
tage of specification inheritance, we abstract all the features common to both
directed graphs and undirected graphs into an abstract type Graph, and
specify the two types to be direct subtypes of the abstract type.

The underlying model for the type Graph is shown in Figure 7. A graph G
is a tuple of nodes and edges, where nodes is of sort SN (set of N) and where
edges is of sort SE (set of F). We use the term nodes instead of vertices in our
specification. An edge E is again a tuple of nodes N, whose first and second
elements are denoted by head and tail, respectively. The tuple definition is an
LSL shorthand notation for introducing fixed-length tuples [Guttag
and Horning 1993, chap. 4]. For example, defining “G tuple of nodes: SN,
edges: SE” introduces a tuple constructor ([_, _]), observer operators
(__.nodes, _.edges), and updating operators (set_nodes and set_edges, both
of which produce new tuples) with appropriate axioms.

The trait GraphTrait defines two operators: includesNode and isolat-
edNode. The operator includesNode tells whether a vertex is in a graph, while
isolatedNode tests if a vertex is isolated from others. The operator € in the
axiom for includesNode is the set membership operation, and comes from the
included trait Set. The trait Set found in the LSL Handbook [Guttag and
Horning 1993, Appendix A] defines a mathematical model for finite sets. It is
similar to the trait Set in Figure 2 except that it also defines typical set
operations, like U, M, — (set difference). A vertex is isolated if the graph has
no edge at all or if there is no edge between the vertex itself and some other
vertex in the graph. The second and third axioms state this.

The trait UndirectedGraph shown in Figure 8 defines an abstract model for
the type UndirectedGraph. In addition to properties stated in the included

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

Larch / Smalltalk . 241

UndirectedGraphTrait(N,G): trait
includes GraphTrait(N,G)
introduces
includesEdge: G, E — Bool
asserts
forall g:G, e: E
includesEdge(g,e) == (e € g.edges) v ([e-.tail,e.head] € g.edges)

Fig. 8. The trait UndirectedGraphTrait.

DirectedGraphTrait(N,G): trait
includes GraphTrait
introduces
includesArc: G, E — Bool Fig.9. The trait DirectedGraphTrait.
asserts
forall g:G, a: E
includesArc(g,a) == a € g.edges

trait GraphTrait, it defines an operator includesEdge. An edge e is included
in an undirected graph g if the edge set of g (g.edges) includes e or
[e.tail, e head]. This is because the edge e has no direction associated with it.

A mathematical model for the type DirectedGraph, the trait Directed-
GraphTrait is shown in Figure 9. It is similar to the trait UndirectedGraph-
Trait except that now each edge has a direction attached to it; thus, the
axiom for includesArc is “includesArc(g, a) = = a € edges(g).”

Since we have formal models for all three types, it is time to specify the
types at the interface level. Because graphs are useful with a variety of
vertices, all the types are parameterized with a type parameter Node, which
stands for the type of vertices. Figure 10 shows the abstract type Graph. It is
an abstract type in the sense that it does not have any metamethod specifica-
tions, that is, no objects of this type can be created. Its sole purpose is to be a
common supertype of its two concrete subtypes, which will be specified later.

The invariant clause in Figure 10 says that both the head and tail of an
edge must be nodes of the graph. That is, the abstract values of Graph are
those terms of sort G in the trait GraphTrait (see Figure 7) that satisfy the
invariant predicate. For example, [{},{}] is one possible abstract value, a
graph with no nodes and no edges. However, [{n},{{n, m]}] cannot be an
abstract value of a Graph object even though it is a term of sort G; it does not
satisfy the invariant.

The type specifies five instance methods: addNode:, removeNode:,
chooseNode, nodes, and numOfNodes. Terms in the pre- and postconditions
of these method specifications come from the trait GraphTrait.

Given a vertex, not included in a graph, the method addNcde: adds the
node to the graph. The postcondition says that self,,,, (final value of self) is
equal to self (initial value of self) with its vertices replaced by the union of
self nodes (vertices of self in the initial state) and the vertex to be added.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 3, July 1994.

242 . Y. Cheon and G. T. Leavens

Graph(Node)

type Graph
parameters Node < ObjectWithEquality
trait GraphTrait (Graph(Node) for G, Set(Node) for SN, Node for N)
invariant V(e:E)[e € self.edges = ((e.head € self.nodes) A (e.tail € self.nodes))]

instance methods

addNode: n <: Node
requires ~includesNode(self,n)
modifies self
ensures self,,,; = set_nodes(self, (self.nodes U {n}))

removeNode: n <: Node
requires includesNode(self,n) A isolatedNode(self,n)
modifies self
ensures self,,;; = set_nodes(self, (self.nodes — {n}))

chooseNode
returns n <: Node
requires ~isEmpty(self.nodes)
ensures includesNode(self,n)

nodes
returns s <: Set(Node)
ensures fresh(s) A s = self.nodes

num0fNodes
returns n <: Integer
ensures n = size(self.nodes)

Fig. 10. The parameterized specification Graph.

Since there is no returns clause, self , is returned by default. The method
removeNode: deletes an existing vertex from the graph. The precondition
says it can be invoked only with a vertex with no edges associated with it, i.e.,
the vertex must be isolated. As in the method addNode:, self , is returned by
default. The method chooseNode is interesting in that its postcondition is
underspecified, that is, the specification permits nondeterministic implemen-
tation. All the specification says is that the return object is a vertex of self. It
does not say which one should be returned if there is more than one vertex.
The implementation may use this freedom to improve efficiency. The method
nodes returns a new set containing all the vertices of self. The method size
returns the number of vertices in the graph. Note that no method is con-
cerned with edges because it is not known et whether the edges have
directions associated with them or not. These are properties to be specified by
concrete subtypes.

ACM Transactions on Software Engineering and Methodology, Vol 3, No 3, July 1994.

Larch / Smalltalk . 243

DirectedGraph{Node)

type DirectedGraph
supertypes Graph(Node)
parameters Node < ObjectWithEquality
trait DirectedGraphTrait (DirectedGraph(Node) for G, Set(Node) for SN,
Node for N)

meta methods

new
returns g <: DirectedGraph(Node)
ensures g = [{},{}] A fresh(g)

instance methods

addArcFrom: n <: Node to: m <: Node
requires includesNode(self,n) A includesNode(self,m) A —includesArc([n,m])
modifies self
ensures self,,;, = set_edges(self. self.edges U {[n,m]})

removeArcFrom: n <: Node to: m <: Node
requires includesArc(self,n,m)
modifies self
ensures self,,; = set_edges(self, self.edges - {[n,m]})

adjacentNodesFrom: n <: Node
returns s <: Set(Node)
requires includesNode(self,n)
ensures fresh(s) A V(m:N)[m € s & [n,m] € self.edges]

adjacentNodesTo: n <: Node
returns s <: Set(Node)
requires includesNode(self,n)
ensures fresh(s) A V(m:N)[m € s & [m,n] € self.edges]

adjacentNodes: n <: Node
returns s <: Set(Node)
requires includesNode(self 1)
ensures fresh(s) A V(m:N)[m € s < [n,m] € self.edges V [m,n] € self.edges]

Fig. 11. The interface specification DirectedGraph.

Figure 11 shows the specification for type DirectedGraph. The type Direct-
edGraph is parameterized and specified to be a direct subtype of type Graph
(see also Section 6.1).

The type DirectedGraph specifies a metamethod new which returns an
empty directed graph [{}, {}]. Because DirectedGraph is a subtype of Graph, it
inherits the invariant and all the method specifications of Graph. In addition

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994

244 . Y. Cheon and G T. Leavens

to inherited methods, DirectedGraph specifies five new instance methods:
addArcFrom:to:, removeArcFrom:to:, adjacentNodesFrom:, adja-
centNodesTo:, and adjacentNodes:. The method addArcFrom:to: in-
serts a new arc, denoted by a pair of vertices, whereas removeArcFrom:to:
deletes an existing arc from the graph. The precondition of addNodeFrom: to:
requires that both the head and tail of the arc should be vertices of the graph.
Since addNodeFrom: to: is the only method that adds arcs, every object of
type DirectedGraph satisfies the invariant inherited from Graph. By our
convention, both addArcFrom:to: and removeArcFrom: to: return the ob-
ject self ;. The method adjacentNodesFrom: returns a new set containing
all the vertices adjacent from a given vertex, while adjacentNodesTo:
returns a new set containing all the vertices adjacent to a given vertex. The
method adjacentNodes: returns a new set of all the vertices adjacent to
and from a given vertex.

The type UndirectedGraph, another subtype of Graph, is shown in Figure
12. Its invariant i1s inherited from Graph. The metamethod new returns an
empty undirected graph [{}, {}]. The instance method addEdgeBetween:and:
inserts a new edge to the receiver, whereas removeEdgeBetween:and:
deletes an existing edge from the receiver. The postcondition of removeEdge-
Between:and: states that it deletes both the edges [n, m] and [m, n]. Because
there is no direction associated with an edge, both denote the same edge, an
edge between vertices n and m. Both methods return the object self ,; by
default. The method adjacentNodes: returns a new set containing all the
adjacent vertices of a given vertex.

6.1 Subtyping in Parameterized Type Specifications

Both DirectedGraph and UndirectedGraph are specified to be subtypes of
Graph. But in a strict sense, neither is a subtype of Graph. In fact, none of
the three are types by themselves; rather they are type generators. What we
mean by “DirectedGraph is a subtype of Graph” that for each type Node,
DirectedGraph(Node) is a subtype of Graph(Node). For example, Directed-
Graph(Integer) is a subtype of Graph(Integer), and DirectedGraph(Char-
acter) is a subtype of Graph(Character). However, DirectedGraph(Integer) is
not a subtype of Graph(Character) nor the other way around. Thus, for three
specifications, we have the following subtype hierarchy:

Graph(Node)

TN

UndirectedGraph(Node) DirectedGraph(Node)

Suppose that the type Smalllnteger is a subtype of type Integer. An
interesting question is whether DirectedGraph(Smalllnteger) is a subtype of
Graph(Integer) or vice versa. Let us assume that DirectedGraph(Smallln-
teger) is a subtype of Graph(Integer). The method addNode: would then
require an argument of type Smalllnteger in the subtype and an argument of
type Integer in the supertype. But this would contradict the syntactic subtype
rule, which requires that argument types can only be generalized in subtypes.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3, July 1994

Larch/ Smalltalk . 245

UndirectedGraph(Node)

type UndirectedGraph
parameters Node < ObjectWithEquality
supertypes Graph{Node)
trait UndirectedGraphTrait (UndirectedGraph(Node) for G, Set(Node) for SN,
Node for N)

meta methods

new
returns g <: UndirectedGraph(Node)
ensures g = [{},{}] A fresh(g)

instance methods

addEdgeBetween: n <: Node and: m <: Node
requires includesNode(self,n) A includesNode(self,m) A —includesEdge([n.m])
modifies self
ensures self;,,;; = set_edges(self, self.edges U {[n,m]})

removeEdgeBetween: n <: Node and: m <: Node
requires includesEdge(self,n,m)
modifies self
ensures selfp.; = set_edges(self, self.edges - ({[n,m]} U {[m,n]}))

adjacentNodes: n <: Node
returns s <: Set(Node)
requires includesNode(self,n)
ensures fresh(s) A V(m:N)[m € s < [n,m] € self.edges vV [m,n] € self.edges]

Fig. 12. The interface specification UndirectedGraph.

Thus, DirectedGraph(Smalllnteger) cannot be a subtype of Graph(Integer).
Assuming that Graph(Integer) is a subtype of DirectedGraph(Smalllnteger)
would lead to a similar conflict with the syntactic subtyping rule. For
example, the method chooseNode: returns an object of type Integer in
Graph(Integer), and returns an object of type Smalllnteger in
DirectedGraph(Smalllnteger). So, DirectGraph(Integer) cannot be a subtype
of Graph(Smalllnteger) because it violates the second condition of the subtyp-
ing rule saying that the result type can only be specialized in subtypes.
Therefore, in general, if S is a subtype of T, then DirectedGraph(s) is not a
subtype of Graph(T) and vice versa.

Let us consider subtyping relationships between different instantiations of
the same parameterized type specification. Consider the case when we substi-
tute two parameters that are subtypes of each other. For example, is the type
Graph(Smalllnteger) a subtype of the type Graph(Integer)? The method
addNode: requires an argument of type Smalllnteger in the first type and
the argument of type Integer in the second type. Therefore, for the same

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 3, July 1994.

246 . Y. Cheon and G. T Leavens

reason as above, Graph(Smalllnteger) is not a subtype of Graph(Integer). We
can show easily that the subtyping relationship the other way around also
conflicts with our subtyping rule. Therefore, in general we do not have a
subtype relationship between different instantiations of the same parameter-
ized type, though there are some cases where such a relationship holds [Cook
1989].

7. DISCUSSION

7.1 Related Work

Recently a lot of effort has been put into applying object-oriented concepts to
formal specification and reasoning techniques, that is to say, into designing
object-oriented specification languages and into specifying and verifying pro-
grams in object-oriented programming languages. This effort can be divided
into two categories: designing new specification languages and extending
existing specification languages with object-oriented concepts. Object orienta-
tion is reflected in the specification language ABEL [Dahl 1987] in a class-like
construct which defines objects in the conventional imperative sense. ABEL
contains mechanisms for constructive and nonconstructive specifications as
well as applicative and imperative programming. In GSBL [Clerici and
Orejas 1988], an algebraic specification language, one can see full-fledged
notions of objects, classes, and inheritance. In the database community, the
Oblog*-language [Jungclaus et al. 1991] incorporates object orientation to
specify information systems, especially for the conceptual modeling of sys-
tems.

Several object-oriented extensions have been proposed for the specification
language Z [Hayes 1987] due to its style (e.g., graphical layout of specifica-
tions, use of set-theoretic and logical notations, and conventions for decorat-
ing input and output variables, etc.) and to its growing use in industry.
Schuman and Pitt [1986] described a semantics to accommodate object orien-
tation based on events and histories, though they did not provide the class as
a single syntactic construct. Object-Z [Carrington et al. 1989] introduces
classes to encapsulate the description of an object’s state with its related
operations. Complex specifications are then constructed through class inheri-
tance and instantiation. Its class model is also based on the idea of history,
which captures the sequence of operations and state changes undergone by
an instance (object) of the class. The OOZE System [Alencar and Goguen
1991], based on Z and OBJ3, provides a powerful parameterization mecha-
nism (modules, theories, views) as well as notions of objects, classes, and
inheritance. Object orientation was also attempted for the specification lan-
guages VDM [Bear 1988} and LOTOS [Mayer 1988]. In Fresco [Wills 1992], a
programming environment for developing object-oriented software from speci-
fications based on VDM, a class describes a specification, an implementation,
or a mixture of the two. A class is specified with model variables, invariants,
and operation specifications. The state of an object is captured by these model
variables, ie., it is a composition of the values of these variables. This

ACM Transactions on Software Engineering and Methodology. Vol 3. No. 3, July 1994

Larch / Smalltalk . 247

composition of model variables corresponds to the abstract value of an object
in Larch /Smalltalk, which in Larch/Smalltalk is specified in LSL. Fresco
also distinguishes between the class hierarchy of implementations and the
type hierarchy of conformance. But the preference in Fresco seems to be to
combine the two in conformant inheritance, in which the subclass also
happens to implement a subtype [Meyer 1988b].

Larch /Smalltalk is the first Larch interface specification language with
subtyping and specification inheritance [Cheon 1991]. Other Larch interface
languages with similar features are LM3 (Larch/Modula-3) [Guttag and
Horning 1993, chap. 6] and Larch/C ++ [Leavens and Cheon 1992; Cheon
and Leavens 1993]. Both allow reuse of specifications in the interface level
through specification inheritance. The most distinguishing features of
Larch /Smalltalk compared to LM3 and Larch/C ++ are its simplicity and
flexibility, and the separation of types from classes. The syntax and seman-
tics of Larch /Smalltalk are much simpler than LM3 and Larch /C ++, partly
due to the simplicity of Smalltalk.

The most interesting feature of Larch/C ++ is that a class specification
can have multiple interfaces: the public interface for clients, the protected
interface for subclasses, and the private interface for implementors and
friends. This is a very useful feature both in programming and specification.
It can be somewhat simulated in Larch/Smalltalk by the disciplined and
stylized use of message categories. For example, methods can be categorized
depending on whether they are public, protected, or private; in fact, this is
what a sensible Smalltalk programmer does with Smalltalk methods. How-
ever, this cannot prevent clients from accessing protected or private methods
if they want to.

In LM3 [Jones 1991], one can specify a higher-order procedure, a procedure
that takes other procedures as its arguments. Similar features are also found
in Larch /CLU [Wing 1983] and LCL (Larch/C), [Tan 1992]. The interface
(arguments and their types) and the behavior (using pre- and postconditions)
of an argument procedure are specified in the header part of the procedure,
which takes it as an argument. And a special notation is provided to refer to
the pre- and postconditions of the argument procedure in the pre- and
postconditions of the higher-order procedure. A similar approach might be
taken to specify Smalltalk blocks. LM3 also has support for specifying threads,
lightweight units of concurrency in Modula-3. A nonatomic routine is speci-
fied as sequence of afomic actions [Wing 1990]. Concurrency issues are not
addressed in Larch /Smalltalk.

7.2 Future Work

7.2.1 Language Extension. In Smalltalk, methods can take or return
blocks. That is, methods can be higher order. A block is a closure; it contains
a parameterized code and an environment. Since Smalltalk control structures
such as ifTrue:ifFalse: and whileTrue: are based on blocks, they are an
essential feature of the Smalltalk system. Several approaches to specifying
blocks are being examined: (1) modeling them explicitly as state transition in

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994.

248 . Y Cheon and G. T. Leavens

LSL, (2) specifying in the interface the weakest pre- and postconditions that
the argument blocks have to satisfy [Ernst et al. 1982; Jones 1991], (3) using
free functions as proposed in LCL [Tan 1992], and (4) introducing new
predicate operators that can model (repeated) invocation of argument blocks.
An interesting fact about blocks is that they allow nonlocal exits; blocks are
continuations. A block can exit to the place where it was defined (which may
be different from where it was invoked). Since this feature is heavily used by
Smalltalk programmers to handle error cases, etc., it should be properly
addressed in extending Larch /Smalltalk for specifying block arguments.

Another desirable extension to the current syntax is for specifying excep-
tions. Smalltalk exception-handling mechanisms are based on the multilevel
resumption model; an exception can be propagated to multiple levels, and
control can later be resumed by the exception-raising module. There are some
provisions in Larch interface languages such as Larch/CLU, LM3, and
Larch/C ++ for specifying exceptions, but all of them are for the simple
termination model; an exception is propagated only to the invoking module
and control cannot be resumed by the exception-raising module.

Smalltalk allows programming at the metalevel in the sense that classes
themselves are represented by objects, called class objects. We can refer to
these class objects in instance methods, and we can define methods for the
class objects, which are called class methods. Classes defining class objects
are called metaclasses. To specify such class objects, we could specify
metatypes much as we specify types. The main problem is to connect the
specification of a type with the specification of its metatype, because in
Larch /Smalltalk a type may be implemented by more than one class. One
idea is to use a notation such as self, . to refer to the receiver’s class object
in the specification of instance methods; this would allow the class object to
be discussed without explicitly naming a particular class object.

7.2.2 Formal Semantics. Defining a formal semantics will be the main
focus of our future research in Larch /Smalltalk. Informally, a Larch /Small-
talk specification denotes a set of Smalltalk program modules whose inter-
faces and behaviors conform to the specification. In this context a program
module means a class or several classes collectively. One approach to giving a
formal semantics would be to define: (1) a common basis (some mathematical
notations) between Larch /Smalltalk and Smalltalk and (2) two translation
functions, one for specifications and the other for programs. The meaning of a
specification would be all the Smalltalk modules whose meaning is implied by
the mathematical term to which the specification is translated. For example,
let S be a Larch /Smalltalk specification, P be a Smalltalk program module,
and T and T, be translation functions. Then the meaning of S, M[[S]] could
be:

MISI = (PIT[S]] = T,[[P1]).

7.2.3 Verification and Reasoning. We would like to explore how to use
Larch/Smalltalk as a formal basis for verifying and reasoning about
Smalltalk programs. Basically we would like to design a Hoare-style proof

ACM Transactions on Software Engineering and Methodology, Vol. 8, No 3. July 1994

Larch / Smalltatk . 249

logic adapted to object-oriented programming, something like the one dis-
cussed in Leavens and Weihl [1990] and Leavens [1991].

7.3 Summary

Behavioral specification of reusable components is more necessary in object-
oriented programming than in a conventional programming environment.
The lack of such description techniques for Smalltalk has caused poor reuse
of its huge library classes and made it hard for programmers to exchange
code for possible reuse. Larch /Smalltalk answers these needs with a formal
specification language specifically tailored to Smalltalk. Larch /Smalltalk is a
Larch interface specification language with notions of subtyping and specifi-
cation inheritance. One can describe precisely both the behavior and the
interface of Smalltalk modules (classes and methods).

The main contribution of this paper is its separation of types from classes.
Type is the unit of abstraction for specification. This is an interesting way of
introducing a type system (at the specification level) when the underlying
language is untyped, and provides natural mechanisms for specifying
Smalltalk interfaces. Subtyping allows specifications to be organized accord-
ing to their conceptual relationships, i.e., in subtype hierarchies, as opposed
to implementation relationships. Additionally, specifications can be reused at
the interface level by specification inheritance. Parameterization is also
allowed to specify a set of related types.

We expect ordinary Smalltalk programmers to learn and use Larch/
Smalltalk easily and productively in programming. The flexibility of Larch/
Smalltalk is obtained by decoupling the specification unit (type) from the
implementation unit (class). Thus, a Larch /Smalltalk can be implemented by
a single Smalltalk class, several classes forming a subhierarchy in the
subclassing hierarchy, or a set of classes. Also, a type may have several
different implementations in a program [LaLonde et al. 1986]. The separation
of types from classes gives a great freedom in design and implementation.

To allow specifications to be used practically in the programming process,
Larch /Smalltalk specification browsers integrated in the Smalltalk systems
were implemented. A preliminary version is available by anonymous ftp from
ftp.cs.iastate.edu.

APPENDIX

A. REFERENCE GRAMMAR

This section lists the reference grammar of Larch/Smalltalk in an extended
BNF with conventions: (1) nonterminal symbols are enclosed in angle brack-
ets (e.g., {method-header)), (2) keywords are written in bold face (e.g.,
requires), (3) reserved words and other terminal symbols are written in a
typewriter font if possible (e.g.,, self, [, 1); otherwise they will be
written normally (e.g., ¥, =), (4) optional symbols are surrounded by square
brackets (e.g., [returns{(formal-declaration)]), and (5) the notation “...”

ACM Transactions on Software Engineering and Methodology, Vol. 3, No. 3, July 1994

250 . Y. Cheon and G. T. Leavens

means that preceding symbol (or a group of optional symbols) can be repeated
zero or more times (e.g., {method-specification) ...).

The lexical conventions are the same as those of Smalltalk [Goldberg and
Robson 1983]. For example, (identifier) is an arbitrary long sequence of
letters and digits whose first character is a letter.

A1 Type Specifications

(type-specification) — (type-header){type-body)
(type-header) — type(identifier)[{ parameters-clause)][{ supertypes-
clause) [[{ mutation-clause)]{uses-claused[{invariant-clause)]

(parameters-clause) — parameters{type-parameter) [, (type-parame-
ter)] ...

(type-parameter) — (identifier)[< (type-name)]

(type-name) — (identifier)|(identifier)({type-name)| ,{type-name)]...)
{mutation-clause) — mutation{boolean)

(uses-clause) — trait{trait-name)([{type-to-sort-list)])

(type-to-sort-list) — (type-name) for (sort-name)[,(type-name) for
{sort-name)]...

(supertypes-clause) — supertypes (type-name)| , {type-name)]...
(invariant-clause) — invariant {predicate)
(type-body) — {method-specification) ...

The nonterminals (trait-name) and (sort-name) are just (identifier).

A.2 Method Specifications

{method-specification) — (method-header)(method-body)
(method-header) — (message-pattern) [returns {(formal-declaration}]
(message-pattern) — (unary)|(binary)|(keywords)

{unary) — {identifier)

(binary) — {binary-selector){formal-declaration)

(keywords) — (keyword){formal-declaration)[{ keyword){formal-
declaration)] ...

(formal-declaration) — (identifier) <: {type-name)
(method-body) — [{pre-condition)][{ modifies-list) }{ post-condition}
(pre-condition) — requires (predicate)
(modifies-list) > modifies nothing

Imodifies [at most] (identifier)| , (identifier}]...
{post-condition) — ensures {predicate)

The lexical conventions for {binary-selector) and (keyword) are the same as
in Smalltalk.

ACM Transactions on Software Engineering and Methodology, Vol 3, No 3, July 1994.

Larch / Smalltalk . 251

A.3 Predicates

(predicate) — (boolean)|— {predicate)|({predicate))
[{predicate){connectives){predicate)|{quantified)|{term) = {term)
{(boolean) — true|false
(quantified) — {(quantifier)({identifier):{sort-name)) [{predicate)]
{quantifier) — V|3
{term) — {special)|[{qualified)|({term))
[(identifier)[({term)[, {term)]...)]
[{term) {infix-operator){term)
| if {predicate) then {term) else {term)
{special) — (literal)|sel fifresh({term)[, {term)]...)
(literal) — {numbery|{character)|{string|{symbol)
{qualified) — {term),,.[{term},,s[{termp,, ,(termy,s,
{connectives) > A|V|=| <«

The nonterminal {infix-operator) stands for LSL infix trait functions.
Larch /Smalltalk literals ({literal}) are the same as those of Smalltalk.

B. DEFAULT QUALIFICATIONS FOR FORMALS IN ASSERTIONS

Qualifications are often redundant, so Larch /Smalltalk has certain defaults,
depending on the context in which an object appears. In the invariant
clause, an unqualified self is qualified with the value qualifier any by default.
In the requires and ensures clauses, self and unqualified formal arguments
are qualified with the value qualifier pre. In the ensures clause, an unquali-
fied output formal parameter is qualified with the value qualifier post. In the
modifies clause and in the Larch/Smalltalk special predicate fresh, one
always refers to objects. Hence, in these contexts, the object qualifier (obj) is
the default qualifier.

ACKNOWLEDGMENTS

Thanks to Tim Wahls and the anonymous referees for their helpful comments
on drafts of this paper.

REFERENCES

ALENCAR, A. J. AND GOGUEN, J. A. 1991. OOZE: An object oriented Z environment. In ECOOP91
Proceedings of the European Conference on Object-Oriented Programming. Lecture Notes in
Computer Science, vol. 512. Springer-Verlag, New York, 180-199.

AMERICA, P. 1991. Designing an object-oriented programming language with behavioral subtyp-
ing. In Proceedings of Foundations of Object-Oriented Languages. Lecture Notes in Computer
Science, vol. 489. Springer-Verlag, New York, 60-90.

AMERICA, P. 1990. A parallel object-oriented language with inheritance and subtyping. In
Proceedings of OOPSLA ECOOP’90. SIGPLAN Not. 25, 10 (Oct.), 161-168.

BEAR, S. 1988. Structuring for the VDM specification language. In Proceedings of the 2nd
VDM-Europe Symposium. Lecture Notes in Computer Science, vol. 328. Springer-Verlag, New
York, 2-25.

ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 8, July 1994.

252 . Y. Cheon and G T. Leavens

Bruce, K. B. AND WEGNER, P. 1990. An algebraic model of subtype and inheritance. In
Advances tn Database Programming Languages. Addison-Wesley, Reading, Mass., 75-96.

CarDELLI, L. AND WEGNER, P. 1985. On Understanding types, data abstraction and polymor-
phism. ACM Comput. Surv. 17, 4 (Dec.), 471-522.

CarrINGTON, D., Dukg, D., Dukg, R., KiNG, P., RosE, G., aND SMmrTH, G. 1989. Object-Z. An
object-oriented extension to Z. In Formal Description Techniques (FORTE89). North-Holland,
Amsterdam, 281-296

CHEON, Y. 1991. Larch/Smalltalk: A specification language for Smalltalk Tech. Rep. TR
#91-15, Dept. of Computer Science, Iowa State Univ., Ames, Jowa.

CHEON, Y. anND Leavens, G. T. 1994. A gentile introduction to Larch/Smalltalk specification
browsers. Tech. Rep. 94-01, Dept of Computer Science, Iowa State Univ., Ames, lowa.
Available by anonymous ftp from ftp.cs iastate.edu and by email from almanaccs.iastate.edu.

CHEON, Y. AND LEAVENS, G. T. 1993. A quick overview of Larch /C ++. Tech Rep 93-18, Dept. of
Computer Science, Jowa State Univ, Ames, lowa. Available by anonymous ftp from ftp.cs.ia-
state edu and by email from almanac@cs.aastate.edu.

CLERICI, S., AND ORrEJas, F. GSBL: An algebraic specification language based on inheritance
1988. In ECOOP’88, European Conference on Object-Oriented Programming. Lecture Notes in
Computer Science, vol. 322. Springer-Verlag, New York, 78-92

Coog, W. R 1992. Interfaces and specifications for the Smalltalk-80 collection classes. In
Proceedings of OOPSLA "92. SIGPLAN Not. 27, 10 (Oct.), 1-15.

Coog, W. R 1989. A proposal for making Eiffel type-safe. In ECOOP’89, European Conference
on Object-Oriented Programmuing. Cambridge University Press, UK, 57-70.

DaHL, O.-d. 1987 Object-ornented specifications. In Research Directions in Object-Oriented
Programnung. MIT Press, Cambridge, Mass., 561-576.

ErnsT, G. W., NAVLAKHA, J. K., AND OGDEN, W. F. 1982, Verification of programs with proce-
dure-type parameters Acta Informatica 18, 2, 149-169.

GOGUEN, J. A. AND MESEGUER, dJ. 1987. Order-sorted algebra solves the constructor-selector,
multiple representation and coercion problems. In Symposium on Logic in Computer Science.
IEEE Computer Society Press, Los Alamitos, Calif., 18-29.

GOLDBERG, A. AND RoBsoN, D. 1983. Smalltalk-80. The Language and Its Implementation.
Addison-Wesley, Reading, Mass.

GUTTAG, J. V. AND HORNING, J. J 1993. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, New York.

GUTTAG, J. V. AND HORNING, dJ. J. 1991. Introduction to LCL, a Larch/C interface language.
Tech. Rep. 74. Digital Equipment Corporation, Systems Research Center. Palo Alto, Cahf.

GUTTAG, J. V., HORNING, J. J., AND WING, J. M. 1985, The Larch family of specification
languages. IEEE Softw. 2, 4 (Sept).

Haves, T, Ep. 1987. Specification Case Studies. International Series in Computer Science
Prentice-Hall, Englewood Cliffs, N.J.

Hoare, C. A. R. 1972. Proof of correctness of data representations Acta Informatica 1, 4,
271-281.

Hoare, C A. R. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10
(Oct) 576-583.

JoNEs, K. D. 1991. LM3: A Larch interface language for Modula-3, a defimtion and introduction
version 1.0. Tech. Rep 72, Digital Equipment Corporation, Systems Research Center, Palo
Alto, Calif.

JUNGCLAUS, R., SAAKE, G., AND SERNADAS, C. 1991. Formal specification of object systems. In
TAPSOFT'91 Proceedings of the International Joint Conference on Theory and Practice of
Software Development. Lecture Notes in Computer Science, vol. 494. Springer-Verlag, New
York, 60-82.

LaLonbpe, W. R. 1989. Designing families of data types using examplars. ACM Trans Program
Lang. Syst. 11, 2 (Apr.) 212-248.

LaLonpe, W. R., THoMas, D. A., aNnp PucH, J. R. 1986. An exemplar based Smalltalk. In
Proceedings of the OOPSLA’86 Conference. SIGPLAN Not. 21, 11 (Nov) 322-330.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 3, July 1994

Larch/ Smalltalk . 253

LeAVENS, G. T. 1993. Inheritance of interface specifications (extended abstract). Tech. Rep.
93-23, Dept. of Computer Science, lowa State Univ. Ames, Iowa. Available by anonymous ftp
from ftp.cs.iastate.edu or by email from almanac@cs.iastate.edu.

LEavENS, G. T. 1991. Modular specification and verification of object-oriented programs. IEEE
Softw. 8, 4 (July), 72-80.

LEAVENS, G. T. AND CHEON, Y. 1992. Preliminary design of Larch/C ++. In Proceedings of the
1st International Workshop on Larch. Workshops in Computing Science, Springer-Verlag, New
York.

Leavens, G. T. anp WemL, W. E. 1990. Reasoning about object-oriented programs that use
subtypes (extended abstract). In Proceedings of OOPSLA ECOOP’80. SIGPLAN Not. 25, 10
(Oct.), 212-223.

Liskov, B. AND WING, J. M. 1993a. A new definition of the subtype relation. In ECOOP’93—
Object-Oriented Programmung. Lecture Notes in Computer Science, vol. 707. Springer-Verlag,
New York, 118-141.

Liskov, B. AND WING, J. M. 1993b. Specifications and their use in defining subtypes. In
Proceedings of OOPSLA’93 SIGPLAN Not. 28, 10 (Oct.), 16-28.

Maver, T. 1988. Specification of object-oriented systems in LOTOS. In Formal Description
Techniques (FORTE’88). North-Holland, Amsterdam, 107-119.

MEYER, B. 1988a. Eiffel: A language and environment for software engineering. J. Syst. Softw.
8, 3 (June), 199-246.

MEYER, B. 1988b. Object-oriented Software Construction. International Series in Computer
Science, Prentice-Hall, Englewood Cliffs, N.J.

REYNOLDS, J. C. 1980. Using category theory to design implicit conversions and generic opera-
tors. In Proceedings of a Workshop on Semantics-Directed Compiler Generation. Lecture Notes
in Computer Science, vol. 94. Springer-Verlag, New York, 211-258.

SCHAFFERT, C., COOPER, T., BULLIS, B., KiLIAN, M., AND WILPOLT, C. 1986. An introduction to
Trellis/Owl. In Proceedings of OOPSLA *86. SIGPLAN Not. 21, 11 (Nov.), 9-16.

ScHUMAN, S. aND PrrT, D. 1986. Object oriented subsystem specification. In Proceedings of the
IFIP TC2 / WG 2.1 Working Conference on Program Specification and Transformation Pro-
gram Specification and Transformation. North Holland, Amsterdam, 313-342.

Tan, Y. M. 1992. Semantic analysis of Larch interface specifications. In Proceedings of the Ist
International Workshop on Larch. Workshops in Computing, Springer-Verlag, New York.

WILLS, A, 1992. Specification in Fresco. In Object Orentation in Z. Workshops in Computing,
Springer-Verlag, Cambridge, UK, 127-135.

WING, J. M. 1990. Using Larch to specify Avalon/C 4+ objects. IEEE Trans. Softw. Eng. 16,9
(Sept.), 1076-1088.

WiNG, J. M. 1987. Writing Larch interface language specifications. ACM Trans. Program.
Lang. Syst. 9, 1 (Jan.), 1-24.

Wing, J. M. 1983. A two-tiered approach to specifying programs. Tech. Rep. TR-299, MIT, Lab.
for Computer Science, Cambridge, Mass.

Received October 1993; revised April 1994; accepted May 1994

ACM Transactions on Software Engineering and Methodology, Vol 3, No. 3, July 1994

