

State Machine	33313
Specify a sequence of states that an object goes through in response to events	
❖ Describe object life cycles	
Centred on one object	
Contains object states and state transitions	
Strong theoretical background: finite state automata, Petri nets, state charts (Harel). Real-time systems.	
S June 2001 - G. Falquet, L. Nerima State Machines	3

S				II.		ij
-	 	÷	÷			j
						2000
						į
					ŀ	
						171174
						÷
						14

Design consideration

- State machines form the highest level of abstraction in the "dynamics" dimension
- State machines are not flow charts!
 - do not try to express algorithms, methods, computations, etc. with StM
- States must correspond to specific behaviour, conditions, etc. (avoid infinite modelling)
- Local dynamics: state machine of an object
- Global dynamics: all the state machines (with signals)

June 2001 - G. Falquet, L. Nerima

State Machines

35

Implementation

- State machines are executable
 - => implementation with a state monitor/controller
 - ♦ (transaction monitors, real-time systems, ...)
- Generally: transformation into data structures and program code
- State ---> attribute value or link.
 - ❖ Book:borrowed == linked to a Loan object.
 - Report:approved == status = 'a'
- Transitions ---> execution of an operation/method.

June 2001 - G. Falquet, L. Nerima

State Machines

3

State Machines and Use Cases (Douglass 2000)

- Can represent all possible scenarios on a single diagram.
 - ❖ A scenario is a path through the state machine.
- Useful to elaborate complex protocols of actor-system interaction.
 - represent actor -> system messages as triggering events and conditions
 - represent system -> actor messages as actions
- Possible to execute (simulate) the state machine to check accuracy and completeness.

http://iamwww.unibe.ch/CHOOSE/Events/forum2k/douglass.pdf

June 2001 - G. Falquet, L. Nerima

State Machines

37

Example

Interaction: The operator can enter commands to control a telescope system, subject to a number of constraints

- When the telescope is idle, the system may be configured, maintained, or commanded to move.
- ❖The system will not accept a command when the telescope is currently moving except stop or turn off.
- Whenever the telescope is moving, monitored position is displayed in a blinking form.
- When the telescope is stopped, the monitored position is non-blinking.
- After configuration is complete, the user must reinitialise the system.
- Telescope position is displayed on a user-defined periodic basis.

June 2001 - G. Falquet, L. Nerima

State Machines

13

5

