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Among the many applications of mass spectrometry, biomarker
pattern discovery from protein mass spectra has aroused
considerable interest in the past few years. While research
efforts have raised hopes of early and less invasive diagnosis,
they have also brought to light the many issues to be tackled
before mass-spectra-based proteomic patterns become routine
clinical tools. Known issues cover the entire pipeline leading
from sample collection through mass spectrometry analytics to
biomarker pattern extraction, validation, and interpretation.
This study focuses on the data-analytical phase, which takes as
input mass spectra of biological specimens and discovers
patterns of peakmasses and intensities that discriminate between
different pathological states. We survey current work and
investigate computational issues concerning the different stages
of the knowledge discovery process: exploratory analysis, quality
control, and diverse transforms of mass spectra, followed by
further dimensionality reduction, classification, and model
evaluation. We conclude after a brief discussion of the critical
biomedical task of analyzing discovered discriminatory patterns
to identify their component proteins as well as interpret
and validate their biological implications. # 2006 Wiley
Periodicals, Inc., Mass Spec Rev 25:409–449, 2006
Keywords: MS preprocessing; classification; biomarker dis-
covery; data mining; proteomics; machine learning; dimen-
sionality reduction

I. INTRODUCTION

Classification has a long history as a staple statistical technique
but has made giant strides with recent advances in machine
learning and data mining. Nevertheless, protein mass spectra—
like DNA microarray data—raise a number of technical
challenges that highlight the limitations of existing classification
methods. First, it has been shown that mass spectra mining
involves a high risk of finding patterns in noise; thus, more than
most other types of data, mass spectra require meticulous and
customized quality control, cleaning, and transformation prior to
data analysis. Mass spectra preprocessing must take account of

multiple factors that govern data production such as sample
collection and handling as well as instrumentation. By practi-
tioners’ consensus, preprocessing takes around 80% of data
mining time; this might well be an underestimation for mass
spectra mining where preprocessing involves a complex blend of
digital signal processing, data exploration, and data engineering
techniques.

Second, a mass spectrum usually contains thousands of
different mass/charge (m/z) ratios on the x-axis, each with
corresponding signal intensity on the y-axis. For data mining
purposes, each m/z ratio is represented as a distinct variable
whose value is the intensity; hence each case can be seen
geometrically as a single point in a very high-dimensional space.
In classification for diagnosis and biomarker discovery, which is
the focus of this paper, the problem of high dimensionality is
compounded by small sample size: diseased specimens are
relatively rare and difficult to collect, especially when invasive
procedures are involved. This twofold pathology, called the high-
dimensionality-small-sample (HDSS) problem, is the main issue
that plagues and propels current research on protein mass spectra
classification.

Dimensionality reduction is crucial to biomarker discovery.
First, the curse of dimensionality must be coped with if the
classification problem is to be solved at all. Whatever the
classification goal, the most effective way so far to get around
the HDSS problem is by reducing the size of the variable set.
More importantly, extracting a handful of variables from an
initial set of several thousands is not a simple preprocessing
expedient but the very goal of biomarker discovery. The final
variables and their interaction in the learned model constitute the
proteomic signature, which the biomedical researcher must then
identify, validate, and interpret. In short, dimensionality reduc-
tion and classification are the co-essential goals of mass spectra
mining for biomarker discovery. A corollary requirement is
model intelligibility: the selected variables and their respective
roles and interactions must not only be accessible in the final
classifier, they must be biologically interpretable.

This review describes how the specific characteristics and
constraints of mass spectra classification have been handled in
biomarker research. The remainder of the paper is structured
around the main phases of the generic knowledge discovery
process. Section II describes the different ways of preprocessing
mass spectra for classification. Although much of the MS
classification literature focuses on surface-enhanced laser
desorption/ionization time-of-flight (SELDI-TOF) spectra, any
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mass spectrometry (MS) technique can be used for sample
classification, and the discussion on MS data preprocessing is,
therefore, quite general involving many different types of MS
spectra. If methods developed for protein identification are
thought to be useful, they were also considered in this review, as
well as methods from microarray data analysis. For complete-
ness, Section III gives a brief overview of themajor approaches to
classification; readers familiar with the basics of building
classifiers can skip this section. Sections IV and V discuss the
two tasks that form the core of mass-spectra-based diagnosis and
biomarker discovery, dimensionality reduction, and classifica-
tion. Section VI explains how the resulting classifiers are
evaluated and selected with a view to optimizing generalization
performance and model stability. Section VII briefly presents the
postclassification task of interpreting the learned models and
patterns to extract biologically meaningful disease markers.
Section VIII concludes and previews challenges that lie ahead.
Table 1 gives a list of the abbreviations most often used in this
review.

II. DATA PREPROCESSING

A. Introduction

Mass spectrometers registerwhen ionized proteins or peptides hit
their detector, and this information is then usually compiled into a
histogram, which counts the number of detector events within
small time bins (for an introduction into different techniques and
their application in proteomics see Aebersold & Mann (2003)).
Since each time corresponds to amass over charge ratio (m/z), the
time bins can be converted into m/z bins. These histogram data
are called a ‘‘mass spectrum’’ and form the raw material for all
further data processing. Different MS techniques measure mass
spectra of different resolution andmass range. The resolution of a
mass spectrum is expressed as the full-width-half-maximum
(FWHM) ratio, that is, the m/z value of a signal divided by its
width at half of its height (m/Dm). The resolution can vary from a

few 100 for linear TOF spectra to a few 10,000 for delayed
extraction/reflectron TOFor Fourier transformmass spectra. The
mass range can go from 0 to a few 100,000 Da if entire proteins
are measured, or it can be limited to masses smaller than a few
1,000 Da for small peptides or peptides fragments. Mass spectra
have several imperfections, which can complicate their inter-
pretation. Despite the large number of different types of mass
spectra, there are some common themes a data analyst has to deal
with, and some of these are listed below:

* Chemical noise: Matrix-assisted laser desorption/ionization
(MALDI; Karas & Hillenkamp, 1988) spectra sometimes
contain a high amount of chemical background noise
produced by clusters of matrix molecules that are abundant
in the sample mixture (Krutchinsky & Chait, 2002). If the
protein/peptide mixture is very complex, many weak and
overlapping protein/peptide signals will be assigned to the
chemical noise, since they are not distinguishable from it.
Many mass spectra also contain impurities, that is,
molecules that are not proteins or that do not
originate from the original biological sample, but from
sample preparation or contamination. Examples of such
contaminants are polymers, keratin (or other proteins from
human skin, hair, or clothing), and trypsin (used to cleave
proteins into peptides). Chemical noise is also present in
electrospray ionization MS (ESI, Fenn et al., 1989) due to
buffers and solvents. If coupled by means of liquid
chromatography (LC), chemical noise can be very
abundant at the beginning and at the end of the elution
process.

* Baseline: In MALDI spectra, chemical noise can be very
abundant in the lower mass range causing a strong upward
drift in the baseline of the mass spectra, which falls off
rapidly with increasing mass. In ESI spectra, chemical
noise can form a bump in the baseline in the intermediate
mass range.

* Multiple charge states: Peptide ions produced by ESI often
carry a different number of elemental charges (charge
state) and especially large denaturated protein ions
produce a broad distribution of charge states. Since a MS
instrument measures the mass over charge ratio, the
corresponding protein will be found many times in the
spectrum, potentially overlapping with signals of other
proteins. Multiple charge states are much less important
for MALDI, but can also be seen for large proteins.

* Mass-dependent sensitivity: Most of the currently used ion
detectors are based on the electron multiplier technology.
The signal produced by these detectors depends on the
speed of the ion and not on its kinetic energy (Peng, Cai, &
Chang, 2004). Since all ions of the same charge have the
same kinetic energy after acceleration, heavier ions are
slower and produce a weaker signal (the signal intensity
should approximately diminish with the inverse square
root of m/z). Additionally, the resolution of many
instruments is also mass dependent.

* Chemical adducts and fragmentation: Large proteins
measured by MS are often not pure, but carry chemical
adduct ions (e.g., sodium and potassium, solvent, or matrix
ions), which stem from the sample preparation. For large
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proteins, this can create a distribution of m/z values, which
is broader than the one expected for pure proteins.
Especially in MALDI, a protein may also fragment, that
is, lose some of its side chains or amino acids, which can
also contribute to signal broadening.

* Reproducibility: In MALDI, the signal intensity depends
strongly on the laser power, on the amount of sample used,
and on the quality of the matrix crystals. Repeated
measurements may, therefore, result in largely different
absolute intensities. However, if the sample preparation
conditions are carefully controlled, good reproducibility
can be obtained. Similar facts hold for ESI and other
techniques. Since mass spectra measure the outcome of a
statistical process they are subject to statistical fluctuations
even if experimental conditions are exactly the same.
Therefore, peptide signal intensities as well as relative
intensities of isotopic clusters can vary significantly
between measurements especially if the abundances of
the peptides are low.

* Ion suppression effects: The signal intensity of a protein/
peptide depends strongly on its chemical composition.
Especially if the analyte concentration exceeds a certain
threshold, analytes producing intense signals can suppress
the signals of other analytes, which are less suitable for
ionization. These effects can be seen in MALDI (Kratzer
et al., 1998) and ESI (King et al., 2000; Tang, Page, &
Smith, 2004) experiments. The signal intensity of certain
analytes does not depend linearly on the initial concen-
tration, but is influenced in a complex way by the
concentration of other analytes.

* Calibration: As the mass spectrometer measures the times
of detector events, these times have to be converted into
m/z values by the application of equations describing the
physics of the ion separation process. Some of the
parameters entering these processes are only approxi-
mately known (e.g., initial velocity and position of the
ions) or are neglected in the equations. This can lead to
slight shifts in the calculated masses.

The recent discussion on biomarker detection by means of
surface enhanced laser desorption/ionization TOF (SELDI-MS)
emphasized the relevance of data preprocessing for the
classification of mass spectra from healthy and diseased patients
(Fung & Enderwick, 2002; Petricoin et al., 2002; Baggerly et al.,
2003; Hilario et al., 2003;Wagner et al., 2004). Baggerly,Morris,
and Coombes (2004) showed that differences in data preproces-
sing methods could severely change the outcome of the
classification task. Especially baseline correction, mass calibra-
tion, intensity normalization, and variable selection methods are
crucial and should be carefully evaluated for each application.
Data preprocessing is equally important in other proteomic
applications. For protein identification by means of peptide mass
fingerprinting (PMF) or peptide fragmentation fingerprinting
(PFF or MS/MS), the quality of the peak lists will directly
influence the quality of the peptide or protein identifications
(Blueggel, Chamrad, & Meyer, 2004).

Many proteomic experiments are performed on a large
scale, that is, hundreds of mass spectra are acquired from the

original sample. This makes it possible to use correlations
between these spectra in order to improve data preprocessing. In
one application dubbed the ‘‘molecular scanner’’ (Bienvenut
et al., 1999; Binz et al., 1999) proteins purified by 2-dimensional
gel electrophoresis were digested and mapped onto a membrane,
which was scanned on a fine grid by a MALDI-TOF instrument,
that is, a PMF was measured at every grid site. The grid spacing
was much smaller than the size of detectable spots, and signal
intensities were correlated between neighboring grid sites
making it possible to smooth out intensity variations and to
implement data processing steps that were able to improve the
mass calibration, to discard chemical contaminants as well as to
detect and separate overlapping protein spots with high
sensitivity (Muller et al., 2002a). Information gained from these
steps could be incorporated into the protein identification score,
which enhanced the specificity of the database search (Muller
et al., 2002b).

Data preprocessing can increase specificity and sensitivity
of automatic peptide/protein identification for MS/MS data as
well. Gentzel et al. (2003) investigated the influence of peak
clustering, contaminant exclusion, deisotoping, clustering of
similar spectra, and external calibration on protein identification.
The first step was necessary since the high resolution of the mass
bins ofQ-TOFspectra sometimes split peaks apart. Togetherwith
the next three steps this led to a reduction in complexity of the
mass spectra and made the search more specific.

Besides gel electrophoresis, LC is the most important
protein separation technique in proteomics. Its advantage is the
speed and flexibility, which makes it possible to serialize
different LC methods for multidimensional separation
(Washburn, Wolters, & Yates, 2001). It can be used with ESI or
MALDI, but LC-ESIMS is most often applied. In this technique,
a mass spectrum is acquired for every time step, which is usually
smaller than the elution time of a peptide. Since peptide signals
have a specific shape in time as well as inm/z dimension, they can
be distinguished from chemical noise (Hastings, Norton, & Roy,
2002). LC-MS data are often used for comparative studies, and
data preprocessing and calibration methods were essential in
order to obtain good results. Li et al. (2003) analyzed data with
isotopically labeled peptides (isotopically coded affinity tags,
ICAT), where peptide from two samples are labeled with
different mass tags and then mixed for relative quantification.
Wang et al. (2003) compared LC-MS data from different samples
directly—a procedure, which critically depends on the correct
alignment of the datasets.

Preprocessing of mass spectra can roughly be divided into
several subtasks (quality assessment, baseline correction,
smoothing, noise estimation, peak detection, intensity normal-
ization, and calibration), which are described in the following
sections. However, the authors are aware that these tasks are not
independent, and several combinations of different solutions of
these subtasks may have to be tested in order to find a good-
preprocessing method. Some iterative strategies evaluate the
results obtained after identification in order to refine data
preprocessing. If inconsistencies or missing values appear, data
preprocessing is reiterated with different settings until a
consistent solution is obtained. Graber et al. (2004) described
an example of such a result driven strategy for protein
identification and relative quantification.
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B. Spectrum Quality Assessment

Quality assessment is the first very important step in data
analysis. Detecting spectra with low signal-to-noise ratio helps
instrumentalists to adjust their experimental settings, and it
allows the data analyst to exclude them from further processing.
Data visualization is an easy and rapid way to assess measure-
ment quality, and appropriate visualization techniques can reveal
structure in the data, which would be very difficult to detect by
purely computational approaches. Heat maps, in which all the
spectra are plotted side-by-side and the intensity is represented on
a gray scale, are very useful for comparative studies (Baggerly,
Morris, & Coombes, 2004). They reveal peaks that can be
detected in many spectra as vertical bands. If zoomed into, they
show the alignment of the peaks and provide hints whether the
masses arewell calibrated. In LC-MS experiments the spectra are
ordered according to their elution time, which allows a natural
representation of the data. These 2-dimensionalmaps, sometimes
called virtual gels in analogy to 2-dimensional gel electrophor-
esis, can be annotated with data obtained from MS/MS peptide
identifications (Li et al., 2004). The maps can be depicted as
2-dimensional grey scale images or as 3-dimensional landscapes
(eagle view or surface plots). Similar to microarray or
electrophoretic approaches, two LC-MS maps from different
samples can be color coded as red and blue images and overlaid.
The resulting image shows upregulated or downregulated
peptides as red or blue, respectively, and the unchanged peptides
as dark magenta (Tammen et al., 2004). To make this approach
work, the two LC-MS runs have to be well aligned. One way to
check the alignment graphically is to calculate the covariance of
all mass spectra in one run with all mass spectra in the other, and
to depict the covariance matrix as a contour plot. Off diagonal
signals in this matrix indicate alignment errors (Bylund et al.,
2002). Multivariate data visualization techniques can be used to
explore large numbers of spectra. Principal component analysis
(PCA) or discriminate coordinate analysis can project the data
onto a 2-dimensional subspacewith minimal loss of information,
and outliers can be detected visually (Hastie, Tibshirani, &
Friedman, 2001; Coombes et al., 2003).

Multivariate methods can control the quality and detect
outliers automatically. Coombes et al. (2003) used the Mahala-
nobis distance in the space of the first six principal components,
which accounted for 80%, and a w2 test to successfully detect
outliers in SELDI chip data. In the same paper, an analysis of
variance (ANOVA) of a good-quality replicate dataset obtained
on different chips and different days showed that the variance due
to chip-to-chip, day-to-day, or spot-to-spot differenceswasminor
compared to the peak-to-peak differences inherent in the mea-
surement, which explained about 90% of the total variance. For
replicatemicroarray data,Model et al. (2002) applied a statistical
test based on robust PCA in order to detect failed experiments.

In large scale-protein identification experiments hundreds of
MS/MS spectra are measured. Detecting and discarding low-
quality spectra from further processing saves computing time and
lowers the false-positive rate. On the other hand, detecting high-
quality spectra that failed to be identified indicates that peptide
identification should be tried with a different method. Sadygov
et al. (2002) defined a score based on the number of ion pairs that
add up to the parentmass and showed that low-scoring spectra are

of lesser quality. A similar score and a set of other scores such
as the number of peaks, total peak intensity, the number of ion
pairs that have an amino acid mass difference or a neutral loss
mass difference were used to classify spectra into good or bad
ones (Bern et al., 2004). The performance of this handcrafted
classifier was then compared to an off-the-shelf support vector
classifier, and it was found that both methods gave similar results
being able to correctly classify 90%of the good and about 70%of
the bad spectra.

C. Baseline Correction, Smoothing, and Noise
Estimation

Roughly, a mass spectrum consists of signals, baseline, and
noise (Fig. 1a). The signals are produced by the peptides,
proteins, and contaminants present in the sample; the baseline is
the slowly varying trend under the spectrum; and the noise
consists of chemical background (usually small, except for MS/
MS spectra), electronic noise, signal intensity fluctuations,
statistical noise, warping of the signal shapes (due to over-
charging in ion traps), and statistical noise in the isotopic clusters
(see below). Signals, baseline, and noise can never be totally
separated. The baseline, for example, can depend on the presence
of large and intense signals as well as on abundant low-intensity

FIGURE 1. Two views of a matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF)mass spectrum. a: TheMALDI-TOFmass
spectrum clearly shows the baseline drift and the signals sticking out of
the noise. b: Zoom of the same spectrum, which shows the signal of
peptide STQVYGQDVWLPAETLDLIR surrounded by chemical noise.
The dotted line indicates the baseline calculated by a Top-Hat filter.
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noise. Noise can be quite intense and is sometimes impossible to
distinguish from real signals.

In order to provide a model for a mass spectrum S(t) or
S(m/z), the contributing terms have to be simplified and are
considered as additive and independent. The first term is a sum of
independent signals produced by peptides and contaminants.
Each signal can be modeled as isotopic clusters (see below) for
high-resolution spectra or have a peak-like form for low-
resolution spectra and high masses. Each measurement produces
spectra of different overall intensity, and the intensity of every
single signal is subject to fluctuations as well, which can be
modeled by a global random factor d and an individual random
factor gi for every signal i, both of which have a mean value of 1.
The second term is the baseline bd, which depends on the m/z
value and d. The third term ed describes additive noise (mostly
chemical noise), which is also dependent on the m/z value and d.

SðxÞ ¼ d
X

i

gi $ Ii $ siðx; pi; zi; riÞ

( )

þ bdðxÞ þ edðxÞ ð1Þ

where x is either time t or m/z, and si is the ideal mean signal of
peptide (or contaminant) pi with charge zi and mean intensity Ii.
The signal also depends on the resolution ri of theMS instrument,
which may be mass dependent (therefore the index i). This
dependency can be accurately approximated by convoluting the
isotopic cluster with the peak shape of the spectrometer (a
Gaussian shape works well for MALDI spectra, FT instruments
produce Lorentzian peaks). Since m/z is measured, them/z value
of a signal with charge z is reduced by a factor z, and the signal is
compressed by a factor z leading to a spacing between isotopic
groups of 1/z (Fig. 3). This spectrummodel neglects warping and
fluctuations of the signal shapes, but for most applications it is
general enough. However, its assumptions have to be verified for
each type of MS data. A discussion of the various components
and how to estimate them is presented in the following sections.

1. Baseline correction

The most important parameter for baseline estimation is the
maximal width a signal can have. This width is mass dependent
and can depend on the presence of intense or overlapping signals.
For TOF data, the signal width increases with the mass, but a
logarithmic transformation of the mass values reduces this
dependence, which facilitates baseline correction and peak
detection (Tibshirani et al., 2004). High pass filters implemented
with fast Fourier transform (Press et al., 1995) or filters from
mathematical morphology (Breen et al., 2000; Soille, 2003), for
example, the Top-Hat filter, can be applied. The latter method is
very easy to implement since one only has to calculate the
minimum intensity in a sliding window in the first run and the
maximum intensity in the second run. Coombes et al. (2003)
combined baseline correction and peak detection into a two-step
algorithm. First, peaks are detected and subtracted from the
spectrum, and the baseline is calculated as a piecewise constant
interpolation of local minima. After baseline subtraction, peak
detection is run again with newly calculated noise levels.

Another interesting way to design baseline filters is based on
wavelet theory (Shao, Leung, & Chau, 2003). The wavelet
method transforms the mass spectrum into a hierarchical

representation with different scales, and it allows rapidly
accessing the data at a certain mass and resolution. Filters that
discard thewavelet coefficients above a certain resolution,maybe
in a mass-dependent manner, could be used to estimate the
baseline. It should also be possible to detect slow oscillations in
the baseline, which can occur at higher masses in SELDI spectra.

All of these non-parametric baseline detection algorithms
have difficulties to correctly predict the height of the peak in the
following situations: if a small peak sits on top of a large and
broad peak, or if several larger peaks overlap. In the former case
the envelope of the large peak forms the baseline for the smaller
one, and in the latter case the baseline stays on the base level even
if the width of the total signal is much larger than the expected
signal width. A parametric approach that operates with a signal
model could alleviate these problems, but it would be difficult to
apply if spectra are overcrowded with peaks (Fig. 2).

FIGURE 2. Smoothing of (SELDI) spectra: for this type of data, it is
difficult to distinguish signal from noise. The strength of the smoothing
defineswhich peaks are discarded andwhich ones are selected for further
processing. a: The smoothingwas carried out using thewavelet smoother
described in Coombes et al. (2004) (free download from http://
bioinformatics.mdanderson.org/cromwell.html). The dashed line corre-
sponds to weak (threshold value 6), the solid line to stronger (threshold
value 60) smoothing. The number of peaks changes significantly
between the two methods. b: The estimated noise, which is the original
minus the smoothed curve (threshold 60), shows somemass dependence
for lowmasses. This could be a true feature of the noise, but it could also
indicate that the smoothing is too strong for low masses. The noise
estimated with threshold 6 is much smaller and does not seem to be mass
dependent (data not shown).
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2. Smoothing and noise estimation

First we focus on additive noise, whereas further methods to
estimate multiplicative noise and remove impurities will be
discussed further down. After an appropriate smoothing method
has been applied, additive noise can be estimated by calculating
the expected deviation of the rawdata from the smoothed curve in
a mass window (Fig. 2b). If the noise is estimated in a region
where signals are present, it is preferable to use a robust
calculation of the deviation, for example, by using percentiles
(Satten et al., 2004). Variousmethods for smoothing spectra have
been developed. It is important that a smoother preserves the peak
shape or at least its mean mass and width (first and second
moment), especially for high-resolution spectra where the
isotopic peaks are visible. Hastie, Tibshirani, and Friedman
(2001) discuss smoothing splines, wavelet smoothing, and kernel
methods such as locally weighted linear regression. The last
method encompasses popular smoothers such as the Gaussian or
the Savitzky–Golay smoother (Savitzky & Golay, 1964). In the

latter method, a polynomial is locally fitted to the data for each
smoothed value, and for polynomials of degree n it can be shown
that the first nmoments of a peak are preserved. As an extension
of the algorithm, the window width and the degree of the
polynomial can be defined adaptively for every mass region
(Barak, 1995). In a classic paper, Cleaveland (1979) presented a
robust version of local weighted regression, where the poly-
nomial is fitted using robust, iterative regression. Coombes et al.
(2004) proposed a discrete wavelet approach with hard thresh-
olding, which worked well for low-resolution SELDI spectra
(Fig. 2). Filters taken from mathematical morphology are
attractive as well, since they are fast and easy to implement with
only very few parameters, although their results can be quite
jagged (Breen et al., 2000).

Estimation of themultiplicative noise and its dependency on
the signal intensity is a different problem. In the best case, a large
number of replicate spectra are available and the variation of the
signal intensities can be estimated by calculating the variance
over the replicates for each signal separately. However, if only a

FIGURE 3. Theoretical signal shapes: The mean signals si of peptide STQVYGQDVWLPAETLDLIR
were calculated by themethods described inRockwood,Orden, and Smith (1995) andRockwood andOrden
(1996). a: The singly charged distribution convoluted with a Gaussian of width 0.2 (full width at half
maximum (FWHM)& 5,700). The inset shows the fine structure 5th isotopic group at a very high resolution,
which is out of reach for standard instruments. b: The same peptide, but with charge z¼ 2. The dashed line
corresponds to FWHM& 3,000 and the solid line to FWHM& 5,700.
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small number of replicates are at hand, the variance estimate is
not precise and often too small. If one assumes that the variance is
a smooth function of the signal intensity only and does not
depend on the peptide, then signals of similar intensity can be
pooled, and thevariance can be estimatedwithin these pools (Jain
et al., 2003). For duplicate data the intensity pairs can be
represented as a scatter plot, and noise can be estimated, for
example, by the deviation from a smoothed curve. Three similar
methods for variance estimation in duplicates, all based on
pooled estimates of the variance, are compared for microarray
data in Huang and Pan (2002).

In many experiments, spectra are not independent, and the
correlation between them can be used for smoothing and to
discard chemical noise or contaminants. If a set of spectra is
acquired under the same experimental conditions, but with
different analytes, the peaks that can be detected in most of the
spectra are probably due to sample preparation and not related to
the analytes (Chamrad et al., 2003). In the molecular scanner
application, the 2-dimensional patterns of the signal intensities
revealed whether they could be attributed to chemical noise or
impurities (Muller et al., 2002a,b). A similar situation holds for
LC-MS experiments, where the subsequently measured spectra
are highly correlated and where the elution profiles often show
different patterns for chemical noise than for true analytemasses:
analytes elute over a short time and show a smooth profile,
whereas chemical noise either has a spiky profile or forms a
slowly varying background signal. This fact has been used by a
series of algorithms designed to purge chemical noise from this
type of data. Andreev et al. (2003) smoothed the time domain in
LC-MS data using a matched filtering technique, which
suppresses the additive noise in the Fourier domain taking into
account its frequency characteristics. The component detection
algorithm (CODA) by Windig, Phalp, and Payne (1996)
calculated statistical descriptors to discardmasses showing noisy
elution profiles. CODA can effectively clear chemical noise
masses present at the beginning and end of a LC run. However,
there is a chance that analyte signals are discarded as well if they
have the same mass as chemical noise. The 2-dimensional
structure of the data matrix in LC-MS experiments facilitates
smoothing, since a signal must match in both dimensions. PCA
separates the smoothed signals (first PCs) from noise (higher
order PCs) if applied to the data matrix (Lee, Headley, & Hardy,
1991). Muddiman et al. (1995) developed the sequential paired
covariance (SPC) method based on the correlation between sub-
sequent spectra as a filtering criterion, which allows suppressing
noisy spectra. However, since the original signal intensities are
replaced by the correlation score, quantitative information is lost
in the transformed data. Fleming et al. (1999) reviewed and
compared different LC-MS smoothing methods: CODA, PCA,
SPC, and their own method based on SPC, which considers only
signals that are correlated over time windows of the expected
signal width, but not over larger windows.

Data measured in large-scale experiments are often
redundant, and several spectra of the same analyte are measured.
In LC-MS experiments several spectra of a peptide are obtained
during its elution. A peptide can also elute in different forms at
different times and be chosen more than once for fragmentation
analysis. In order to enhance the signal-to-noise ratio, the
redundant information can be compiled. If all spectra contain the

same analytes with similar intensities the best way to combine
them is to calculate the average spectrum. However, if the spectra
have different intensities low-intensity spectra contribute more
noise than signal to the sum and should be omitted. Zhang and
McElvain (1999) showed for Gaussian profiles and constant
noise that only those spectra should be considered, which are
more intense than about 40% intensity. If the shape of the elution
profile is known, a matched filter can even further enhance the
combined signal.

If the identity of the spectra is not known, an unsupervised
clustering approach can yield groups of similar spectra, which
can be combined for better signal-to-noise ratio. Gentzel et al.
(2003) and Beer et al. (2004) described such an approach for LC-
MS/MS data (see also Venable et al. (2004)). For 2D gel data,
clustering PMF spectra can reveal the similarity of spots without
knowing their identity. Additionally, it allows determining
which masses stem from a spot itself and which come from
overlapping spots (Schmidt et al., 2003). In the framework of the
molecular scanner technique masses (and not spectra) are
grouped if they have similar 2-dimensional profiles. This proved
to be very useful for sensitive protein spot detection and
separation of eventually overlapping spots. It could also largely
improve a PMF scoring system, since peptide masses from a
protein should have similar 2-dimensional profiles, and random
matches to masses from chemical noise or overlapping protein
spots could be discarded due to their different profiles (Muller
et al., 2002a,b).

D. Peak Detection and Charge State Estimation

Mass spectra usually contain several 10,000 up to 1,000,000
sampling values. However, intensity values are correlated since
mass signals are usually much broader than the sampling width.
Also, mass spectra can contain large regions that do not contain
useful information. Extracting the relevant signals from a mass
spectrum is, therefore, ameans to reduce its very large dimension
to a more manageable size of several hundred features.

Attempts to classify SELDI spectra using raw data directly
(Petricoin et al., 2002) have to consider the ‘‘curse of
dimensionality’’ (Somorjai, Dolenko, & Baumgartner, 2003),
and the results have to be analyzed critically (Baggerly et al.,
2003; Sorace & Zhan, 2003). A difficulty with the whole
spectrum approach in biomarker discovery studies is its lack of
interpretability. If one detects a significant difference between
two groups of spectra that lies in a noisy region, how could this be
explained, and how could a potential biomarker molecule be
extracted from this knowledge? Or if the differences are found
only in the flanks of a peak: is this due to overlapping peaks, due
to a change in the chemical composition of the ion reflected in a
different peak shape or just due to different mass calibration?
Therefore, many authors use peak detection before further
analysis is carried out (Fung & Enderwick, 2002; Hilario et al.,
2003;Wang et al., 2003; Yasui et al., 2003; Coombes et al., 2004;
Tibshirani et al., 2004), although other strategies such as simple
m/z binning were also applied (Purohit & Rocke, 2003). Prados
et al. (2004) investigated the influence of peak detection
thresholds in SELDI spectra on the classification performance.

For protein identification by means of PMF or PFF, the
quality of the peak lists defines the error rate of protein
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identifications (Gras et al., 1999; Gentzel et al., 2003), since peak
lists containing too many insignificant entries will have a low
specificity in the identification process, whereas missing peaks
will impair the sensitivity. The precision of the measured mass
value is crucial for a good-specificity of protein identification by
MS (Clauser, Baker, & Burlingame, 1999).

1. Isotopic distribution

The ideal signals produced by peptides or proteins are isotopic
clusters, that is, the ensemble of all isotopic masses of a peptide,
weighted with their frequency of occurrence in the biosphere.
Isotopic masses group aroundm/z values of (m0þ i)/zDa, where
m0 is the so-called monoisotopic mass and i¼ 1, 2, . . . , n. Within
each group neighboring isotopicmasses differ by less than 0.01/z.
The measured signal consists of the isotopic masses convoluted
with the peak shape of the instrument. The width of the entire
isotopic cluster goes from 1Da for small masses (&100 Da) up to
more than 50Da for 100,000Da (it raises approximately with the
square root of the mass). Depending on the resolution of the MS
instrument single isotopic peaks are either distinguishable or they
melt into broader peaks containing several isotopes (Fig. 3). For
singly charged peptides, modern MS instruments can clearly
resolve the isotopic groups at m0þ i Da for m0 up to several
thousand daltons, and Fourier transform ion cyclotron resonance
(FTICR) spectrometers are even able to resolve isotopic fine-
structure within these groups (Shi, Hendrickson, & Marshall,
1998).

The isotopic distribution of peptides of known sequence can
be calculated using tables containing the masses and abundances
of isotopes of each element. Rockwood, Orden, and Smith (1995)
and Rockwood and Orden (1996) presented an elegant and very
fast solution to the problem, which represented the isotopic
distribution of a peptide as a convolution product of elementary
distributions and used the fast Fourier transform method for its
calculation. However, in most applications the sequences of the
peptides are not known before peak detection, and an isotopic
distribution typical for the investigated mass range has to be used
(Berndt,Hobohm,&Langen, 1999;Gras et al., 1999;Breen et al.,
2000). Fortunately, peptides of similar mass but different
composition usually have similar isotopic distributions (espe-
cially in the fist two isotopic groups), and a distribution averaged
over peptides within a mass range (say 100 Da) provides a good
approximation.

2. Peak detection

In the parametric approach to peptide signal detection, amodel of
a peptide signal is matched against the raw data, and where the
match exceeds a certain threshold a signal is assumed to be
present. The model may contain various parameters, such as
offset from baseline (to correct errors in baseline subtraction),
signal height, width of the isotopic peaks (Berndt, Hobohm, &
Langen, 1999; Gras et al., 1999), and charge state for ESI spectra
(see next section). Gras et al. used a matched filter approach to
locate potential peaks and then performed a non-linear regression
to adjust the peak width and height. The fitted models were then
subtracted from the raw data, and the algorithm was run again in
order to find overlapping peaks.

An isotopic distribution of finite peak width can be
considered as a linear transformation of a signal consisting only
of a sharp peak at themonoisotopicmass (mathematically it is the
product of two convolutions: the first produces the isotopic
distribution and the second blurs the sharp peaks). This
transformation can be inversed by mathematical techniques,
which are either based on Fourier transform methods such as
matched filtering (Palmblad, Buijs, &Hakansson, 2001;Andreev
et al., 2003) or on generalized inversion and regularization theory
(Mohammad-Djafari et al., 2002). The latter method was applied
by Zhang, Guan, and Marshall (1997), who used maximum
entropy regularization, and by Samuelsson et al. (2004), who
used constrained quadratic programming and a regularization
term that penalizes too many overlapping signals. Linear
inversion methods have the advantage that they can decompose
overlapping signals directly as long as these have the same charge
state, width and offset.

For high masses or low-resolution mass spectra the isotopic
peaksmay not bevisible and collapse into a single broad peak, the
shape of which may be distorted by fragmentation and chemical
adducts. In order to describe such a broad peak the isotopicmodel
may not be accurate, and more flexible approaches such as the
‘‘exponentially modified Gaussian’’ (Malmquist, 1994) or the
very flexible ‘‘empirically transformed Gaussian’’ (Li, 1997)
could be used. Shackmana,Watson, andKennedy (2004) took the
latter model to deconvolve overlapping peaks by means of non-
linear regression.

For low-resolution peaks, one could also refrain from using
parametric models. The easiest way to find broad low-resolution
peaks is to smooth the raw spectrum and then take those local
maxima which exceed a threshold value (Yasui et al., 2003;
Coombes et al., 2004). The first derivative indicates peak flanks if
it exceeds a certain threshold (Coombes et al., 2003; Shackmana,
Watson, & Kennedy, 2004). Wallace, Kearsley, and Guttman
(2004) presented a different technique to find summits and
valleys: starting with a straight line that connects the first and last
point in the spectrum, the algorithm finds the point in the raw
spectrum that is farthest from this line. It adds this point as a new
node in the piece-wise linear interpolation of the raw data and
repeats these steps until no significant peaks are left. Jarman et al.
(2003) used a statistical test to check whether the histogram
within a sliding window (ion counts vs. time or m/z bins)
resembles a uniform distribution or has a peaked shape. The test
considers baseline and noise in the raw data, and it is performed
for varying window width in order to cope with different peak
widths. For non-parametric peak detection there are two options
to quantify peaks: peak height or area above the baseline. Peak
height is less sensitive to disturbance by other overlapping
signals, but it neglects thewidth of the signal. Peak area considers
the full signal and averages out random noise, but beginning and
end of a peak have to be well defined.

One disadvantage of non-parametric methods is that they
cannot detect strongly overlapping peaks. Various filters used in
image processing, such as the ‘‘unsharp masking’’ and high pass
filters (Carroll & Beavis, 1996) or second-derivative filters
(Grushka & Israeli, 1990), allow enhancing the resolution of a
mass spectrum as well as removing the background. Fast Fourier
transform is a powerful tool to implement these filters and to
combine them with prior smoothing of the raw data. More
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recently, wavelet transforms have been applied to separate
overlapping signals (Shao et al. (1997); Shao, Leung, & Chau,
2003).Mohammad-Djafari et al. (2002) reviewed another way to
design these filters by means of inversion theory, where suitable
regularization techniques help limiting the high variance in the
filtered data.

Most of these algorithms use thresholds for signal to noise
ratios (or other scores) to exclude randompeaks.The threshold for
the signal-to-noise ratio can be obtained from statistical analysis
of the noise. The distribution of the noisy peak intensities can be
estimated for a certainmasswindow, and all intensities that have a
low P-value with respect to this distribution can be considered as
real peaks. Another option is to link the peak detection threshold
directly to the identification or classification process. Gras et al.
(1999) took a supervised learning procedure to obtain optimal
peak detection thresholds. The MS/MS identification software
Mascot (Perkins et al., 1999) evaluates several peak detection
thresholds and the one with the best identification P-value is
taken. Prados et al. (2004) investigated the influence of the peak
detection threshold on mass spectra classification.

3. Charge detection and charge deconvolution

MALDI spectra have the advantage that the charge state of
peptides is almost always z¼ 1. ESI, on the other hand, produces
multiply charged ions, and each peptide usually appears in
several charge states corresponding to different peaks in the
spectrum. For native globular proteins of known structure, the
charge state can be readily predicted since it correlates well with
the diameter of the protein (Felitsyn, Peschke, & Kebarle, 2002),
but denatured proteins or peptides can produce a broad
distribution of charge states depending on their chemical
composition (mainly the number of basic amino acids for the
positive ion mode).

For high-resolution spectra, the charge state can be directly
read from the spacing between isotopic peaks. Senko, Beu, and
McLafferty (1995) investigated two commonly used techniques:
Fourier transform frequency analysis and the Patterson trans-
form,which calculates the autocorrelation in the neighborhood of
a peak. The authors found that the combination of the two charge
state estimators provided better results over a wide range of
conditions. Zhang andMarshall (1998) replaced the autocorrela-
tion by a more robust score in order to determine the charge state
of isotopic clusters. However, especially for low-resolution
spectra or noisy spectra and overlapping peaks, the frequency
estimation can perform poorly, and it is better to find the charge
state whose isotopic pattern fits best to the data (Gentzel et al.,
2003; Li et al., 2003; Wang et al., 2003).

For low-resolution spectra, where the isotopic peaks are not
distinguishable, multiple charge states can be an advantage since
the uncharged parent mass can be calculated more precisely as a
weighted sum of the measured m/z values of the different charge
states. If the peptide mass is not known, Mann, Meng, and Fenn
(1989) presented a simple charge deconvolution algorithm, that
yields the peptide mass m from a sequence of multiply charged
experimental masses. For all m, this algorithm simply calculates
all possible m/z values within the mass range and sums up the
intensities in the intensities at these values. It does this for all

masses, and the mass that yields the highest intensity sum is
believed to be the singly charged peptide mass. However, the
algorithm is sensitive to calibration errors, baseline, and noise. It
is also sensitive to outliers, and more robust measures have been
introduced (Reinhold & Reinhold, 1992). If many proteins are
present in the sample, it might be useful to transform multiply
charged spectra into singly charged ones. Zhang and Marshall
(1998) start with the most intense signal, determine its charge
state, transform the signal into a charge 1 signal in an artificial
spectrum, discard the processed signals in the original spectrum,
and go on to the next most intense peak, until all signals above a
certain intensity/noise threshold are processed.

For MS/MS experiments, the charge of the parent ion is an
important parameter for peptide identification, and search time
and efficiency can be improved if the charge state is known. For
high-resolution spectra, the charge can be determined by the
spacing between isotopic peaks, but this is often not possible for
low-resolution ion trap spectra. However, ions of different charge
states fragment differently, and one can try to determine the
charge of the parent ion from its fragmentation spectrum.
Sadygov et al. (2002) proposed a score, which counts for each
parent charge the fragment ion pairs adding up to the parentmass.
A different approach uses the fact that fragment masses are
always smaller than the parent ion mass. However, the m/z value
of fragment ions can be larger than them/z value of the parent ion
(at most by a factor of z), and the distribution of fragment m/z
values with respect to the parent m/z value was found to be
indicative for the parent charge state (Colinge et al., 2003).

4. LC-MS peak detection

LC-MS experiments record a mass spectrum for each step in
the elution time from the LC column, which produces data
that has a special 2-dimensional structure (Fig. 4). An ideal
LC-MS peptide signal can be represented as a bilinear form:
S(t,m/z)¼ S1(m/z)S2(t) where S1 is the mass signal (e.g., isotopic
peak cluster) and S2 is the elution profile (it is assumed that a
peptide elutes over several time steps). A real LC-MS signal
consists of a sumof isolated signals plus noise and baselinewhere
the noise has a different elution profile than peptides, which
makes it possible to distinguish it from signals. Although the
elution profile of a peptide is less well defined and less
reproducible than its m/z signal, a Gaussian shape is usually a
rather good approximation, but more flexible refinements were
proposed (Malmquist, 1994; Li, 1997). Peak detection in the time
domain is basically the same as peak detection in low-resolution
mass spectra, and it can be done in a non-parametric or
parametric way. In order to find signals in 2-dimensional LC-
MS runs, Hastings, Norton, and Roy (2002) presented a simple
method dubbed ‘‘vectorized peak detection,’’ which first
smoothes the SICs by a median filter and then considers only
those points in (t, m/z)-space that have a local maximum in t and
match a peptide signal in m/z-direction. Andreev et al. (2003)
used matched filtration in the time domain and scored each peak
by a multiplication of its time and mass domain scores.

The special bilinear structure of LC-MS data can either be
used to directly find the number of signals present, or for
smoothing or comparison with other experiments. In the absence
of noise the number of linearly independent components or the
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rank of the data matrix S(t,m/z) equals the number of signals
(Fraga, Bruckner, & Synovec, 2001). Generalized rank estima-
tion methods, which provide a robust estimate of the number of
independent components, therefore provide an estimate of the
number of signals. For small windows of LC-MS data that
contain a mixture of bilinear signals, PCA can yield pure 1-
dimensional signals (elution profiles and isotopic distribution).
However, the solutions are not well defined, and additional
constraints have to be defined (Kiers, tenBerge, & Bro, 1999).
This problem can be avoided if multi-way data are available, that
is, if the same measurement is repeated with different
concentration of peptides. Then multi-way decomposition
methods such as PRAFAC or Tucker3 provide the pure signals
of the analytes without ambiguity under mild regularity
conditions (Bro, 1997; Kiers, tenBerge, & Bro, 1999).

Certain analytes such as polymers or glycosylated peptides
can produce extended 2-dimensional patterns of peaks in a LC-
MS run. Polymer chains, for example, often have different
lengths, and these chains differ in a number of polymer units.
Since themass is directlyproportional to thenumber of units in the
chain, and the elution time is often a nearly linear function
of the chain length, these polymers form a nearly linear pattern
in the (t,m/z)-space. Marchetti et al. (2004) used the two-
dimensional autocorrelation function to detect such linear
patterns.

E. Intensity Calibration and Variance Stabilization

Even after baseline correction and smoothing, it is possible that
large experimental variations remain in the data, since the signal
intensities can change between experiments due to different total
analyte concentration or ionization efficiency, for example. In

order to even out these experimental variations signal intensities
are usually normalized, that is, the intensity values are
transformed to new values, which are less dependent on
experimental conditions. For MALDI/SELDI data the peak
intensities are often divided by the sum of all intensities (total
ion count or TIC) of the spectra in order to be less dependent on
variations in laser intensity or matrix crystal formation. Some-
times a single very abundant protein (e.g., albumin in human
plasma samples) can dominate theTIC,which should be excluded
unless its concentration is known to be constant, or a more robust
approach such as normalization by the median intensity of the
peaks has be considered. Another normalization strategy is to
replace intensities by their signal-to-noise ratios, where the noise
is estimated in a window around a signal (Satten et al., 2004).

The standard deviation of peak intensities depends on the
intensity itself, which makes the application of statistical tests
more cumbersome. Coombes et al. (2004) andWang et al. (2003)
found a linear dependence for SELDI and LC-MS data,
respectively. If the dependence is strictly linear, a logarithmic
transformation of the intensities will produce constant standard
deviation (it turns the multiplicative noise into constant additive
noise)-a property, which is called variance stabilization. Detailed
studies on the intensity dependence of the standard deviation
have been performed for microarray data. Durbin et al. (2002)
proposed a statistical model of fluorescence intensities, which
consists of background as well as a multiplicative and an additive
noise term. In this case the standard deviation s depends on the
mean intensity m quadradically (s2¼m2s1

2þs2
2), and a

logarithmic transformation cannot stabilize the variance any-
more for small intensities. However, the authors could show that
the arcsinh transformation, which approaches the logarithm for
large arguments, yields constant variance. The same findings

FIGURE 4. LC-MS data: this figure shows good-quality data, which contains very little noise. The elution
time is along the vertical andm/z along the horizontal axis. The inset shows a 3-dimensional surface plot of
themarked rectangle and reveals how four isotopic distributions smoothly elute over time. The images were
produced by the MSight LC-MS viewer, freely available at http://www.expasy.org/MSight.
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were obtained for a more general quadratic relation between
variance andmean intensity (Huber et al., 2002). The authors also
compare the arcsinh normalization with other approaches and
show its good performance for real microarray data. In a recent
paper, Anderle et al. (2004) studied noise models for LC-MS
experiments, and found that a quadratic variance/intensity
relation fits the data very well. On the other hand, Coombes
et al. (2003) found for a SELDI dataset that a cube root
transformation was most successful (among those transforma-
tions examined) at stabilizing the variance.

In many applications such as ICAT quantification experi-
ments the signal intensities of a peptide under different biological
conditions are compared. Statistical tests have to be developed in
order to find out whether peptides are significantly upregulated or
downregulated compared to random variations in the intensities.
This situation is very similar to cDNA microarrays experiments
(Yang et al., 2002) or to difference gel electrophoresis (DIGE)
applications (Kreil, Karp, & Lilley, 2004). For ICAT quantifica-
tion in large-scale LC-MS experiments, Li et al. (2003) assumed
that the majority of peptides do not change their intensity except
for a scaling factor common to all equally labeled peptides.
Further they assumed that the logarithm of the intensity ratios has
a Gaussian distribution for the unchanged peptides, and an
unsupervised fitting procedure yields a normalized Zscore andP-
value for each intensity ratio. In another LC-MS experiment that
was performed without labeled peptides, signal intensities of
peptides from different runs are compared directly (Wang et al.,
2003). The intensities of each run were normalized by a constant
factor in order to set the median intensity ratio equal to 1.
Intensity ratios have been studied extensively in the context of
microarray data. Chen, Dougherty, and Bittner (1997) deduced
the intensity ratio probability distribution under assumptions that
the intensities of each gene are normally distributed and the
standard deviation of the intensities are proportional to their
mean values, where the proportionality factor c is the same for
each gene and fluorescent. Under these assumptions, which can
to a certain extent be justified biologically, the intensity ratio
distribution does not depend on the mean intensity of a gene
making it possible to apply the same test to all genes. The authors
also proposed an iterative algorithm that corrects a constant
scaling factor for red or green intensities. Powell et al. (2002)
used Monte Carlo simulations to demonstrate the robustness of
this method with respects to violations of the tests main
assumptions (normality and constant c).

These applications assume that the differences of signal
intensities I of a peptide i between the two groups are mainly due
to a constant scaling factor k:I1,i¼ kI2,i for all i. However, small
intensities can be dominated by background term bi, and a better
relation would be I1,i¼ kI2,iþ bi. Chen et al. (2002) provided an
extension of their test including background correction terms,
which have an influence on geneswith a low signal-to-noise ratio.
In order to calibrate the intensities, the values of k and the mean
background b can be determined by a robust linear fit or a more
general relation I1,i¼ f(I2,i) can be obtained by applying a non-
linear scatterplot smoother to the intensity data (Yang et al.,
2002). Zien et al. (2001) presented a maximum likelihood
calibration algorithm to calculate scaling factors, which is based
on a normal distribution of intensity ratios and which works as
well for more than two groups.

F. Mass Calibration and Time Alignment

Calibration ofMSdata is a crucial step in data preprocessing. The
precision of the m/z values determines the error rate of protein
identifications (Clauser, Baker, & Burlingame, 1999; Chamrad
et al., 2003). In comparative studies, small shifts in them/z values
can blur the distinction between groups of samples. For example,
Baggerly, Morris, and Coombes (2004) showed the importance
of calibration issues for SELDI-TOF classification of ovarian
cancer samples. For LC-MS experiments, the relative variations
in elution time are usuallymuch higher than those inm/z. In order
to compare different LC-MS runs the elution times have to be
aligned (Wang et al., 2003). Since mass and time calibrations can
be performed independently and since they have to deal with
quite different problems, they will be discussed in separate
sections.

1. Mass calibration

As alreadymentioned in the introduction to this chapter, the times
of detector events have to be converted into m/z values. The
conversion formulas contain various experimental parameters,
some of which cannot be known exactly or are subject to
variations leading to errors in the m/z values. Vestal and Juhash
(1998) give a detailed discussion of these formulas for various
TOF configurations and calculate their dependency on initial ion
velocity and position, for example, two parameters, which cannot
be determined with certainty. If the flight times, the conversion
formulas as well as the flight times of some reference ions of
knownmass are available, unknown parameters in the conversion
equations can be defined by a fitting procedure (Christian,
Arnold, &Reilly, 2000). However, the exact conversion formulas
or reference times are not always available to the data analyst, and
other calibration methods have to be applied. Usually m/z errors
are quite small (less than 0.2% for linear TOFs down to less than
0.001% for Fourier transform instruments), and they can be
corrected approximately by a simple affine transformation (i.e.,
x0 ¼ axþ b) of them/z values if two or more referencem/z values
are provided (Egelhofer et al., 2000; Gentzel et al., 2003). Higher
order correction polynomials can substantially reduce the error
compared to an affine correction if many evenly distributed
reference masses are present (Gobom et al., 2002). However, if
only a few masses (less than 5) are present, first-order correction
is the safer method. For singly charged ions, peptide masses (up
to 4,000 Da) can be adjusted even in the absence of reference
masses since peptidemasses are not continuously distributed, but
are concentrated in narrow intervals separated by 1.00045 Da
(Gay et al., 1999). Amass correction can then be applied in order
to find as many masses as possible within these intervals (Gras
et al., 1999;Wool & Smilansky, 2002;Muller, 2003), and masses
outside the intervals can be discarded as outliers (Schmidt et al.,
2003). In the case of protein identification, PMF or PFF masses
can be adjusted in order to give the best match with theoretical
masses obtained for each candidate protein or peptide sequence,
respectively. Gras et al. (1999) and Egelhofer et al. (2002) used
robust linear regression to align theoretical and experimental
masses for each candidate protein and to discard outlier masses.
This allowed working with a much lower mass tolerance, and the
specificity of the search could be greatly improved.
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In many applications multiple mass spectra are measured
from the same sample and data processing is facilitated if they all
are aligned. Normally peaks are simply clustered together if their
mass difference is less than a certain value. Fung and Enderwick
(2002); Yasui et al. (2003), and Prados et al. (2004) discuss their
clustering strategies in some detail. Often not all spectra are
equally similar to each other, and it might be better to first align
the more similar spectra, for example, by first constructing a
similarity tree and then aligning the spectra following the tree
structure. In the molecular scanner approach, the 2-dimensional
topology of the MS data could be used. Since calibration errors
were quite smoothly distributed as a function of the position on
the membrane, mass deviations between neighboring spectra
were small and these spectra could be aligned more easily with
respect to each other. An iterative algorithm aligned each
spectrum with respect to its four neighbors until the mass
deviations were all evened out. Some spectra, which provided
many reliable reference masses, were used as anchor points in
order to force the algorithms to converge to the right values
(Muller et al., 2002a).

2. Time alignment in LC

Shifts in LC retention time are caused by different injection
timing (constant shift), slow and fast temperature fluctuations,
and flow rate changes. They are more irregular than mass
calibration errors, and a low-order polynomial may only be
sufficient to correct the trend in the errors but not the intermittent
fluctuations. An alignment strategy consists of a mapping
t0 ¼ f(t), which is able to correct these irregular deviations under
the condition that it neither reverses time order (monotonous
function) nor introduces sharp changes. Dynamic time warping
(DTW) is frequently used in signal processing tasks in order to
align warped signals (Aach & Church, 2001). It is based on a
dynamic programming algorithm, which finds a globally optimal
solution maximizing the similarity between two signals, but
which can be quite time- andmemory-consuming for large signal
vectors. Several authors used DTW to align LC data: Wang and
Isenhour (1987) used an integer valued warping function to
minimize the Euclidian distance between two signal vectors
under monotonicity constrains. Nielsen, Carstensen, and Smeds-
gaard (1998) developed the correlation optimized warping
(COW) algorithm, where they divided the signal into intervals.
These intervals were shifted, stretched, or compressed without
violation of monotonicity and continuity constrains, and the
authors used DTW to find the piecewise linear warping function,
which provides the best correlation between the two signals. In
order to overcome the computational burden of DTW Forshed,
Schuppe-Koistinen, and Jacobsson (2003) determined the end
positions of the intervals with a genetic algorithm (GA), which
finds a reasonably good solutionwithin a short time even for large
chromatograms. Eilers (2004) used polynomial timewarping and
developed an iterative algorithm in order to find the polynomial
coefficients that minimize the Euclidian distance between two
chromatograms.

The methods discussed so far compare raw chromatograms
(eventually baseline corrected and smoothed) without peak
detection. If the complexity of the spectra is not too high and there
is a clear correspondence between peaks in the two chromato-

grams, then the time shifts can be directly measured, and a time
alignment can be obtained by linear interpolation of these shifts
(Johnson et al., 2003). Malmquist (1994) proposed a similar
method where the chromatograms are first aligned using the
highest peaks, and then smaller peaks with a good correlation
between the two chromatograms are taken into account to refine
the calibration.

For LC-MS experiments peaks in the LC chromatogram can
be identified by their corresponding mass spectra, which should
provide a clearer distinction.Wang et al. (2003) used information
from both time andm/z dimensions in order to align elution times
by means of a DTWalgorithm. Bylund et al. (2002) presented a
modified version of the COWalgorithm adapted for LC-MS data,
where they used the covariance of mass spectra as the similarity
score used in the alignment.

III. A BIRD’S EYE VIEW OF CLASSIFICATION
METHODS

Biomarker discovery is aimed at finding a set of discriminatory
proteins to diagnose different states with respect to a given
disease. Such a diagnostic model can be built from mass spectra
of biological samples (e.g., serum), which have been labeled by
biomedical specialists, that is, assigned to one of several
predefined classes or disease states, for example, in the simplest
case, diseased (positive) versus control (negative). After the
preprocessing operations described in ‘‘Data Preprocessing’’
section, a collection of mass spectra is represented by an n' p
matrixX. Each of the n rows is a spectrumofp selected peaks, and
each cellMij contains the normalized intensity of the jth peak of
spectrum i. Associated with matrix X is a vector Y of n class
labels, which can be viewed as the (pþ 1)th column ofX; label Yi
Xi(pþ 1) is the class or disease state of spectrum Xi. The model
induced (or learned) from this labeled dataset will serve to
diagnose new cases (spectra), that is, assign them to one of the
prespecified classes. In data mining or machine learning terms,
diagnosis and biomarker discovery can be cast as a classification
task. The generic model of classification assumes:

* a generator of random vectors x, which are drawn according
to an unknown but fixed probability distribution, P(X).

* a supervisor which assigns output values, class labels, y, to
the x random vectors, according to an unknown but fixed
conditional probability distribution P(YjX).

The pairs (x,y), drawn from the probability distribution
P(X,Y)¼P(YjX)P(X), constitute the learning space. The task of
the learner is to build a classifier, in other words, an
approximation of Y as a function of X and a set of model
parameters y in a space of hypotheses (Fig. 5).

Generative approaches model the class-conditional densities
p(xjyi) and the priors p(yi), and then use Bayes’ theorem to
estimate posterior class probabilities p(yijx)¼ p(xjy)p(yi)/p(x)
where p(x) serves to normalize the result to the [0,1] interval.
Discriminative approaches make no attempt to model the under-
lying joint data distribution but model posterior class probabil-
ities directly; that is, they assume some functional form for
p(YjX) and estimate its parameters directly from the training data.
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The generative/discriminative distinction applies to base
level learning approaches or models. Very often, ensemble
approaches improve classification performance by building
committees of such base models and combining their responses
in some way to output a common, more informed decision.

A. Generative Approaches

Generative models are so-called because they express a
hypothesis about how the data were generated. Naı̈ve Bayes is
a simple classifier that assigns a case x to the most probable class
given x. The method uses Bayes’ theorem to compute the
posterior probability of each candidate class yi. Naı̈ve Bayes
owes its name to the simplifying hypothesis that all variables are
mutually independent. Thus the class-conditional density of the
data is computed as the simple product of the individual class-
conditional densities of the variables. In short, learning a
classifier reduces to estimating class priors and class-conditional
densities; classifying a new case consists in using these
estimations to compute the posterior of each class and selecting
the class with the highest posterior probability.

Other density estimation methods come in different flavors
based on initial assumptions about these densities. Parametric
approaches assume the data to have been generated according to a
given probability distribution specified by a set of parameters.
For instance, linear (LDA) and quadratic discriminant analysis
(QDA) assume that the class densities are Gaussian. The
distinction between the two arises from a second assumption
regarding class covariance. If the classes have a common
covariance matrix, the class boundaries (or decision boundaries)
become linear in x; the discriminant function for a given class k is
defined as

dLDAk ðxÞ ¼ xT
X(1

mk (
1

2
mTk

X(1

mk þ log pk

Otherwise the discriminant remains quadratic in x:
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2
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In both cases theGaussian parameters are estimated from the
training data, and x is assigned to argmaxkdk(x) (see Hastie,
Tibshirani, & Friedman (2001) for further details).

For less well-behaved data, non-parametric approaches
make no prior assumptions and estimate densities in a purely
data-driven manner. Kernel density estimation and K-nearest-
neighbor classifiers are non-parametric approaches that estimate
densities in the local vicinity of a new case. In kernel density
estimation (KDE, also known as Parzen windows), a kernel
function (e.g., a Gaussian) is centered on each training case; the
width of the kernel, a user-specified parameter, determines
the region of influence of each case. To classify a new example,
the class-conditional density at its precise location in instance
space is estimated as the sum of all other individual densities
whose region of influence encompasses the new location. In
K-nearest neighbors (KNN), the size of the local vicinity is
determined by the user-defined parameter K, the number of
neighbors to be considered. No internal model is built; learning is
simply storing the training cases. To classify a new case, its KNN
(i.e., the K cases most similar to it in terms of predictive variable
values) are identified using a similarity metric such as Euclidean
distance. The new case is assigned to the most frequent class
among these K neighbors. While no probability densities are
explicitly computed as in kernel density estimation, KNN
classification can be viewed as delimiting a sphere-like region
centered on the query case and estimating the posterior
probability of the class within that region (Duda, Hart, & Stork,
2000).

B. Discriminative Approaches

Discriminative approaches build a direct mapping from inputs to
class labels or model posterior class probabilities without
modeling the underlying joint probability density. Logistic
regression models class posteriors using a function that is linear
in x:

PðY ¼ yi X ¼ xj Þ ¼ 1

1þ e(ðaþbTxÞ

In the binary case, the logit transform of the above model
yields the linear discriminant function:

dðxÞ ¼ aþ bTx

such that x is assigned to the positive class if d(x)> 0.
Algorithmically, the parameters (a, b) can be fit to the data
either by maximizing the conditional likelihood

Pn
i¼1 log pðyðiÞj

xðiÞ; a; b:Þor byminimizing the 0–1 loss
Pn

i¼1½IðIðdðxðiÞÞ > 0Þ 6¼
yðiÞÞ*, where the indicator function I(.)¼ 1 if its argument is true,
0 otherwise.

The perceptron is another simple discriminative classifier.
To separate two classes y1 and y2, it computes a linear
combination of its inputs. Each input variable is assigned a
weight or coefficient; if the sum of theseweighted inputs is above
a given threshold, the example is assigned to class y1, otherwise it

FIGURE 5. Classification as a supervised learning task. The training
data are assumed to be drawn from an unknown probability distribution
P(X) and the class labels from P(YjX). A learner builds a function that
estimates the joint distribution P(X,Y) to predict a class ŷy for a new
instance x.
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is assigned to class y2. Learning consists in finding the
appropriate weights so that the resulting hyperplane (i.e.,
(d(1)-dimensional surface in d dimensions, for example, a line
in 2 dimensions) effectively separates the classes. The perceptron
learning algorithm starts with a random initialization of these
weights and iteratively adjusts them until a prespecified criterion
is met (e.g., error is below a given threshold). Since perceptron
learning builds hyperplanes to separate classes, it fails whenever
the data are not linearly separable. Many of the artificial neural
networks (NNs) (Bishop, 1995) now available are extensions that
overcome this limitation. For instance, multilayer perceptrons
add hidden units with non-linear (e.g., sigmoid) activation
functions in order to build arbitrary non-linear class boundaries
and solve more complex classification problems.

Support vector machines (SVMs) (Vapnik, 1998) are a more
recent and extremely powerful example of the discriminative
approach. Their underlying principle (called structural risk
minimization) defines the true risk or error of a classifier as the
sum of the empirical (or training) error and a term that quantifies
the capacity or complexity of the learnedmodel. There is a trade-
off between the two terms: overly simple models incur high-
training error but increasing model complexity can entail
overfitting and hurt generalization. To minimize generalization
error, we need to attain the lowest empirical errorwith the lowest-
capacity model suited to the available training data. For 2-class
problems, it has been shown that the model, which meets this
requirement is a hyperplane that produces themaximalmargin of
separation between the two classes. Such a hyperplane can be
uniquely constructed by solving a constrained quadratic
optimization problem; the solution can be expressed exclusively
in terms of the data points that lie on the margin, the so-called
support vectors. This technique can be applied even if the data are
non-linearly separable; the basic idea is to transform the data via a
non-linear mapping onto a higher dimensional feature space
where they become linearly separable. Thus, a linear boundary in
feature space is equivalent to a non-linear decision surface in the
original input space. Remarkably, there is no need to actually
perform this mapping and carry out the computations in high-
dimensional space; the use of an appropriate kernel (e.g.,
polynomial) function allows us to compute the final decision
function using dot products between patterns in input space.
SVMs have achieved impressive results in many biomedical
applications (Brown et al., 2000; Schölkopf, Guyon, & Weston,
2003; Schölfkopf, Tsuda,&Vert, 2004); introductory texts can be
found in (Burges, 1998; Cristianini & Shawe-Taylor, 2000).

Decision trees (DT) and rules comprise a distinct sub-
category of discriminative learners. From the point of view of
knowledge representation, they can be qualified as logical
(Langley, 1996) or non-metric (Duda, Hart, & Stork, 2000)
approaches as opposed to the other methods described above.
Moreover, they are sequential approaches (Quinlan, 1994) in the
sense that they examine one variable at a time whereas the
preceding learners consider all input variables simultaneously.
To determine the order in which the variables should be
considered, all decision tree algorithms have built-in feature
selection strategies, as we shall see in ‘‘In-Context Variable
Selection’’ subsection. Sequential learning methods are most
appropriate for tasks which can be solved by exploring only a
small subset of the available variables; ‘‘simultaneous’’ learners

are best suited for tasks where variable interactions should be
taken into account, for example, when variables taken individu-
ally are only weakly correlated with the class variable but are
collectively relevant. Neither alternative is perfect for mass
spectra based biomarker discovery, which requires finding the
smallest variable set possible while maximizing sensitivity to
variable interaction.

The simplest models in this category are single-node trees
called decision stumps and single-condition rules. They build the
simplest possible class boundaries, which are single axis-parallel
lines. However, more elaborate DTs and rules can carve out
regions of arbitrary complexity as assemblages of piecewise
hyperrectangles inp-dimensional space.Adecision tree is built by
recursively partitioning the training data with the aim of
maximizing the class homogeneity of the resulting subsets. At
each node, the remaining data are further subdivided based on the
values of a test variable. The selected variable is that which
ensures themaximal reduction of class heterogeneity asmeasured
by the Gini indexGðtÞ ¼

P
i pið1( piÞ in CART (Breiman et al.,

1984) or by entropy HðXÞ ¼ (
P

x2x pðxÞ log pðxÞ in C4.5
(Quinlan, 1993). The recursion process continues until all
terminal nodes are homogeneous or all variables have been used,
after which the tree is pruned to avoid overfitting.

A decision rule is typically a conjunction of a number of
conditions: if cond1 ^ cond2 ^ . . . ^ condN then conclusion. A
rule classifier can be built by recursive partitioning, that is, by
building a decision tree, which is then reexpressed as a rule set in
a straightforward fashion. A rule is simply a path from the root to
a terminal node, and the tree itself is a disjunction over all these
rules (paths). An alternative way of inducing decision rules is by
set covering. In this approach, rules are created one at a time, and
the examples covered by the new rules are removed from the
training set. As with DTs, rule conditions are added successively
as tests on the values of individual variables. Examples of set-
covering rule induction methods are Ripper (Cohen, 1995) and
logical analysis of data (LAD) (Boros et al., 2000).

C. Ensemble Approaches

Contrary to the single-model classifiers described in the previous
subsections, aggregate classifiers comprise multiple models
whose decisions are combined in some way in order to classify
a new case. There are twomain approaches to building aggregate
models. Resampling-basedmethods generatemultiplemodels by
training a single learning algorithm on multiple random
replicates or subsamples of a given dataset whereas hetero-
geneous ensemble methods (also called multistrategy methods)
train several different learning algorithms on the same dataset.

Resampling-based ensemble methods, which have been
applied to mass spectra include boosting and bagging. Both these
methods achieve model diversity by running the same learning
algorithm on different samples of the training data. In both, the
number of iterations is fixed by the user, and a new case is
classified by taking a simple or weighted vote among the base
classifiers. The basic idea of boosting is to focus the learning
process on the more difficult cases by iteratively reweighing the
training cases. Initially all cases are equally weighted. At each
iteration, a classifier is built and tested; the weights of all
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misclassified cases are increased and those of correctly classified
cases decreased (Freund & Schapire, 1997). In bootstrap
aggregation, more popularly known as bagging, the different
training sets are generated by randomly drawing with replace-
ment samples of the same size as the original training dataset. A
given learning algorithm is applied to the different bootstrap
replicates to produce a committee of m models, which assign a
new instance to a class by a simple majority vote (Breiman,
1996). While bagging builds diverse models by randomly
resampling training instances, the RandomForest algorithm
grows an ensemble of DTs by randomly resampling features.
The algorithm has two user-defined parameters: the size of
the candidate feature set F and the number of iterations T. In the
standard tree-building procedure, the feature to be tested at
the current node is selected from all the remaining candidate
features; in RandomForest, the selection process is restricted to a
subset of F features drawn randomly drawn from the full
candidate set. T different trees are thus built, and a final decision
is reached via a majority vote on their predictions (Breiman,
2001).

While the above methods vary the training sets on which to
apply a given algorithm, multistrategy approaches build hetero-
geneous ensemble classifiers by varying the algorithms to apply
on a given training set. An early example of this approach is
stacked generalization, whereby K base level models are built on
the training data and their predictions on test samples input as
training data to a metalevel learner, together with the actual class
labels of these samples. The metalearner’s task is to build a
model, which will predict the outcome of a new sample based on
the predictions of the base level learners (Wolpert, 1992). In other
forms of multistrategy learning, the predictions of the different
base classifiers can be combined without metalearning, for
instance, via a simple or weighted vote.

D. Which Classification Algorithm?

There is an overwhelming number of classification algorithms
which can be combined in an exponential number of ways. The
question of which learning approach works well for a given
classification problem is still an open question and will probably
remain so for sometime. Different classification algorithms have
their specific biases, which should match the problem structure,
that is, the concept that governs class assignment. Unfortunately
the problem structure is not known a priori; in fact it is precisely
what should be discovered. Even in a circumscribed domain such
as mass spectrometry, different learning algorithms could be
appropriate for seemingly related problems, depending on the
concept that underlies the data and how the features interact
together to determine the class.

To illustrate the match or mismatch between the problem
structure and the biases of the learning algorithms, we created
three very simple artificial classification problems involving only
two features. These were fed into two different classification
algorithms, a linear discriminant, and a decision tree. In Figure 6,
the leftmost column shows the training sets, the other two
columns visualize the decision boundaries drawn by the two
algorithms on the plane defined by the two features. The three
problems are characterized by different types of feature

interaction and feature relevance to the class label. Both features,
m/z1,m/z2, are rescaled within the interval [(1,1]. In the simplest
problem (a), only one feature (m/z1) is relevant for classification.
If this takes values within the intervals [0.6,0.7][[0.9,0.95] then
the specimen belongs to one class, otherwise it belongs to the
other class. Class distributions are multimodal. The decision tree
algorithm approximates these class boundaries correctly, thanks
mainly to its inherent feature selection strategy and the fact that it
can capture multimodal distributions when the boundaries are
orthogonal to the axes defined by the features. The linear
discriminant, however, fails to find the correct decision surface
due to multimodality (one of its main assumptions is that class
distributions are unimodal). Problem (b) shows a more
complicated situation where both features are relevant but the
decision boundaries are not orthogonal to the axes. This is an easy
problem for the linear discriminant but harder for the decision
tree algorithm, which tries to approximate the decision surface
piecewise, thus producing a staircase effect. The decision tree
algorithm could in principle approximate the decision boundary
given enough training examples. The third problem, (c), is the
equivalent of a logical exclusive-or between the two features in
determining the class label. Both features are relevant, but none,
taken alone, is adequate to completely define the class. The
decision tree manages to approximate the decision boundaries
due to its divide-and-conquer local approach; this approximation
could be improved provided enough examples were used for
training. However, the decision tree’s sequential feature selection
mechanism could be misled completely if these two features and
their discriminatory interaction were hidden in a much larger
feature set.

To summarize, there is no universally superior learning
algorithm. The question is notwhich algorithm is best overall, but
rather under which conditions a given algorithm is appropriate
for a given learning task. Among the factors to be considered are
the complexity of the concept to be learned, the availability of
domain knowledge, and the nature, quality, and distribution of the
available data. Beyond the idiosyncrasies of individual problems
and datasets, however, we can search for commonalities that
characterize a clearly delimited task domain. For instance, high
data dimensionality is a generic issue to be tackled in all
applications involving mass-spectra classfication, whatever their
specific objectives. Algorithms that can cope with high
dimensionality, are therefore most appropriate for this task.
However, such methods are extremely rare; an alternative
solution consists in reducing dimensionality prior to the learning
process.

IV. DIMENSIONALITY REDUCTION

After the preprocessing phase described in ‘‘Data Preproces-
sing’’ section, the mass spectra are ready to be mined. They have
been denoised, aligned, normalized, and otherwise transformed
to facilitate the modeling or learning task. In particular, the
dimensionality of raw spectra has been reduced, often by several
orders of magnitude. Such drastic reduction might still prove
insufficient; if the number of variables is greater than the sample
size, certain modeling algorithms like linear or quadratic
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discriminant analysis will fail. In addition, we have seen that in
diagnosis with biomarker discovery, selection of a small panel of
m/z values is as important a goal as classification itself.

Dimensionality reduction methods can be classified into
three main groups based on the perspective adopted to reduce
dimensionality. Individual variable selection methods rank and
select single variables assuming mutual independence among
them. In-context variable selectionmethods also rank or evaluate
individual variables, but do so in the context of others, that is,
taking account of certain interdependencies among variables.
Variable subset selection methods assess and select variables
sets collectively, thus integrating all possible correlation or
other forms of interaction among them into the evaluation
function. Finally, variable transformation methods reduce

dimensionality by constructing new variables as combinations
of the old.

Another classification scheme is the distinction between
filter, wrapper, and embedded methods. Filter methods perform
dimensionality reduction as a preprocessing step to the learning
phase, independently of the learning method. Wrapper methods
wrap feature selection around the learning process and use the
estimated performance of the learned classifier to select
feature subsets; the utility of the selected variable set is tied to
the learning method used in feature selection. Embedded
methods are programmed as subroutines of the learner and are,
therefore, inseparable from specific learning algorithms. Since
the filter/wrapper distinction was introduced (Kohavi & John,
1997), there has since been a proliferation of new approaches,

FIGURE 6. Three artificial learning problems with two features. Each problem (row) is represented by the
training set (left column), the decision surface induced by a linear discriminant algorithm (middle), and the
decision surface induced by a decision tree algorithm (right).
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which defy classification under this scheme. Filter methods have
been used as wrappers, and wrapper or embedded methods as
filters, so that this distinction has become confusing at best. For
this reason, we organize this section based on the first-
classification scheme, which has the advantage of clarity.

A. Individual Variable Selection

Typically used as a filter, individual variable selection assumes
mutual independence of all predictive variables. It relies on some
scoring or ranking function to quantify variable relevance or
discriminatory power; the final variable set is selected by defining
a threshold on the computed scores or ranks. Many of the
classical statistical tests and measures have been used to
determine significant differences in variable importance. These
tests rely on the same basic procedure to evaluate each variable:
partition the sample according to classes (e.g., healthy vs.
diseased), compute a test statistic of the variable for each class,
and then check for significant differences in the values of this
statistic. Statistics that havebeen used to rankmass spectral peaks
are the t-statistic (Liu, Li, & Wong, 2002; Wu et al., 2003;
Papadopoulos et al., 2004), the F-ratio (Liu, Li, & Wong, 2002;
Wagner, Naik, & Pothen, 2003), and the w2-statistic (Liu, Li, &
Wong, 2002; Rogers et al., 2003). Intuitively, the t-statistic
quantifies differences between the class-conditional means of a
variablewhereas theF-statistic expresses the ratio of its between-
class variance to its within-class variance. The w2 statistic
measures the strength of association between two qualitative
variables; to test a peak’s association with the class variable, its
intensity must be discretized or binned. In all three cases, the
higher thevalue of the statistic, the higher thevariable’s rank. The
Wilcoxon test ranks variables directly according to the absolute
value of differences in their class-conditional means; it has been
used for peak selection in (Kozak et al., 2003; Sorace & Zhan,
2003). The precise definitions and formulas of these different
statistics and tests can be found in standard statistical textbooks.

Alternative variable ranking/selection criteria have been
borrowed from information theory and technology. Awell-known
entropy-based criterion is the mutual information between a
predictive and a class variable (Cover & Thomas, 1991),
computed as the initial entropy of the class variable minus its
entropy after observing the predictive variable. The difference
quantifies the information about the class gained from observing
the variable. For this reason, mutual information is also known as
information gain in theMachineLearning community. It has been
shown to be an effective variable ranking criterion in MS-based
lung cancer prediction (Hilario et al., 2003). Another increasingly
popular criterion from information technology is the AUC or area
under the receiver operating characteristic (ROC) curve.TheROC
curve is a plot of the true versus false-positive rates associated
with all possible thresholds for classifying a sample as positive
(see ‘‘Overview of Model Evaluation Methods and Matrics’’
subsection for a more detailed explanation). It has been shown
that, for certain distribution patterns, the AUC is a more reliable
indicator of a biomarker’s ability to discriminate between cancer
and control (Pepe, 1995). TheAUChas been used to rank peaks in
prostate cancer detection prior to learning with individual or
boosted DTs (Adam et al., 2002; Qu et al., 2002).

B. In-Context Variable Selection

The main advantage of individual variable selection is its
efficiency, since it requires no more than computing p0 scores
(where p0 is the original dimensionality or number of raw
variables). However, it has a number of drawbacks: it cannot
detect redundant or correlated variables, or variables which are
irrelevant by themselves but highly discriminatory in combina-
tion with others. To alleviate these shortcomings, machine-
learning research has given rise to novel variable selection
algorithms which we shall call in-context variable selection
methods because they take (limited) account of variable
interaction while ranking/selecting individual variables.

Like most in-context variable selection methods, those
described in this section are filters unless specified otherwise.
Relief-F (Kononenko, 2004), an extended version of Relief (Kira
& Rendell, 1992), computes the relevance of each predictive
variable via a method based on KNN. For simplicity, we describe
the algorithm for the case of two classes. The algorithmmaintains
a relevance score for each variable. At each iteration, it picks a
case at random and identifies the case’s nearest neighbor from the
same class and its nearest neighbor from the other class. It then
adjusts feature weights to reward features, which discriminate
neighbors from different classes and penalize those which have
different values for neighbors of the same class. The result is an
estimate of features’ merit in circumscribed local regions of the
instance space. This allows Relief-F to take into account feature
interaction, that is, their conditional dependence given the class,
whereas other methods lose sight of such dependencies as an
effect of averaging over all the training instances. Since Relief-F
is a self-contained feature selection method, it can and has been
used as a filter for a variety of learning algorithms. It was been
used form/z value ranking and selection in lung cancer diagnosis,
where it outperformed purely univariate variable selection
methods such as that based on information gain (Hilario et al.,
2003). Relief was also shown to outperform a variety of other
feature selection methods in a comprehensive comparative study
by Guyon et al. (2003).

To select individual variableswhile integrating the impact of
other variables, Wu et al. (2003) use a measure of variable
importance given by the RandomForest (RF) learning algorithm
(Breiman, 2001) (Subsection V.C.1). This measure is derived by
averaging over several iterations of the following process: a
classifier is built to compute a reference accuracy; the value of
each variable is then permuted randomly in turn, and the decrease
in performance with respect to the reference accuracy measured.
The magnitude of the decrease is taken as a measure of the
discriminatory power of that variable: the higher the decrease, the
more important the variable’s contribution to classifier perfor-
mance. In a filter set-up, Wu et al. used RF scores to select a
subset of 15–25 peaks, which were deemed most discriminatory
between diseased and healthy samples. The selected peak
set was used to train diverse classifiers such as linear
discriminants, nearest-neighbor classifiers, DTs, SVMs, and RF
itself. In general, all these learning algorithms obtained better
performance on variable sets filtered using RF rather than the
t-statistic.

A similar in-context feature selection technique was used in
a study on stroke diagnosis (Prados et al., 2004). Three variable
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ranking methods were used: one based on information gain,
Relief-F, and one SVM-based technique. In this last approach, a
linear SVM classifier was trained using the set of peaks produced
in the preprocessing phase. The weights of the variables in the
linear classifier were used to rank them in decreasing order of
importance, and the p0 top-ranked variables (where p0 is a user-
selected parameter) were retained for the actual training phase.
Though the hyperplane weights played the same role as
information gain in ranking the variables, the manner in which
these criteria were computed spells the difference between single
variable selection and in-context variable selection. Information
gain is computed as the mutual information between the class
variable and a predictivevariable, taken in isolation fromall other
predictors. On the other hand, all variable weights are computed
simultaneously in building an SVM classifier, so that the weight
of each variable is computed in strict interdependence with those
of all others.

Genetic algorithms have also been used for variable ranking
in experiments on ovarian cancer (OC-HC4). Working on the
original 15,154 variables (m/z values) of themass spectra, Li et al.
(2004) apply GAs to select 10,000 different subsets of 20
variables using KNN (K¼ 5, consensus rule) as the fitness
function. A subset was considered discriminative if it led to an
accuracy of at least 90%. The 15,154 variables were then ranked
based on the number of times each was selected into the 10,000
discriminative subsets. Finally, this ranked list was used to train
nearest neighbor classifiers using successively increasing
numbers of top-ranked variables (Subsection V.A.2). While
dimensionality reduction is based on individual variable ranks,
the ranking criterion does not examine each variable separately,
but considers classification decisions made in interaction with 19
other variables each time; the procedure is thus a case of in-
context variable selection.

Certain methods that rank and select variables in isolation
when used as filter become in-context variable selection methods
when embedded in learning algorithms. An example is the
mutual information criterion used in C5.0 under the name of
information gain. Though the criterion is explicitly applied to
candidate variables taken individually, interaction with pre-
viously selected variables in the ancestor nodes is implicitly
taken into account. Stepwise discriminant analysis embeds
forward, backward, or bidirectional feature selection into linear
discriminant analysis; the backward and bidirectional variants
are more sensitive to variable interaction than forward selection.
More recent methods embed variable selection or variable
weighting techniques into linear classifiers. Examples are
Yanasigawa et al.’s (2003) modification of Tukey’s compound
covariate method, Tibshirani et al.’s (2004) shrunken centroids,
andYasui et al.’s (2003) boosted univariate discriminants; as they
are inextricable from the learning process, these methods will be
discussed in Section V.

C. Variable Subset Selection

Variable subset selection requires evaluation criteria that are
specifically adapted to groups of variables as a whole. It also
introduces an additional difficulty: the number of possible
variable subsets increases exponentially with the number of
variables. This precludes exhaustive search for all but trivial

datasets; heuristic or stochastic search strategies are needed. GAs
are increasingly popular stochastic strategies while forward or
backward selection methods are examples of heuristic search.
Forward selection starts with an empty variable subset S and
selects the variable thatmaximizes a predefined scoring function.
Thereafter, it selects from the remaining variables the onewhich,
added to S, maximizes the score of the resulting subset. The
process continues until a predefined criterion ismet, for example,
until no single variable addition improves the merit of the subset.
Backward elimination proceeds in the reverse direction; it starts
with the full variable set and at each step removes the variable
whose elimination yields the highest score for the remaining
subset.

A number of variable subset selection strategies have been
used as filters prior to the learning process. Forward selection has
been used with different scoring functions in two mass-spectral
applications. In one experimental study on prostate cancer
detection (Qu et al., 2003), a discrete wavelet transform reduced
the initial mass set to 1,271 variables. Stepwise forward selection
was then applied to find a subset thatmaximized theMahalanobis
distance between the cancer cases and controls. Intuitively, the
Mahalanobis distance quantifies the separation between two
groups in terms of the Euclidean distance between their centers
(group means), normalized by their covariance to correct for the
effect of correlated variables. Mathematically, it is computed as
DM ¼ ð!XX1 ( !XX2ÞTS(1ð!XX1 ( !XX2ÞD, where S is the unbiased
estimate of the covariance matrix. This method resulted in a
subset of 11 variables, which were then used to build a linear
discriminant model.

Correlation-based feature selection (CFS) also relies on
forward selection. Its evaluation criterion is based on the idea that
good variable subsets containvariables highly correlatedwith the
class yet uncorrelated with each other (Hall & Holmes, 2003).
The merit of a variable set is directly proportional to the mean
strength of correlation between the member variables and the
class, and inversely proportional to the mean correlation among
the variables themselves. Correlation between variables is
measured in terms of their symmetrical uncertainty, a normalized
form of mutual information. Use of this criterion requires
preliminary binning of continuous variables. CFS uses stepwise
forward selection to find a variable subset that maximizes the
merit criterion. CFS has been found to yield best performance in a
comparative study of variable (subset) selection methods for
mass-spectra-based ovarian cancer diagnosis (Liu, Li, & Wong,
2002); however this should be taken with caution due to a
technical flaw in the Liu et al.’s experimentation methodology
(Subsection VI.B.1).

In Baggerly et al. (2003), mass spectra preprocessing
yielded samples with 506 peaks. A much smaller variable set
was needed to build a classifier using Fisher’s linear discriminant
analysis. Search was restricted to subsets of sizeN¼ 1 to 5 of this
initial peak set. A peak set was considered optimal if it maxmized
the Mahalanobis distance between the lung cancer and control
groups. Exhaustive search was used forN¼ 1 and 2. ForN¼ 3 to
5, 50 GA runs were performed using different initial populations
of 200 sets of N peaks; 250 generations were evolved before
halting.

Variable subset selection has been shown to be most
effective in a wrapper setup, targeted to a specific learning
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algorithm. In a study on ovarian cancer diagnosis and biomarker
discovery, mass spectra preprocessing was limited to baseline
subtraction and intensity scaling to [0,1]; no dimension reduction
was performed. The input to the data mining process thus
contained 15,154 m/z values or variables (Petricoin et al., 2002).
GAs were used to evolve an initial population of 1,500 sets, each
containing between 5 and 20 m/z values, into meaningful
biomarker patterns. To determine the discriminatory power of
each set, the training samples were expressed in terms of its
variables and used to generate a self-organizing map. Self-
organizing maps are NNs which cluster input samples in a way
that preserves the topology of the input space, with the result that
the distances between samples in the map reflect their actual
relative distances (Kohonen, 1995). Avariable set was deemed fit
if it produced a map with homogeneous cancer and control
clusters. The sets that passed the fitness test were used to spawn
new variable sets through crossover and mutation. The learning
process halted after 250 generations or when a map was found
that perfectly separated the cancer and control cases.

In Alexe et al. (2004), feature subset selection is wrapped
around the LAD (Logical Analysis of Data) algorithm, a set-
covering method for rule induction. The process starts with an
initial pool of k features selected from the raw set on the basis of
five individual feature-scoring criteria (e.g., entropy, Pearson
correlation with the class variable). The feature pool is then
reduced iteratively; at each iteration, a subset composed of the
half top-ranked features is used to train a LAD classifier. If
classification accuracy using the reduced pool is higher than that
obtained with the parent pool, the reduced pool becomes the
current pool, and iteration continues. Otherwise an attempt is
made to find a better performing feature set by generating
variants of the current reduced pool. If such a feature set is found,
it becomes the basis for further feature reduction, otherwise the
iteration process stops and returns the current feature pool. The
feature selection process is, however, marred by a methodolo-
gical inconsistency: while cross-validation is used to select the
most appropriate feature subset, the initial feature set is selected
on the entire dataset prior to cross-validation, thus resulting in the
use of test samples for what should be considered an integral part
of the training process (Subsection VI.B.1).

Recursive feature elimination or RFE (Guyon et al., 2002) is
a feature subset selection method, which was applied in gene
expression analysis to identify biomarkers for cancer diagnosis.
In RFE a given feature set (initially the set of all variables, scaled
if necessary) is used to train a linear SVM; the features are ranked
in decreasing order of their (squared) weights in the hyperplane,
and the lowest ranked features are eliminated. The algorithm
generates a set of nested feature subsets, one for each
iteration. The selected subset is that which minimizes
score(F)¼ err(SVMjF)þ jFj/N, where err(SVMjF) is the error
of the SVM classifier trained on feature subset F, jFj is the size of
F, andN is the total number of original features. The second term
penalizes large feature sets. In the original version of RFE, one
feature was eliminated at a time; to reduce the number of
iterations, a natural variant consisted in eliminating the t%lowest
ranked features. Multiple runs were needed to explore different
values of t. Instead of selecting a single threshold/subset, Jong
et al. (2004) proposed two ways of combining feature subsets
produced from these multiple runs. First, Join gathers all the

features occurring at least x times in the different feature subsets
and trains a single classifier based on the resulting feature set.
Second, Ensemble builds a separate classifier for each feature
subset and classifies a test sample by a majority vote of the
committee of classifiers. These methods were tested on ovarian
and prostate cancer diagnosis (Subsection V.B.3).

D. Variable Transformation

Variable (subset) selection reduces data dimensionality by
selecting from a preexisting set of variables. Variable transfor-
mation techniques create new variables by combining or
transforming the old. Dimensionality is reduced if a small
number of these new variables can replace the old without loss of
discriminating information.

Many of these variable transformation/extraction methods
are commonly used during the preprocessing stage (Section II):
examples are spectral transforms such as Fourier, wavelet, or
kernel convolution transforms. In addition, principal components
analysis (PCA) is a statistical technique for reexpressing raw
variables in terms of newvariables, called components, which are
linear combinations of the original variables. These components
are computed through an eigenvalue decomposition of the
covariance matrix of the original data, with the eigenvalues (and
their corresponding eigenvectors) ordered in decreasing order of
magnitude. Though theoretically there can be as many compo-
nents as original variables, very often a much smaller set of
components can explain most of the variability in the data.
Substantial dimensionality reduction can thus be attained by
describing the data in terms of a few principal components.
(Lilien, Farid, and Donald 2003) used PCA to reduce the rawm/z
ratios of three ovarian cancer datasets and a prostate cancer
dataset (around 15,000–16,000 variables) in view of classifica-
tion by linear discriminant analysis. In compliance with a
precondition of LDA, the number of components was selected to
be lower than the number of examples available for each
problem.

A study on human African trypanosomiasis (Papadopoulos
et al., 2004) compared PCAand t-tests as tools for dimensionality
reduction. Thesemethods resulted in a reduced set of 41 principal
components and 19 peaks, respectively. Each reduced variable
set was used to train classifiers based on DTs, NNs, and GAs, as
well as a combined model, which classified test cases via a
majority vote of all the three base models. PCA led to higher
accuracy than t-statistic-based variable selection on all learning
methods used except DTs, where both achieved equivalent
performance (Subsection V.C.2).

Partial least squares (PLS) projection to latent structure can
be viewed as the supervised counterpart of PCA. It extracts
latent variables as linear combinations of the original explanatory
variables such that most of their association with the response
variable is explained. Dimensionality is reduced when the first
few linear combinations of predictors explain most of the
association with the response. In a study on lung cancer
diagnosis, PLS was used as a filter before classification via
logistic regression or linear discriminant analysis. The number of
factors retained was chosen on a separate tuning set but was not
reported (Purohit & Rocke, 2003).
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V. CLASSIFYING MASS SPECTRA FOR DIAGNOSIS
AND BIOMARKER DISCOVERY

This section surveys work on diagnosis and biomarker discovery
following the taxonomyof classification approaches outlined in ‘‘A
Bird’s Eye View of ClassificationMethods’’ section.1 Much of this
work concernsmass spectral data that have beenmade available by
the originating institutions; for conciseness these datasets are
summarized in Table 2 and will be referred to in the remainder of
the text by their short names, given in column 2 of the table.

A. Generative Approaches

1. Linear and Quadratic Discriminant Analysis

Discriminant analysis (Subsection III.A) is one of the most
widely used approaches to mass spectra classification in spite of
the HDSS problem. Discriminant analysis typically relies on the
covariance matrix, which becomes singular when the number of
variables p is greater than the number of examples n. To
guarantee a non-degenerate solution, it is necessary that
p+ (n( k), where k is the number of classes; in addition, to
avoid overfitting, it is recommended that n , p, for example,
n- 2p (Tukey, 1992), n - 5p . . . 10p (Somorjai, Dolenko, &
Baumgartner, 2003).

The most popular way of having p< n is by using any of the
dimensionality reduction methods described in ‘‘Dimensionality
Reduction’’ section prior to discriminant analysis.Working on an
ovarian cancer dataset with only 89 samples (OC-NWHU,
Table 2), Wu et al. (2003) selected variable sets of size 15 and
25 using two alternative measures, the t-statistic and Random-

Forest scores (Subsection IV.B). They then applied a number
of classification algorithms including LDA and QDA. On the
15-variable sets, LDAwas second only to SVM in classification
accuracy, but this advantage diminished on the 25-variable sets
(however, see ‘‘Generalization Performance’’ subsection for
remarks on their evaluationmethodology). In addition, the use of
25 variables to build quadratic discriminants often resulted in
singular covariance matrices when a resampling strategy was
followed. Similar behavior was observed on the Duke lung
cancer dataset (n¼ 41): the leave-one-out cross-validation error
of LDA and QDA on a 4-peak set almost tripled when a 13-peak
set was selected; degradation was worse for QDA since the
covariance matrices became nearly singular on very small
samples (e.g., only 17 cases for the lung cancer group) (Wagner,
Naik, & Pothen, 2003).

LDA has been coupled with variable subset selection in lieu
of individual variable selection. As discussed in ‘‘Variable Subset
Selection’’ subsection, Qu et al. (2003) used the Mahalanobis
distance to select the most discriminatory set composed of 11
wavelet coefficients. They then applied Fisher’s linear discrimi-
nant to project this 11-dimensional vector onto a hyperplane
which allowed for maximal separation of the prostate cancer and
control groups in their 248-case training sample (PC-EVMS,
Table 2). The resulting classifier attained 96.7% sensitivity and
100% specificity on an independent test set of 45 samples.
Similarly, Baggerly et al. (2003) applied linear discriminant
analysis to draw a hyperplane for each of the 1- to 5-peak sets
selected by GAs from MALDI-TOF spectra in a study on lung
cancer (LC-Duke, Table 2).

Variable transformation techniques have also been used to
yield a small variable set appropriate for discriminant analysis. To
build linear discriminants for one prostate cancer dataset (PC-
EVMS, Table 2) and three ovarian cancer datasets (OC-H4, OC-
WCX2a, OC-WCX2b, Table 2), Lilien, Farid, and Donald (2003)
used PCA to transform the original p-dimensional mass-spectral
space (e.g., p¼ 16,382 in PC-EVMS) into an (n( k)-dimensional
space (e.g., n¼ 386, k¼ 3 for PC-EVMS). Results of this PCA-
LDA learning configuration will be discussed further in ‘‘Evalua-
tion Results: A Comparative Study’’ subsection. The supervised
counterpart of PCA, PLS, has also been used as a filter for LDA on
the LC-Duke dataset (Table 2). In leave-out-out cross-validation
experiments, LDA achieved significantly higher predictive
accuracywhenvariableswerefilteredwithPLS thanwithprincipal
components regression (Purohit & Rocke, 2003).

Rather than filtering variables prior to discriminant analysis,
other researchers have used variations on the discriminant
analysis algorithm itself to circumvent the p, n problem. The
best known of these is stepwise discriminant analysis, which can
be viewed as the straightforward embedding of forward, back-
ward, or bidirectional variable subset selection into the
discriminant algorithm. Sorace and Zhan (2003) built several
diagnostic models for ovarian cancer (OC-WXC2b, Table 2) by
combining stepwise discriminant analysis with a variable
selection filter based on a two-sided Wilcoxon test. Among the
peaks which had aP-value<10(6, 100were selected, sorted, and
binned by requiring a separation of at least 1m/z value to start the
next bin. In one case, this procedure produced 12 bins; the peak
site with the lowest P-value in each bin was selected. Stepwise
discriminant analysis was applied to these 12 peaks and built a

TABLE 2. Datasets which have been made public and used in

classification experiments by different teams

The datasets are referred to in the text by their identifiers as
shown in the Names column. The Data column gives the number of
spectra for each class or disease state: D, diseased, C, controls, B,
benign.

1This excludes the large body of attempts to classify mass spectra
based solely on differentially expressed peaks identified by standard
statistical significance tests such as T-stat, Wilcoxon, Mann–Whitney.
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diagnostic model using 7 peaks. Three different models were
built by varying the lower bound on the range of m/z values to
retain; tests on an independent holdout set led to the intriguing
observation that perfect classification was achieved by models
involving peaks from the low molecular weight range, generally
taken to represent noise.

A variant of LDA is diagonal linear discriminant analysis
(DLDA), which assumes mutual independence of the explana-
tory variables, resulting in a diagonal covariance matrix
D ¼ diagðs2

1;s
2
2; . . . ;s

2
pÞ for all class densities. Closely linked

to DLDA are methods that can be viewed as weighted voting of
linear univariate classifiers. An example is Tukey’s (1992)
compound covariate method which was applied by Hedenfalk,
Duggan, and Chen (2001) to gene expression analysis. This
method uses a standard t-test at level a to select a set of genes and
forms a linear classifier with these genes weighted by their t-
statistic:

Hðx.Þ ¼
X

i2SðaÞ
ti x.i (

!xxi1 þ !xxi2
2

" #

where x* is the example to be classified, S(a) the set of geneswith
a significant t-statistic at level a, and ti the t-statistic for gene i:

ti ¼
!xxi1 ( !xxi2

si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p

where si is the pooled standard deviation for gene i. IfH(x*)> 0,
the sample x* is assigned to class 1, otherwise to class 2. In other
words, an example is assigned to the class with the nearest
centroid, the distance to the centroids being weighted by the
summed t-statistics of the discriminatory variables. In a study of
mass-spectra-based diagnosis of lung cancer, Yanasigawa et al.
(2003) used a variant of the compound covariate method where
the t-statistic was replaced by a battery of six different statistical
tests including Kruskal–Wallis and Fisher’s exact test. Eighty-
two peaks that met 3 of these 6 criteria were selected from a
training set of 50 samples; the resulting compound covariate
model correctly classified all 43 samples of a blinded test cohort
as either tumor or normal. However, the method did less well in
discriminating histological subgroups such as adenocarcinoma
versus large-cell (94% test set accuracy) or mediastinal nodal
involvement (75% test set accuracy).

Stepwise discriminant analysis and the compound covariate
method use hard thresholds to select or eliminate variables, and
hence often exhibit high variance. In contrast coefficient
shrinkage methods, which assign continuous weights to vari-
ables, operate less abruptly and eliminate variables onlywhen the
coefficient is reduced to 0. Such an approach was developed by
Tibshirani et al. (2002) as a modification of the nearest-centroid
method. In the 2-class case, the discriminant function is defined
as:

Sðx.Þ ¼ log
p1
p2

þ
Xp

i¼1

ti x.i (
!xx0i1 þ !xx0i2

2

" #

with normalization factor ti defined as,

ti ¼
!xx0i1 ( !xx0i2
ðsi þ s0Þ

where !xx0i1 and !xx
0
i2 are possibly shrunken means, and s0 is a value

common to all genes, for example, themedian value of the si over
the set of genes. Thus shrunken centroids use a standardized
squared distance in contrast to LDAwhich uses the Mahalanobis
distance to class centroids. The Mahalanobis distance becomes
problematic in an HDSS context, as it uses the pooled within-
class covariance matrix to normalize deviations from the mean;
when p , n, the covariance matrix becomes singular. To
circumvent this problem, the shrunken centroidsmethod assumes
a diagonal within-class covariance matrix. In addition, centroid
shrinkage by soft thresholding introduces a way of reducing the
number of variables. The soft threshold function is s(t,
D)¼ sign(t)(|t|(D)þ, where tþ¼ t if t> 0 and otherwise 0. If
jtj+D, t is set to 0, otherwise it is moved closer to 0 by the
quantity D, a user-tuned parameter (typically by cross-valida-
tion). If the centroids for a givenvariable are shrunken so that they
coincide for all classes, the variable is in effect eliminated.

The shrunken centroids approach, applied to gene expres-
sion analysis in Tibshirani et al. (2002), was integrated into the
‘‘peak probability contrasts’’ method for mass-spectra-based
diagnosis of ovarian cancer (OC-NWUH, Table 2). Peak
extraction from raw mass spectra yielded 14,067 m/z sites; these
were then binned via hierarchical clustering to identify 192 peaks
that were common to all spectra. A split point a(i) was estimated
for each peak i so as to maximize jpi2(a)( pi1(a)j, the difference
in the proportion of samples from each class having peaks higher
than a(i). For a given class k, pik was set to pik(a(i)). A new
spectrum can then be encoded as a binary vector based on the set
of common peaks and their individual split points. A peak in the
new spectrum is deemed to correspond to a common peak if its
center lies within 0.005 of the position of the common peak, and
its value set to 1 if it is higher than the split point of the common
peak, otherwise to 0. The result is a binary vector, which can then
be compared to the probability centroid vectors of each class and
assigned to the class that is closest in overall squared distance.

While stepwise discriminant analysis, compound covari-
ates, and shrunken centroids embed variable elimination into the
classification process, Lee et al. (2003) merge variable
transformation and classification through the use of PLS.
Working on the LC-Duke dataset (Table 2), they first used a
wavelet transform to reduce the initial 60,000 m/z values of the
raw spectra to 545 wavelet coefficients. These were the inputs to
PLS which produced a 2-component discriminant model to
separate lung cancer cases from controls. Each component was a
linear combination of wavelet coefficients, which were then
inverse-transformed to the original variates. m/z ratios corre-
sponding to large PLS coefficients can be used to investigate
proteins that may possibly be upregulated or downregulated in
diseased specimens.

2. Non-parametric generative approaches

Discriminant analysis assumes a Gaussian distribution although
it has been shown to work in practice in a much broader range of
cases. Non-parametric generative approaches make no such
assumption; examples that have been used for mass spectra are
KNN, kernel density estimation (Subsection III.A), or versions of
Naive Bayes which do not assume a specific probability
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distribution for continuous variables2. KNN was explored in the
context of two studies on ovarian cancer. Using a training sample
from the OC-H4 dataset, Li et al. (2004) applied the GA-based
process described in Subsection IV.B to rank the 15,154 m/z
values of the raw spectra. They then explored successively
increasing variable subsets consisting of the i top-ranked
variables, for i¼ 1 to 100, applying KNN (K¼ 5) each time to
measure classification performance on a separate test set. Across
50 iterations of the whole GA/KNN process, it was observed that
performance grew initially as the variable subset size was
increased, and then reached a plateau at size 10, with average
classification performance on the test set hovering around 97%
(93–100%). In findings reminiscent of those of Sorace and Zhan
(2003) on another ovarian cancer dataset, the authors observed
that all 10 top-ranked variables belonged to the<500 Da region,
and then repeated the same analysis after excising this low-
molecular weight region. Performance on the new, supposedly
less noisy 10-variable set fell to 90% (78%–96%). Explaining
these observations remains an open problem.

Zhu et al. (2003) built a classifier for ovarian cancer
diagnosis (OC-WCX2a, Table 2) after a two-step dimensionality
reduction process. First, they selected discriminatory variables
using a t-test with a significance level adjusted for multiple
comparisons. The 563 variables that passed the test were ranked
and subjected to further reduction. The second step was variable
subset selection wrapped around KNN (K¼ 5) using the
Mahalanobis distance to identify nearest neighbors. Starting
with the top-ranked variable, they successively added the next
top-ranked variable until KNN classification performance
reached a plateau. This resulted in a final variable set of 18 m/z
values. The 18-variable KNN classifier achieved 100% accuracy
on a holdout subset of the OC-WCX2a dataset as well as on an
independent dataset, OC-WCX2b (Table 2).

Non-parametric generative models have been compared
with other approaches to mass spectra classification. In a
comparison involving five different variable selection schemes
and four learning algorithms, Naı̈ve Bayes and KNN displayed
roughly equivalent performance in ovarian cancer diagnosis
(OC-WCX2b, Table 2); both did clearly better thanC4.5 butwere
outperformed by SVM on variable sets of size 17–20 (Liu, Li, &
Wong, 2002). On a different ovarian cancer dataset (OC-
NWUH), KNN (K¼ 1 and 3) also outperformed LDA and
QDA on variable sets of size 15 and 25 selected by RF
(Subsection IV.B). On the 25-variable set, 1NN achieved the
highest accuracy along with the RF classifier, which had the
undeniable advantage of having preselected variables adapted to
its learning bias (Wu et al., 2003). On the Duke lung cancer data,
however, 6NN achieved significantly lower accuracy than LDA
and QDA on a 4-peak set selected using the F-statistic, while
kernel density estimation using a Gaussian kernel showed
equivalent performance with QDA. Results of these two

comparative studies should however be taken with caution due
to methodological shortcomings discussed in Subsection VI.B.1.

B. Discriminative Approaches

1. Logistic regression

Multivariate logistic regression was used in two similar studies
on cancer diagnosis. In a study on ovarian cancer based onSELDI
mass spectra, dimensionality reduction was performed in two
alternativeways (Rai et al., 2002). The first approach used unified
maximum separability analysis (UMSA), a variant of classical
discriminant analysis which projects the training samples onto a
3-dimensional component space. Components are linear combi-
nations of the original variables/peaks determined to achieve
maximum separation between cancer and control cases. The
individual variables were then ranked according to their
contribution to the separation of the two groups, and seven peaks
were thus selected. In the second approach, CART was used to
grow a decision tree, which selected two peaks, in fact a subset of
the UMSA-selected set.Multivariate logistic regression was then
applied to build a classifier using these two common peaks at 60
and 79 kDa. Finally another classifier was built based on the
combination of these two peaks with CA125, the tumor marker
traditionally used for ovarian cancer diagnosis. This classifier
produced improved performance over those based on CA125
alone or the two selected peaks alone. However, these results are
subject to caution since performance was measured over all
specimens, including the training data. The second study (Li
et al., 2002) focused on breast cancer diagnosis and followed a
strategy very similar to that described by Rai et al. Peak
extraction using Cipherghen software yielded 147 qualifiedmass
peaks (S/N> 5). The UMSA procedure, followed by stepwise
selection, reduces these 147 peaks to a final set of 3 candidate
biomarkers at 4.3, 8.1, and 8.9 kDa. A logistic regression
classifier built from these peaks achieved 93% sensitivity and
91% specificity, averaged over 20 evaluation runs using a 70%–
30% train-test split.

2. Neural networks

An investigation on renal cancer carcinoma (RCC) used a dataset
composed of 106 samples (48 RCC, 38 healthy controls (H), and
20 benign cases (B)) to train different multilayer perceptrons
(Rogers et al., 2003). Peak detection and clustering on the raw
data yielded a set of 368 variables/peaks, which was sorted in
order of decreasing relevance as measured by the w2 criterion.
The resulting data were then encoded using boolean (peak
presence/absence) or continuous features (peak signal intensi-
ties). Different fully connected multilayer perceptrons were built
with varying numbers of the top-ranked variables. Allmodels had
five hidden units with a sigmoid activation function. Weights
were randomly initialized to values in [(1, þ1], and back-
propagation trainingwas pursued until a limit of 100 epochs or an
error of 0 was attained. To overcome chance results due to
randomness, each model was initialized ten times, and the
average performance over these ten runs reported. On one

2Naı̈ve Bayes can be parametric or non-parametric depending on how
probabilities of continuous variables are computed. Non-parametric
versions include those which discretize continuous variables or which
use kernel density estimation methods; parametric implementations
assume a specific probability distribution, for example, Gaussian, for
continuous variables.
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blinded test set (12 RCC vs. 11 healthy controls), NNs using both
boolean and continuous features were able to discriminate RCC
from healthy controls fairly well. On the RCC versus benigns/
controls task (12 RCC vs. 20 benigns/controls), performance
degraded for models trained on boolean inputs but remained
essentially the same for those with continuous features. Results
concerning model stability are reported in Subsection VI.B.

Multilayer perceptrons were also used in a study aimed at
detecting hepatocellular carcinoma (HCC) in patients with
chronic liver disease (CLD) (Poon et al., 2003). The data
included serum samples from 38 patients with HCC at various
stages and 20 patients with CLD (controls). Preprocessing of raw
mass spectra yielded 2,384 candidate peaks, which were reduced
by significance analysis of microarray (a technique borrowed
from gene expression analysis (Tusher, Tibshirani, & Chu,
2001)) to a set of 250 differentially expressed peaks. Intensities at
these peakswere normalized and fed into amultilayer perceptron
with 250 inputs, 7 hidden units, and 1 output unit. The output was
a diagnostic score between 0 and 1, with 0¼CLD and 1¼HCC.
The NN was trained using standard backpropagation, with the
learning rate and momentum automatically selected by the
software used. Training halted when the error <0.02 or when
the number of epochs reached 300. Generalization error was
estimated using tenfold cross-validation. ROC analysis of
estimated errors showed that NN diagnostic scores were useful
in differentiating HCC and CLD cases. However, NN interpret-
ability remains a non-trivial problem; though sensitivity analysis
can be used to determinewhich of the 250model variables play a
major role in diagnosing HCC, the presence of bias and hidden
units complicates the task of determining the precise nature of
interactions between the peaks.

3. Support vector machines

Support vector machines (Subsection III.B) have been applied
extensively to mass spectra, both for classification and for
dimensionality reduction. To filter the variable set prior to SVM
learning for prostate cancer diagnosis (PC-CPPD, Table 2), Jong,
Marchiori, and van derVaart (2004) evolved a large number of
variable sets using GAs with SVM accuracy as the fitness
function, and then selected features that were present in more
than ten runs. This led to the selection of 47 features for SVM
training. In another set of experiments, RFEwas run several times
with different thresholds, and the resulting variable subsets were
combined according to the Join and Ensemble approaches
described in Subsection IV.C. To train the SVM classifier on the
OC-H4 data, linear SVM was used with the regularization
parameterC set to 10, and theweights of the diseased and control
cases set to 10 and 0.5, respectively, to compensate for class
imbalance. On the PC-CPPD dataset, which is far more skewed
that the ovarian cancer dataset, Cwas set to 1, and its weights for
diseased and controls set to 1,000 and 0.005, respectively. These
two approaches led to significantly higher sensitivity rates than
use of the full feature set or simply selecting the variable subset
which minimized error on a tuning set.

SVMs have also been used in conjunction with other filter
methods like variable subset selectionmethods such as CFS (Liu,
Li, & Wong, 2002) or individual variable selection based on

criteria such as information gain (Prados et al., 2004), the F-
statistic (Wagner, Naik, & Pothen, 2003), w2, and entropy (Liu,
Li, &Wong, 2002). Whichever feature selection method is used,
and despite methodological caveats formulated in Subsection
VI.B.1, there is widespread agreement on the behavior of SVMs
for mass-spectra classification: SVMs are competitive with top-
performing algorithmswhen the number of features is very small;
as dimensionality increases, their advantage over all other
methods becomes more pronounced. For instance, on a 4-
variable version of the LC-Duke lung cancer dataset, five
algorithms (LDA,QDA,KDE,KNN, SVM) displayed error rates
varying between 10% and 17%, with linear SVM rating 15%. On
the 13-variable version of the same dataset, however, all other
algorithms displayed error rates between 27%and34%, far above
linear SVM’s 2% (Wagner et al., 2003). In another comparative
study involving SVM, Naı̈ve Bayes, KNN, and C4.5, Liu, Li, and
Wong (2002) found that SVMs were constantly in the top two
ranks for variable set sizes between 17 and 20, independently of
the variable selection method used. However, on the 15,154 raw
variables of the OC-WCXb dataset (Table 2), the error rates of
KNN and Naı̈ve Bayes tripled at the least, that of C4.5 remained
stable at 3.5% while SVM attained perfect accuracy. Jong,
Marchiori, and van derVaart (2004) reported the same perfor-
mance for SVM on the same dataset. This resilience of SVM to
high-dimensional data makes it one of the most appropriate
techniques for mass spectra classification.

4. Decision trees and rules

As explained in Subsection IV.B, DTs and rules are sequential
approaches, which use embedded feature selection methods to
determine the next variable to test on. Hence they are relatively
resilient to high dimensionality and have been used in mass
spectra classification without a preliminary variable selection
phase, even in cases where p, n. In a study on renal cell
carcinoma (Won et al., 2003) for instance, 36 SELDI mass
spectra were preprocessed using Ciphergen’s built-in software
PBS to select 119 peaks. No further dimension reduction was
performed prior to the application of the C4.5 algorithm, which
created a classification tree using five selected variables. CART
was also applied directly to PBS-detected peaks to identify
candidate biomarkers for ovarian cancer (Rai et al., 2002) or renal
transplant rejection (Clarke et al., 2003). Yet another example
concerns a sample of 106 cases of prostate cancer and 56 controls
(Bañez et al., 2003). Two sets of SELDI mass spectra were
produced from these samples using the weak cation exchange
array (WCX2) and the immobilized metal affinity capture-
copper array (IMAC3-Cu). PBS detected 89 peaks for theWCX2
set and 97 for the IMAC3-Cu set. Again, there was no further
variable selection. On a training set of 44 cancer cases and 30
controls, the WCX2 set produced a tree with six test nodes/
variables and the IMAC3-Cu set a tree with five test nodes.
Combining the data from the two arrays resulted in a simpler tree
with three test nodes, which achieved higher classification
performance on a blinded test set than either of the two larger
trees.

However, it has been shown that prior dimensionality
reduction can also enhance performance of DTs and rules. On the
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EVMS prostate cancer data (PC-EVMS, Table 2), for example,
the 779 peaks produced after mass spectra preprocessing were
ranked according to the area under the ROC curve; 124 peaks
with AUC- 0.62 were retained, of which CART used only nine
to build a decision tree (Adam et al., 2002). After a discrete
wavelet transform on the raw mass spectra of the Duke lung
cancer dataset, Zhu, Yu, and Zhang (2003) selected nine wavelet
coefficients that maximized the F-ratio. The decision tree built
from this variable set contained only two test nodes. The
approach described by Alexe et al. (2004) differs from the three
others on two counts. First, it creates decision rules via set
covering rather than recursive partitioning; second, it combines a
variable selection filter with a variable subset selection process
wrapped around the rule induction process, using the accuracy of
the inducedmodel to score the candidatevariable sets (subsection
IV.C).

Controlled comparative studies give us a rough idea of how
DTs fare on mass spectra with respect to other learning
algorithms. On the Duke lung cancer data, DTs were found to
perform worse than both linear discriminants and logistic
regression in intensive 500 split-sample runs (Neville et al.,
2003). Similarly, DT ranked last or next to last in a comparative
study involving six different variable selection methods and four
learning algorithms including SVM, Naı̈ve Bayes, and KNN
(Liu, Li, & Wong, 2002). One possible explanation for this poor
performance is that DT sequential approach takes little account
of variable interaction and thus fails to exploit useful information
concerning the relative abundance of proteins in mass spectra.
The second explanation is that the non-metric representation of
DT falls short of the finer information concerning relative
abundance of proteins by testing single thresholds which effect
simple binary splits on peak intensities. On the other hand, DTs
and rules dominate all other learning approaches in terms of
model intelligibility; the biomarker patterns detected can be
interpreted directly as sets of constraints on the intensity levels of
the peaks identified by m/z values.

C. Ensemble Models

1. Resampling-based ensembles

Homogeneous ensembles are aggregates of base classifiers built
using the same learning algorithm but different versions of the
training data. The most straightforward way of obtaining diverse
training subsets is by instance resampling, for example, via
boosting or bagging. A prostate cancer dataset (PC-EVMS) has
been repeatedly used as a testbed for boosting univariate base
classifiers. After individual variable selection based on the AUC
(Subsection IV.A), 194 peaks remained available for model
building. These were used by Qu et al. (2002) to build ensembles
of decision stumps following the boosting procedure described in
Subsection III.C.Afirst ensemblewith 400base classifiers and62
distinct peaks separated prostate cancer (PC) from non-cancer
with 100% accuracy on both training and test sets; a second
ensemble comprising 100 base classifiers also perfectly sepa-
rated healthy (H) men from those with benign prostate
hyperplasia (BPH). These two ensemble classifiers were

combined to form a 3-class ensemble, which again achieved
perfect accuracy on the PC versus BPH versus H problem.
However, this final classifier had 500 decision stumps and 74
peaks. To build a more parsimonious and hence more
interpretable classifier, the same procedure was followed with
one difference: only new peaks can be selected at each iteration.
The resulting 3-class classifier had 21 peaks instead of 74, but
sensitivity and specificity on the test set dropped to 96.7%. This
accuracy-interpretability trade-off is a recurrent observation in
many of the reviewed studies.

Yasui et al. (2003) follow a technique similar to that of Qu
et al. except that their base classifier is a univariate linear
discriminant. At the outset, allN cases are assigned equalweights
of 1/N. At each iteration i, each of the candidate variables is used
to build a logistic regression model based on the weighted cases,
and the model (variable) that maximizes the likelihood ratio is
selected. The linear part of the selected logistic regressionmodel,
that is, the exponent in the sigmoid function 1=ð1þ e(ðaþbTsÞÞ,
becomes the base classifier. Its predictions on the training set are
evaluated, and the weights of misclassified (correctly classified)
examples are increased (decreased) for the next iteration.
Boosting halts when observed sensitivity and specificity exceed
predefined thresholds. The resulting aggregate classifier after the
last iteration M can be written as the sum of M univariate linear
classifiers. While each linear classifier is univariate, selection of
the solevariable needed for eachmodel is done in interactionwith
other variables by virtue of the boosting. After the first base
classifier is built, all previously selected variables influence each
new variable selection step via theweight updates entailed by the
performance of their respective classifiers. This method pro-
duced an aggregate classifier using 26 peaks for the PC/BPH
versus controls problem and 25 for the cancer versus BPH
problem.

A less common way of resampling the training data is by
taking different subsets of the features instead of the instances.
The best-known representative of this approach is the RF
algorithm (Breiman, 2001), which has been described in
Subsection III.C. RF was used by Wu et al. (2003) on ovarian
cancer data, both for dimensionality reduction (Subsection IV.B)
and for classification. As a variable selectionmechanism, RFwas
compared with t-statistic-based variable ranking/selection; as a
learningmethod itwas comparedwithLDA,QDA, andKNN.For
all learning algorithms used, variable selection was more
effective using RF than the t-statistic. As a learning algorithm,
RF outperformed the three other methods; it led to an overall
lower error rate as well as to a more stable assessment of
classification errors across different model evaluation strategies.
These observations suggest that RF is one of the more promising
techniques for mass spectra classification. A thorough explora-
tion of the potential of the RandomForest algorithm for cancer
diagnosis can be found in (Izmirlian, 2004).

In Li et al.’s (2003) cascaded DTs, as in RandomForest,
model diversity is achieved by varying thevariables instead of the
instances. However, while RandomForest draws candidate
variables randomly at each node, Li et al. obtain diverse trees
by non-randomly selecting a different variable at the root of each
tree. At the outset, all candidate variables are ranked using C4.5’s
default criterion. For i¼ 1 toT (the number of trees to be grown as
specified by the user), the ith tree is initialized using the ith
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top-ranked variable on the candidate list as the root node. Tree
construction is then pursued following the standard procedure,
but the diversity of root nodes ensures diversity and comple-
mentarity of the different trees in the ensemble. Decisions are
combined by a weighted majority vote. In tenfold cross-
validation experiments on an ovarian cancer dataset (OC-H4),
cascaded C4.5 and SVM achieved perfect accuracy while
standard, bagged, and boosted C4.5 scored 10, 7, and 10 errors,
respectively. However, SVM used all 15,154 variables whereas
Li’s model comprised 20 trees with 2–5 variables each. In this
particular case, a relatively more intelligible model was obtained
without sacrificing accuracy. However, identification and
validation of the 72 variables in the entire tree ensemble remains
a non-trivial task.

2. Heterogeneous ensembles

In contrast to the homogeneous ensembles described in the
preceding section, heterogeneous ensembles combine different
learning algorithms trained on the same dataset. An example is
the aggregate model built by Papadopoulos et al. (2004) to
diagnose sleeping sickness or trypanosomiasis. After preproces-
sing, the dataset of 85 diseased samples and 148 controls included
206 peak sites. Two dimensionality reduction strategies were
explored. Individual variable selection based on the t-statistic
yielded 19 potential biomarkers with a P-value <10(5 while
transformation of these 206 peaks into principal components
produced a set of 41 derived variables which explained most of
the variation in the data. On each variable set, an ensemble
classifier was built combining three models built by recursive
partitioning or DTs, NN training, and GAs. Classification of test
instances was done by a majority vote of the base classifiers. On
the 19-peak set, the ensemble classifier achieved an accuracy of
96.3% on an independent test set while the best individual base
classifier DTattained 94.5%. On the 41-principal component set,
the ensemble classifier achieved 99.1% accuracy versus 98.2%
(NN), 97.2% (GA), and 94.5% (DT) for the base classifiers.
These results illustrate once again the often observed trade-off
between generalization performance and model understandabil-
ity; better performance was obtained with 41 principal
components, each of which is a linear combination of 206
detected peaks. Similarly, the multistrategy classifier outper-
formed all individual classifiers on either variable set, but
analysis of this complex model is far from straightforward. One
of the many promising research paths in biomarker discovery is
the development of techniques for interpreting the knowledge
distilled from data by ensemble models.

VI. EXPERIMENTATION AND MODEL
EVALUATION

A classification algorithm can be evaluated along different
dimensions like prediction or generalization error, understand-
ability or novelty of the models produced, robustness, and
training and classification computational requirements. For the
task of classifyingmass spectrawewill focus on two dimensions,
generalization error, and model stability (the latter can be

considered as a special case of robustness). Assessment of model
novelty requires the direct intervention of domain experts; in the
case of mass spectra it is directly related to pattern interpretation
and biomarker identification (Section VII).

Generalization Error: Recall that our definition of the
classification task (Section III) assumes an instance space
governed by a joint probability distribution P(X,Y), in which
data have been generated according to probabilityP(X) and class
labels y¼ S(x) assigned according to a conditional probability
distribution P(YjX). In the real world we have access to a dataset
Dwith a limited number of examples, drawn from the distribution
P(X,Y). The classification process will be trained on this dataset
in order to construct the approximation of S(X).

The generalization error of the model, M(X), induced by C
on the dataset D, is the probability that M will misclassify an
example, x, drawn at random from P(X). That is:

ErrMðDÞ ¼ PðMðxÞ 6¼ SðxÞÞ ¼ EP½MðxÞ 6¼ SðxÞ*

¼
Z

x

IðMðxÞ 6¼ SðxÞÞPðxÞdx

where EP denotes expectation with respect to P and the indicator
function I(.) returns 1 if its argument is true and 0 otherwise. The
generalization error of the classification process C on datasets
with a given number of instances N is simply the average
generalization error of the classification models derived on
datasets of size N; it is given by:

ErrCðNÞ ¼ EF½ErrMðDÞ*

whereF is the distribution fromwhich the datasetsD of sizeN are
drawn.

Since we cannot draw an infinite number of new examples
from P(X) in order to compute the exact generalization error of a
modelM, we have to rely on estimations computed by some error
estimation procedure using the available dataD. For this purpose
we distinguish between training error (aka resubstitution error)
and test error. The former is the percentage of misclassifications
incurred when the model is applied to the set on which it was
trained, while the latter is misclassification rate when applied to
an independent set that was not used for training. Both are given
by:

1

N

X

xi2D
IðMðxiÞ; SðxiÞÞ

D is either the train or the test set, depending on which error we
are computing. It is easy to construct a confidence interval for the
above quantity if one considers the result of the application of the
model to an example as governed by a binomial distribution.

Training error is not a good estimate of the generalization
error; depending on the complexity of models that the
classification process is inducing it can typically drop to zero
for highly complex models. Nevertheless, a model that overfits
the training data will usually have high generalization error. The
test error is the best way we have to estimate the true
generalization error, and it approaches the true generalization
error as N!1.

Stability: The following definition of stability was given by
Turney (1995):
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The stability of a classification algorithm is the degree to
which it generates repeatable results, given different batches of
data from the same process.

Ideally different datasets Di from the same instance
distribution P(X,Y) should result in the same or at least very
similar models. Stability is crucial when the goal of the
classification task is not limited to providing accurate prediction
but includes knowledge discovery, that is, pinpointing those
factors that affect the classification decision, as it is definitely the
case in biomarker discovery.

Imagine an application scenario in which we are asked to
produce a classification model for predicting whether a given
individual has developed a disease or not. As part of the analysis,
we might induce a number of classification models by applying
the same classification process to different subsets of the initial
dataset. In an alternative scenario, two different teams working
on the same problem use the same classification process but
different samples; each team comes up at the end with its own
classification model. The problem appears when the induced
models are different, emphasizing different features of the
individual’s description. Which one should be trusted and given
as the result of the knowledge discovery process to the experts?

The answer to this question requires the detection of the
source of model instability. In the two scenarios described
above there are two sources of instability: one related with the
classification process that is applied, and the other with the
experimental conditions under which the samples were collected
and prepared. In the first scenario, the classification process we
are using is sensitive to sampling variations from data collected
from the same instance distribution P(X,Y); we could lift this
instability by altering the classification process by selectingmore
stable constituents. In the second case (assuming that the
classification process is stable) different classification models
might be an indication that the distributions from which we
sample our training examples are in fact different due to
variations of the experimental protocols used or simply because
samples come really from different instance distributions.

In the following sections, we will describe how we can
estimate the generalization error and the stability of a classifica-
tion process.

A. Overview of Model Evaluation
Methods and Metrics

1. Generalization performance

a. Principles and techniques. In what follows we will use
the term classification process instead of classification algorithm.
This distinction is important since the first one involves all
preprocessing steps, like feature selection and parameter tunning
of the classification algorithm, and the actual application of the
classification algorithm to the preprocessed dataset. These should
be evaluated as a single component, otherwise the error
estimation would be flawed, resulting in optimistic estimates of
the generalization error (more on this later in the same section).

In the estimation of generalization performance there are
two notions that should be clearly identified and distinguished.

The first is the generalization error of the finally induced
classification model, ErrM(D), and the second is the general-
ization error of the classification process used, ErrC(N). Working
with specific applications we are mostly concerned with the
generalization error of the induced model since it is the one that
will be applied in practice. Nevertheless themost often used error
estimation procedures provide an estimation of the general-
ization error of the classification process and not that of a single
classification model; however, under appropriate stability
assumptions these are also good estimates of the ErrM(D).

The general idea underlying all error estimation procedures
is the division of the available set of examples into two disjoint
sets. One is used for training, and the other is used for testing/
evaluating the generated model. The test set should not contain
examples that have been used in the training set, as this would
provide optimistically biased estimates of the error. Various
methods are used for obtaining the division to train/test sets and
estimating the error.

Error estimators are typically characterized by two quan-
tities, their bias and their variance. Let ErrðC;DÞ be the error
estimation produced by an error estimation method for a given
datasetDwithN instances and a given classification procedureC,
and ErrM(D) the true generalization error of the model that
we wish to estimate. Then the bias of the error estimation
method is simply EF½ErrMðDÞ ( ErrðC;DÞ* and the variance
EF½ðErrMðDÞ ( ErrðC;DÞÞ2*, where as before the datasets D are
drawn from the distribution F with respect to which the
expectation is taken. Bias captures the systematic error of our
error estimation method in establishing the true error, while
variance measures the dispersion of our estimation. In Figure 7,
wegive an example of two fictional estimators, one unbiasedwith
high variance, A, and the other biased but with low variance, B.
Even though estimator B is slightly biased we might be tempted
to use it because its values are less dispersed than those ofA, sowe
can have higher confidence in its estimations.

FIGURE 7. Examples of two hypothetical error estimators with
different bias-variance profiles.
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In an ideal scenario there are enough data available, and the
error estimation procedure is relatively straightforward. In this
casewe set aside a number of samples that will constitute our test
set, which should never be used during training. The data analyst
will be working only with the training data where he can perform
whatever tasks he considers necessary, like feature selection or
parameter tuning, in order to derive the final classificationmodel.
One part of the training data could be used to train different
models using different parameter settings of the classification
algorithmor different feature sets, and another part as a validation
set on which the performance of the induced models will be
validated. Based on the performance on that validation set a
single classification model is selected and applied to the test set.
The test error is then a reliable estimation of the generalization
error of our classification model, ErrM(Dtr), where Dtr is the
training set (including the validation set). In fact, this is the only
method that provides an estimation of the generalization error of
the classification model. This approach to error estimation is
referred as the holdout method. Usually 2/3 of the initial
examples are used for constructing the classification model and
the remaining 1/3, called the holdout set, is used for testing.
Nevertheless in practice the availability of data is rather limited:
using the holdout method wewill test our classification model on
only one third of small datasets; moreover the size of the training
set will be also small. As a result the final estimation might be
pessimistically biased, since better performance could probably
be achieved ifwe usedmore training data, but also unreliable, due
to the small amount of testing data which will result in large
confidence intervals for the generalization error.

In order to get more reliable estimates of error in cases of
limited data availability we have to rely on resampling
techniques. Resampling is based on repeatedly separating the
available data into training and test subsets, and then running the
classification process on the training set and testing it on the test
set. During the resampling procedure a number of classification
models, possibly different, are createdwhosegeneralization error
is estimated on a small part of the whole dataset. The final error
estimation is an average over the different test errors coupledwith
a confidence interval. One of the advantages of resampling
techniques is that they take into account error variations due to
different training and test sets, so to some extent they can detect
sensitivity to different samples coming from the same instance
distribution. Resampling techniques estimate the generalization
error of the classification process and not of a specific
classification model. By getting an estimate of the average
performance of the classification models that the classification
process induces we hope that the classification model that will be
finally employed will have a similar generalization error since it
will be the result of the same process.

In k-fold cross-validation the available set is split into k
disjoint sets. The inducer is then trained on the union of k( 1 sets
and tested on the remaining set. The whole process is repeated k
times, each time a different set from the k is used as a test set. The
estimation of the error is simply the average of the observed
errors over the k-folds. When k equals the number of examples
then the method is called leave-one-out. A variant of cross-
validation is stratified cross-validation, where the partitions are
constructed in such away, that the distribution of the classes in the
initial dataset is preserved. Leave-one-out provides unbiased

estimates of ErrC(N( 1) and the k-fold cross-validation unbiased
estimates of ErrC(N(N/k).

In the bootstrapmethod the initial set of examples is sampled
with replacement, so that a new set of the same size is established.
The instances not chosen in the sampling process will form the
testing set. The whole process is repeated a number of times, k,
usually between 50 and 200, each time using a different sample of
the examples. The estimation of the error is given by the
following formula:

Err ¼ 1

k

Xk

b¼1

ð0:632etestb þ 0:368etrainÞ

where etestb is the error of the model on the b test set, and etrain the
error of the model on the complete initial set.

Leave-one-out produces almost unbiased estimates of the
true error, but with high variance. The size of the training sets is
almost the same as the size of the complete dataset. The variance
is reduced when wemove to k-fold cross-validation, with k in the
area of five to ten, and it is further reduced when we are using
stratified cross-validation, though remaining relatively high. One
method to reduce the variance of cross-validation is to repeat the
whole procedure for a number of times. For both cross-validation
and stratified cross-validation the estimates of the mean are
almost unbiased. In bootstrap the error estimates are highly
biased, but they have a very low variance. Bootstrap’s bias is high
especially when evaluating algorithms that fit the training data
perfectly, for example, a one-nearest neighbor algorithm or an
unpruned decision tree. In that case, etrain is zero, leading to
optimistic estimation of the error. Efron and Tibshirani (1995)
propose a bootstrap version, which they call the 632þ rule, which
is designed to provide less biased estimates of the error. A
comparative study of cross-validation, stratified cross-validation,
and bootstrap can be found in Kohavi (1995). The author
concludes that the use of tenfold stratified cross-validation is
appropriate for algorithm selection, even if the computational
power available is sufficient for more computational intensive
methods of error evaluation. In a similar study, Bailey and Elkan
(1993) compared the performance of bootstrap and leave-one-out
cross-validation; they also concluded that the use of cross-
validation is preferable, since it exhibits much smaller bias than
bootstrap. They noted though that the best choice of error
estimationmethod depends onwhich algorithm is evaluated. The
same observation was made by Braga-Neto and Dougherty
(2003),when they examined the performance of cross-validation,
bootstrap, and resubstitution estimation on small sample sizes.
They found that cross-validation exhibited high variance in small
sample sizes, variance that increased with the classification
algorithm’s ability to produce highly complex models. The
variance of cross-validation decreased with an increase of the
sample size, and it became comparable with that of other
estimators for samples that contained more than 100 instances.
The resubstitution estimation was strongly biased. Finally,
bootstrap was shown to have relatively low variance, and low
bias in some cases, which overall makes it an interesting
evaluation strategy if one overlooks its high computational cost.

Since resampling involves the creation of multiple classi-
fication models, the problem is deciding which classification
model should be finally employed. One can choose to rerun the
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classification process, this time on the complete dataset; in this
case we cannot estimate the final model’s generalization error
which might possibly be less pessimistic than the initial
estimation which was based on smaller training sets3. Alter-
natively one may choose one of the classification models
developed as the result of the resampling process; in this case
we have more confidence in the accuracy of our error estimation
since it is computed on training sets of the same size. Hastie,
Tibshirani, and Friedman (2001) propose what they call the one
standard-error rule for selecting which model to apply: ‘‘Choose
the most parsimonious model whose error is no more than one
standard error above the error of the best model.’’ The choice of
the final classification model can prove irrelevant if the
classification models produced during resampling are quite
similar among themselves and to the classification model
induced from the complete dataset, bringing up again in front
the question of stability of the classification process.

Determining which error estimation method to use is a
complicated task. In any case it is clear that the greater the
number of training instances the more reliable the evaluation
results. The following rule could serve as a rough guide: use
holdout testing for large datasets and tenfold cross-validation for
average-sized datasets; if the dataset has less than a couple of 100
examples then bootstrap could provide more reliable estimations
due to its lower variance.

b. Methodological pitfalls. Building a classificationmodel is
a complex process which involves: preprocessing steps like
feature selection, feature extraction, and/or feature combination;
tuning of parameters that control the behavior of the classification
algorithm, for example, the complexity of the models it induces;
and only lastly, the actual training of the classification algorithm
on the chosen data representation and parameters. To evaluate the
predictive performance of a classification model all these steps
should be done exclusively on the training data; it is only when a
final classification model is built that it can be applied to the test
data to estimate its performance. This rule applies to all error
estimationmethods; though quite clear for the holdout method, it
is often violated when resampling methods are used.

A common error consists in performing feature selection on
the entire dataset before evaluating the classification algorithm
on the new dataset of reduced dimensionality. This entails an
information leak since test examples, that is, those contained
in the test folds, have been used in feature selection, which is an
integral part of the model building process. This can result in
overly optimistic estimations of the error as demonstrated clearly
by Simon et al. (2003). Using leave-one-out cross-validation,
they compared a scenario with feature selection performed only
once using the complete dataset (partial cross-validation) with
the correct scenario where feature selection was redone within
each training fold (complete cross-validation). Experimentswere
conductedwith artificial datasets of very high dimensionality and
few instances, constructed from the same generating distribution,
which contained no information. No classification algorithm

could do better than random guessing on such data. Nevertheless
partial cross-validation reported zero classification error in
90.2% of the 2000 artificial datasets used in the study. For
complete cross-validation the median error estimation was
correct, though with a relatively high variance. A similar study
by Ambroise and McLachlan (2002) led to the same conclusion.
When feature selection is done outside the cross-validation loop,
the higher the dimensionality to sample-size ratio, the higher the
odds of finding features that by pure chance discriminate the data
perfectly. However such optimistic results are completely
misleading; a true measure of generalization performance can
be obtained only with complete cross-validation, that is, using
test instances that have not been used for feature selection.

Suppose now that we have a classification algorithm, C,
whose behavior is controlled by a set of parameters a. We can
estimate the generalization error of C for a given value of a by
using one of the error estimation techniques described above.
This will yield a more or less4 unbiased estimation of the error of
C for the given a. However, if we examine a set of different values
for using the same evaluation method and select the value that
minimizes the error, this minimized error will not be an unbiased
estimate of minfErrCa

g since the selection of the appropriate
value for a is done by looking a posteriori at the testing
performance. As in feature selection parameter tuning should be
redone for each training fold. This can be achieved by nesting
within each training fold another resampling loopwhose purpose
is to estimate the performance of different parameter settings on
that fold. Once a choice is made the classification algorithm
should be retrained on the complete training fold using the
selected parameter setting and then evaluated on the test fold
following the standard procedure. The average over all the folds
will now be an unbiased estimate of minfErrCa

g. The final
classification model to be applied can be derived in two different
ways. The first is to directly select the classification model
produced by the most parsimonious parameter setting according
to the one standard-error rule given above. The second is to
simply run the classification algorithm C with each of the
different parameter settings (without the nested resampling
loop), select the setting that exhibits the lowest error, and then
rerun the classification algorithm C on the complete training set
with the selected setting. Note that in both cases we do not get the
actual error of the finally produced classification model but only
an error estimation as this is given by minfErrCa

g.
Simply comparing error estimates is not sufficient, as

observed differences might not be significant in a statistical
context. The estimates of the errors are sample estimates of the
true error. Two inducers can have the same true error but different
sample estimates. In order to establish whether the differences in
the sample estimates reflect a difference in the true error or are
simply the result of random fluctuations of the sample estimates
around the same mean, the use of statistical significance tests is
essential. A number of studies have been done on the validity of
different statistical tests for detecting significant differences in
classifier error (Feelders & Verkooijen, 1995; Dietterich, 1998).
Among the best performing are McNemar’s test and the t-test

3With the exception of the leave-one-out cross-validation where the
amount of the training data used at each repetition is almost the same
as the complete set of instances, nevertheless in leave-one-out the
problem comes from the high variance of the estimate. 4Depending on the properties the error estimator.

& HILARIO ET AL.

436



based on the results of a twofold cross-validation repeated five
times.

Depending on the type of the application we might be
interested in different views of the generalization error, for
example,measuring the generalization error for a given class. For
these cases a number of alternativemeasures havebeen proposed.
We will focus on two class problems since these are the most
often met in medical diagnostic problems. We can build the
confusion matrix shown in Table 3.

Then based on the above the following performance
measures can be defined:

* sensitivity: TP/P, the percentage of positive instances
correctly classified, indicates how good our classifier is in
identifying the positive examples, also known as TP rate or
recall.

* specificity: TP/N, the percentage of negative instances
correctly classified, indicates how good our classifier is in
identifying the negative examples.

* precision: TP/(TPþFP), the percentage of instances
classified as positive that were really positive, indicates
how accurate our classifier is when it predicts the positive
class.

All of the above performancemetrics can be estimated using
exactly the same estimation methods that we described for
evaluating the generalization error.

Another way of evaluating and visualizing the performance
of a classification model is via the use of ROC graphs (Fawcett,
2003). ROC graphs are 2-dimensional graphs where the X-axis
corresponds to the FP rate¼FP/N (the percentage of negative
instances incorrectly classified as positive) and the Y-axis to the
TP rate. Complete ROC curves can be constructed only for
classification models that output a probability or a score for their
prediction. The ROC curve will then give the trade-off between
TP-rate and FP-rate for every possible value of a threshold on the
score. Classifiers that do not output a score become single points
in a ROC graph. An example of a ROC graph with four ROC
curves is given in Figure 8. Some explanations are in order. The
point (0,0) corresponds to the strategy of never predicting the
positive class and the point (1,0) to the strategy of always
predicting the positive class. Perfect performance corresponds to
the (0,1) point. Themorewemove to the right along a ROC curve
the more we increase the TP rate, but at the same time we also
increase the FP rate. Informally a pointA is better than a pointB if
A appears more to the left of B (lower FP-rate) and higher (higher
TP-rate). A classifier completely dominates another one if its
ROC curve is always above the ROC curve of the second; in
Figure 8, for example, the DT classifier is completely dominated
by Naı̈ve Bayes and the 5-nearest-neighbor. The diagonal line
y¼ x corresponds to a random classifier that predicts randomly
positivewith probability p. This randomclassifier has a TP rate of

p but also a FP rate of p. The cost of a classifier for a given point
(FP rate, TP rate) of its curve is given by:

pðpositiveÞ ' ð1( TP rateÞ ' costðnegative; positiveÞ
þpðnegativeÞ ' ðFP rateÞ ' costðpositive; negativeÞ

where p(positive) and p(negative) refer to the probability of the
positive and the negative class, respectively, and cost(x,y) is the
cost assigned to misclassifying y as x. One advantage of ROC
curves is that they allow us to visualize the performance of the
classification problem regardless of the class distribution and the
misclassification costs. One can compute the convex hull of a set
of classifiers (also given in Fig. 8). Classifiers on the convex hull
are optimal for a range of class distributions andmisclassification
costs (Provost & Fawcett, 2001). Finally another measure of
classifier performance is the area under the ROC curve,
abbreviated as AUC. The AUC can be defined as P(xþ> x(),
that is, the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative
instance (Fawcett, 2003).

2. Stability

Stability of classification algorithms is an important issue when
one is concerned with the reproducibility of results. We do not
want to discover different potential biomarkers each time we
analyze a different set of data. The notion of stability also pro-
vides a framework for uncovering differences in collected data
that should be attributed to different experimental conditions.

Tomeasure the stability of a classification process one needs
to define a measure of similarity among classification models.

TABLE 3. Confusion matrix for binary classification

FIGURE 8. ROC curves of four different classifiers on a mass-spectro-
metry problem. For this specific problem, the convex hull contains
discretized Naı̈ve Bayes and 5-nearest-neighbors which can thus be
optimal under certain conditions. Note that decision trees (DTs) fare
worse than random, probably because their sequential variable selection
mechanism assesses variables individually, in effect ignoring all
interactions among peak intensities.
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Oneway to do this is to use a syntactic measure of similarity. The
problem with this approach is that it depends on the representa-
tion language used in the classification process. Moreover
models, which seem very different based on a syntactic measure
of similarity might in fact be logically equivalent, delivering
exactly the same predictions over all possible inputs.

Turney (1995) proposed a measure of stability based on the
agreement of two classification models. He defined the agree-
ment of two classificationmodels as the probability that theywill
produce the same predictions over all possible instances drawn
from P(X). Note here that instances are drawn from P(X) and not
P(X,Y); the underlying reason is that the agreement of two
concepts should be examined in all possible input worlds. In
order then to measure the stability of a classification process he
gave a simple algorithm based on m' twofold cross-validation.
In twofold cross-validation the available data are split in two,
each part used once for training and once for testing. However,
testing is not done on a test set but on an artificial set constructed
by sampling uniformly over all possible values of X. The
classification process is run on each of the subsets, and the
classification models produced are applied to the artificial
instances. Stability is simply the percentage of times that the
twomodels agree, independently of the instances’ actual classes.
The final result is the average over all them runs (each run results
in a different random split of the initial dataset). This approach
provides an empirical estimation of the logical agreement of two
concepts.

Another measure for the stability of a classification process
comes from the bias-variance error decomposition (Domingos,
2000). For a given test instance classification error is decomposed
into three components:

ErrðxÞ ¼ c1NðxÞ þ BðxÞ þ c2VðxÞ
A first-irreducible component is due to the inherent noise, N(x).
The second, B(x), is the bias of the classification process and
measures the systematic error of the classification process. It
measures the distance from the optimal prediction of the
‘‘average’’ prediction of the classification models constructed
from different training sets. The optimal prediction is the class of
the given instance in case there is no noise. In case there is noise it
is the most common class label with which the instance is seen.
Finally the variance term, V(x), measures the variance of the
predictions of the different classification models around the
‘‘average’’ prediction. cis are multiplicative factors. The general
procedure for the computation of the bias-variance decomposi-
tion is also based on resampling. A number of different training
sets should be constructed and the classification process run on
each of them in order to generate a classification model. Then
each of thesemodels will be applied to the same fixed test set, and
the above quantities will be computed. What the variance term
depicts is the variation in predictions, due to the differences in the
training set, around the most common prediction. A completely
stable classification process would have zero variance, that is, its
predictions for a given instancewould not changewith changes in
the training set.

Both of the above approaches couple error evaluation with
an estimate of the stability of the resulting classification models.
They could be used to select among different classification
processes based on a combination of error and stability, that is,

select a classification process which yields both low error and
high stability. Stability is an issue that is relatively ignored in
classification performance studies. Nevertheless it is important
due to the way error evaluation is done, that is, via multiple
resamples from the same dataset that usually give rise to different
classification models. If the resulting models are relatively stable
then first, we can have more confidence in the result of the error
estimation procedure, and second, the problem of selecting the
finalmodel for deployment in the real world becomes less critical
since all of them will be more or less logically equivalent.

The concept of stability can also be used to detect
differences in data collection, experimental protocols, equipment
etc. For example, assume that two teams work remotely on the
same mass-spectrometry application. One team produces a
classification model with low predictive error and good stability,
and sends it to the other team for testing. Nevertheless the testing
results show a high predictive error. This is simply an indication
of a change in the joint distribution P(X,Y) that can be attributed
to any of the factors mentioned above. Alternatively one could
use the framework proposed by Turney (1995) to assess the
degree of agreement of the classificationmodels when tested on a
collection of artificial instances drawn from P(X). Again high
instability would mean that there is a difference in the generation
of the training data in the two laboratories.

B. A Critical Perspective on Evaluation Practices
for Biomarker Discovery

Wewill undertake a short review of biomarker discovery onmass
spectrometry based on machine learning and data mining
techniques with respect to the two aforementioned dimensions,
that is, error evaluation and stability-reproducibility of results,
and try to pinpoint the most common methodological flaws and
how these should have been tackled.

1. Generalization performance

One of the most common methodological flaws in mass-spectra
classification concerns the selection of the most discriminating
features or m/z ratios. There are many cases where feature
selection is kept outside the evaluation loop of the classification
process. To highlight the extent of confusion, even within the
same paper this can be done correctly for one dataset andwrongly
for another one. For example, Liu, Li, andWong (2002) examine
feature selection methods on two different datasets, a microarray
and a mass-spectra dataset. On the first set they rely on a holdout
evaluation procedure where feature selection and learning are
done only on the training data, and the learned model is correctly
tested on a blind test set. However, on the second dataset (the
mass-spectra dataset) they use cross-validation, but instead of
tightly coupling the learning algorithm with feature selection
within each cross-validation fold, they apply feature selection to
the complete dataset prior to cross-validation. The cross-
validated error is estimated only for the classification algorithm
using features selected on the complete dataset, thus leading to
optimistic estimations of error. Wu et al. (2003) and Tibshirani
et al. (2004) worked on the same mass-spectra problem, used the
same feature selection strategy, the same error evaluation
procedure, and examined among others two classification
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algorithms that were common to both studies, support vector
machines, and linear discriminants. The first study reports errors
that are in the range of 12%–14% for the two learning algorithms.
However the errors that the second study reports are more than
double, 30%–35%. The difference is that in the first study feature
selection was done outside the cross-validation loop once using
the complete dataset while on the second it was correctly redone
within each fold of the cross-validation. This is a very clear
demonstration of how a flawed error estimation procedure can
provide optimistically biased results.

Feature selection is not the only stage of learning that can
create problems during the error estimation procedure. The same
type of optimistic error estimation can appear also when tuning
the parameters of a given learning algorithm. Alexe et al. (2004)
examine the performance of logical analysis on mass-spectro-
metry data. They report sensitivities and specificities up to 100%.
Their system requires setting up a number of input parameters
that affect the learning behavior. In order to select the best
parameter setting they performed a systematic search on the
parameter space using information from the complete dataset.
More precisely during the search each parameter setting was
evaluated by k-fold (k¼ 2,5,10) cross-validation on the complete
dataset. The search was continued until the results were deemed
satisfactory, that is, until a parameter setting was found with low
predictive error. As explained above, this procedure overfits the
model to the given dataset and does not provide an unbiased error
estimate. Sound error estimation can be achieved in two ways. A
holdout test set can be kept aside on which the final model
resulting from the selected parameter setting will be tested;
alternatively, cross-validation can be used, but during each
training phase of the cross-validation loop, a cross-validated
parameter search can be done using the current training fold. An
example of sound error estimation including systematic para-
meter setting is given in Tibshirani et al. (2004). There cross-
validation is used to estimate the error of a number of
classification algorithms; the classification process includes
feature selection and extensive parameter tuning of some of the
algorithms. Both feature selection and parameter tuning are
redone for every training fold of the cross-validation.

Work with machine learning and data mining techniques is
relatively new in the area of mass spectrometry. Nevertheless the
fields of both machine learning and data mining are relatively
mature fields with well-established strategies for performance
evaluation. For reported results on mass-spectra mining to be
meaningful and allow for valid comparisons, a strict methodo-
logical framework should be followed. More stringent review
policies concerning dataminingmethodologymight help prevent
the proliferation of results of flawed data mining experiments.

2. Stability

Stability and reproducibility of results is an issue that has been
largely neglected in the analysis of mass-spectrometry data. The
only exceptions to our knowledge are the articles of Rogers et al.
(2003) and Papadopoulos et al. (2004). Both of these examine
whether a classificationmodel produced at one point in time from
a given dataset is still valid with respect to its predictions when
applied to another dataset collected at a different moment and

possibly even under different experimental conditions. Neither of
the two author teams examined the effect that different data
samples could have in the construction of the classification
model.

Papadopoulos et al. (2004) did a small-scale study of
reproducibility. They used an ensemble of classification models
consisting of NNs, DTs, and GAs. They tested the predictive
performance of their ensemble model on the same sample whose
mass-spectra was rerun 28 different times over a period of
2 weeks. Unfortunately no conclusion can be drawn since the
testing data consisted only of a single control sample (it was
always correctly classified). They also examined the effects of
hemolysis using eight samples (three controls and five patients)
all correctly classified. Finally they examined the effect of sample
degradation on 18 samples (ten patients and eight controls),
which were reprocessed after having been thawed. In the latter
case all of themwere systematically classified as controls. Rogers
et al. (2003) created a classification model using a NN with five
hidden layers. Classification performance on a blind holdout set
was found to be in the range of 81.8%–83.3% in terms of
sensitivity and specificity. Nevertheless when the same model
was tested on an independent dataset collected approximately
10 months later its performance was significantly lower with
sensitivities and specificities in the range of 41.0%–76.6%. This
performance discrepancy can be due to two factors: one is a poor
error estimation strategy and the second is a difference between
the distribution onwhich the classificationmodel was trained and
the distribution on it was tested. Performance estimates on the
first-data sample were taken, as already mentioned, using
holdout. One problem of holdout is that it does not measure
variations of performance due to differences in training and test
set, especially when, as here, the number of available instances is
relatively small (218 instances including both stages of the
study). It could be simply that the specific train-test split used
initially was favorable by pure chance. If a resampling evaluation
method had been used it might have revealed a lower
performance estimate. Learning distribution differences could
be attributed to differences in the experimental protocol used to
collect the second set of data; different chips were used to
generate the mass-spectra. Declining performance of the laser
and the detector with time could have also played a role. Because
of the number of varying factors no safe conclusion can be drawn
on the source of instability.

Altogether both studies clearly demonstrate the need for a
careful examination of the stability and reproducibility of the
results. Any such study should first exclude the eventuality that
non-reproducibility is due to the unstable nature of the algorithms
used. This can be easily done by performing a stability analysis of
the classification algorithm along the lines described in
‘‘Stability’’ subsection under ‘‘Overview of Model Evaluation
Methods and Metrics’’ subsection. Only then can one examine
reproducibility within the same experimental protocol. An issue
that should be closely examined is how predictive performance is
affected by the time scale but also by the site where data
collection took place. A number of questions arise here: would
rerunning the same testing samples over different time points and
then feeding them to the classification model still produce the
same predictions? Would rerunning the same training data and
reconstructing the classification model still produce the same
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classification models? More importantly, is the predictive
performance stable over time, that is, in a different batch of
testing data collected at a later point in time, in the same but also
in different laboratories, do we get a similar predictive
performance with the already constructed classification model?
Equally important, does rerunning our classification process with
a new batch of training data, again taken at a later point in time
from the same or different laboratories, produce the same or at
least a very similar classification model? All these questions,
especially the last two, should be studied systematically and
answered in an affirmative manner for the results of biomarker
discovery on mass-spectrometry application to be trustworthy
and reliable. The goal of the Early Detection Research Network
validation study (Grizzle et al., 2004) was precisely to determine
the portability and reproducibility of mass-spectrometry and
more specifically of the SELDI technology in the context of
prostate cancer prognosis and diagnosis. Among the different
issues that were examined in that initiative are: the reproduci-
bility of mass-spectra of the same samples when mass-spectro-
metry is performed in different sites and whether the predictive
power of classification models acquired within a specific site
remains valid for mass-spectrometry data of different samples
collected in the different sites.

C. Evaluation Results: A Comparative Study

Comparing performance results among different studies is not a
straightforward task. First of all, comparison should take place on
exactly the same dataset. Second, there should be no methodo-
logical flaws that would invalidate the evaluation results. Third,
the same error evaluation strategy should be used for results to be
comparable; ideally even the separation into training and test
folds should be the same, however this is more easily donewithin
the same study than across different studies. In the comparisons
given below we will try to keep fixed as many factors of the
experimental evaluation as possible. We will state clearly when
and for which reasons a comparison is not possible. Finally, the
results reported below from the studies of Liu, Li, and Wong
(2002) and Wu et al. (2003) should be interpreted as approxima-
tions given the flawed evaluation practices described in
‘‘Generalization Performance’’ subsection.

1. Ovarian cancer

For ovarian cancer, three different datasets have been made
available by the FDAClinical Proteomics Databank. Two studies
have been run on the first version, OC-H4 (Table 2). Petricoin
et al. (2002) heuristic machine learning approach led to the
extraction of a 5-marker, which achieved 100% sensitivity and
95%specificity. These performancemeasureswere observed on a
blind test set of 116 (50 diseased, 66 benign/control) out of 216
samples, that is,with a 46%/54% train/test split. Lilien, Farid, and
Donald (2003) ran Q5 on the same dataset under a variety of
experimental conditions. To ensure fair comparison, we selected
the experimentation settings closest to those used by Petricoin:
50%/50% train/test split and a probability classification threshold
of 0.5 which led to the classification of 98.04% of the test set
(Petricoin et al.’s method classified all test samples). Under this
setup, Q5’s closed-form, exact statistical approach obtained a

sensitivity of 87.57% and a specificity of 90.15%. The authors
report a classification threshold that classifies 90% of the OC-H4
samples with a sensitivity of 97.5% and a specificity of 96.8% but
the 10% unspecified training/test ratio for these results preclude
any meaningful comparison. In contrast to the precise subset of
m/z values harvested by Petricoin et al., the final pattern extracted
by Lilien et al.’s linear discriminant was a linear combination of
the principal components that had been used as variables for the
learning phase. The discriminant was back-projected onto mass-
spectral space and reexpressed in terms of the originalm/z values.
Those with the highest coefficients were then selected for further
investigation.

Four different teams experimented with ovarian cancer
dataset OC-WCX2b (Table 2). All four report 100% sensitivity
and 100% specificity as their best results.With a 50% probability
classification threshold and a training proportion of at least 75%,
Q5 classified all test sampleswith perfect accuracy (Lilien, Farid,
& Donald, 2000). Sorace and Zhan (2003) used Wilcoxon
variable ranking followed by stepwise discriminant analysis to
train three linear models on 49% if the dataset, then tested these
on the remaining data. Two models with different sets of seven
m/z values each achieved perfect classification, while a third
model with 13 m/z values scored 96.25% sensitivity and 91.11%
specificity. Jong, Marchiori, and van derVaart (2004) studied the
performance of linear SVMs on the full feature set as well with
feature selection using RFE, Join, and Ensemble (‘‘Variable
Subset Selection’’ subsection). They also report best results of
100% sensitivity and specificity; however their final feature set
had 187 features, significantly more than the seven features
reported by Sorace and Zhan (2003). Interestingly enough SVMs
with no feature selection yielded a sensitivity of 100% and a
specificity of 99.55%. The evaluation strategy that they used was
ten times holdout testing with around 25% of the total dataset
kept for the holdout test set. Liu, Li, and Wong (2002) used
tenfold cross-validation to compare different combinations of
variable selection and learning methods. Among the variable
selection methods, the subset selection algorithm CFS consis-
tently achieved the best performance for each of the four learning
algorithms used. Among the learning algorithms, SVM scored
the lowest average error over the different variable selection
methods used. Two configurations achieved perfect accuracy:
CFS-SVM and CFS-KNN. Another remarkable result is that
SVM achieved perfect classification even without variable
selection (using all 15,154 m/z values).

Wu et al. (2003)’s comparative study of methods for ovarian
cancer diagnosis was based on MALDI-TOF spectra (OC-
NWUH, Table 2). Two feature selection algorithms—t-statistic-
based variable ranking and RandomForest variable scoring—
were explored in conjunction with five learning methods: linear
and quadratic discriminant analysis, KNN, SVM, boostedCART,
and RandomForest. Classification accuracy was estimated using
both tenfold cross-validation and bootstrap for the first five
algorithms and a 2:1 train/test split for the combined models.
Only variable subsets of size 15 and 25 were considered. On both
sizes, SVM achieved best performance when variables were
ranked according to the t-statistic; however, with RandomForest-
based variable selection, RandomForest and boosted CART did
better than SVM. Overall, RandomForest-based variable selec-
tion not only led to higher accuracy, it also proved to be more
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stable than t-statistic-based variable ranking. Tibshirani et al.
(2004) worked on the same dataset and compared peak
probability contrasts (PPC, ‘‘Linear and Quadratic Discriminant
Analysis’’ subsection) to a number of classification algorithms
coupledwith a t-statistic-based feature selection. Error evaluation
was done using tenfold cross-validationwith feature selection and
parameter tuning always correctly redone within every cross-
validation fold. Quite surprisingly, best performance (23.6%
error) was achieved by an SVM model which used the complete
feature set (91360 features), followed closely by PPC which
used only seven features with an error of 25.8% SVM and LDA
coupled with a t-statistic-based feature selection were found to
have errors between 30.3% and 34.8%, more than double the
errors estimated by Wu et al. (2003); as explained in ‘‘General-
ization Performance’’ subsection, the discrepancy was due to the
poor evaluation methodology followed in the latter study.

2. Prostate cancer

We analyzed five studies based on the PC-EVMS data (Table 2).
Two studies (Lilien, Farid, &Donald, 2000; Qu et al., 2003) used
different subsets of the data and are not comparable. The
remaining three (Adam et al., 2002; Qu et al., 2002; Yasui et al.,
2003) followed the same 85%–15% decomposition of the 386-
specimen dataset into a training set and an independent test set.
Two employed anAUC-based variable rankingmethod to reduce
the set of candidatemarkers to 779m/z values. Adam et al. (2002)
used CART to produce a 9-node decision tree. Qu et al. (2002)
used boosting to create two committees of decision stumps (1-
node DTs), which classified cases via a weighted majority vote.
For the first committee Adaboost generated an aggregate
classifier comprising 500 base classifiers and 74 peaks. To
reduce model complexity, a variant called boosted decision
stump feature selection (BDSFS) required that each variable be
used exactly once or not at all; the result was an aggregate
classifier with 21 base classifiers and 21 peaks. Yasui et al.
(2003)’s approach, described in Section V.C.1, is likewise based
on boosting but combines marker selection with linear
discriminant analysis within the boosting cycle. Unlike DTs,
which can handle any number of classes directly, linear classifiers
are basically binary. Thus, at least two linear classifiers were
needed for these 3-class problems. One classifier was trained to
distinguish PC/BPH versus control, a second to separate PC from
BPH.The final classifier combined 2 linear classifiers comprising
26 and 25 peaks, respectively. We follow Yasui et al.’s (2003)
decomposition to compare the three solutions to the prostate
cancer diagnostic problem in Table 4.

3. Lung cancer

The lung cancer data set was the object of a datamining challenge
(Campa, Fitzgerald,&Patz, 2003) that elicitedmore than a dozen
experimental studies. Three solutions were selected for this
review with the aim of illustrating the diversity of approaches
explored. Lee et al. (2003) built several partial least squares
discriminant (PLS-DA) models, each with a different experi-
mental strategy. A first model built on the complete data achieved
100% accuracy—a result both unsurprising and unreliable, as the
model was trained and tested on the same data. The dataset was

then partitioned into a design set of 28 cases and a test set of 13. A
PLS discriminant was built from the design set by sevenfold
cross-validation. The resulting two-component model produced
one false positive and one false negative, yielding a sensitivity of
87.5% and specificity of 80%, or an overall accuracy of 85%. The
same process using leave-one-out cross-validation led to a final
two-component model with an accuracy of 76%. The differences
in these three accuracy rates illustrate the impact of the error
estimation strategy on model assessment and selection.

Wagner, Naik, and Pothen (2003)) used F-ratio based
variable ranking followed by a comparative study of five learning
algorithms—linear and quadratic discriminant analysis, kernel-
based density estimation, KNN, and SVM. They tested two
different experimental protocols to select between 3 and 15
peaks: the first used the full dataset to rank variables before cross-
validation whereas the second-integrated variable selection into
the leave-one-out cross-validation loop. We ignore the results of
the first strategy, which has the methodological flaw of using test
sample labels invariable selection. The second strategy produced
best results with 13-peak models. Linear SVM outperformed all
other classifiers with an accuracy of 98% (96% sensitivity, 100%
specificity) as opposed to 73% for the closest runner-up.

Baggerly et al. (2003) built biomarker patterns of 1–5 peaks
using a GA/linear discriminant hybrid. The accuracy of these
peak sets was then estimated via leave-one-out cross-validation.
The best single peak, which appeared in all the best 1- to 5-peak
sets, scored 74%; accuracy increased with peak size, the best
5-peak set attaining 98%. Again, these results should be taken
with caution; since peak selection involving a supervised
learning technique (LDA) was done on the full data before
cross-validation, the accuracy rates reported are likely to be
optimistic.

D. Discussion

Meaningful comparisons could be done onvery few of the studies
presented above. For the ovarian cancer dataset OC-H4, the
studies of Petricoin et al. (2002) and Lilien, Farid, and Donald
(2000) could be compared after finding the specific experimental
setting in the second study thatwasmost similar to that of the first.
For dataset OC-WCX2b each of the four studies examined used a
different way to partition the available data into train-test sets so
no fair comparison was possible. Nevertheless an interesting
observation reported by both Jong et al. (2004) and Liu, Li, and
Wong (2002) was the excellent performance of linear SVMs on
the complete feature set.While this is good enoughwhenwewant
to perform only classification, it does not help us when the goal is

TABLE 4. Performance measures on the prostate cancer problem

(%)

PC, prostate cancer; BPH, benign hyperplasia; C, controls.
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biomarker discovery. For the MALDI-TOF ovarian cancer data
one of the two studies had methodological flaws so again
comparison could not take place. However in Tibshirani et al.
(2004) a number of methods were compared under the same
framework, which allowed for some meaningful comparisons.
Here too linear SVMs on the full feature set achieved top
performance, though again sidestepping the problem of biomar-
ker discovery. Very good performance with a small feature set
was achieved by the PPC method introduced by the authors. For
the prostate cancer dataset PC-EVMS it was possible to compare
the results of three studies (Adam et al., 2002; Qu et al., 2002;
Yasui et al., 2003) while two others (Lilien, Farid, & Donald,
2000; Qu et al., 2003) were excluded because they used different
subsets of the initial data. The clear winner was a combination of
Adaboost with AUC-based individual variable selection. For the
lung cancer challenge there could not be any comparison since
the different studies either had methodological problems or used
different evaluation methods.

As discussed in ‘‘Which Classification Algorithm?’’ sub-
section, there is no algorithm that works best for all types of
problems. If domain knowledge is available about the type of
feature interactions that are sought or are expected to be found,
this shouldmotivate the choice of learning approaches thatmatch
the requirements of the problem. Otherwise the only avenue is
systematic experimentation and evaluation of different learning
paradigms. In fact the relative superiority of a given learning
paradigm for a specific problem is informative of the form of the
concept that underlies the classes, that is, the target concept
probably requires the type of decision boundaries that the
learning algorithm is able to discover.

VII. MODEL INTERPRETATION AND
BIOMARKER IDENTIFICATION

After the final classifier has been validated from a data mining
perspective, in particular with respect to predictive accuracy and
model stability, the reins are handed to the biomedical researcher
whose task is to validate and interpret the biological implications
of the computer model. A detailed discussion of this essential
phase is beyond the scope of this review; descriptions of the
approaches used and problems encountered by biologists in
identifying, validating, and interpreting mass spectra-based
biomarker patterns can be found in Watkins et al. (2001), Adam
et al. (2003), Allard et al. (2004), and Koopmann et al. (2004).
The twofold purpose of this short section is to highlight the need
for a human-readable diagnostic model and to sum-up ongoing
debate in the biomedical community concerning the methods,
assumptions, and validity of current biomarker research.

In applications such as handwriting recognition, data-driven
pattern recognition models can be black boxes provided that
predictions remain reasonably accurate. In contrast, model
intelligibility is an indispensable requirement for medical
applications in general. Producing a readable model is more or
less difficult depending on the induction algorithm used and the
number of variables in the final model. Classification models can
be situated along a spectrum depending on the human effort
required to interpret them. At one endpoint, symbolic models

such as DTs and rules are straightforward to interpret. A bit
further down the scale, linear discriminant classifiers remain
relatively easy to understand since the relative importance of
each variable is reflected by the magnitude of its coefficient
(recall that the variables have been normalized (Section II) and
reduced (Section IV) to the p0 most discriminatory variables,
obligatorily with p0 < n for linear discriminants). Neural net-
works and support vector classifiers with non-linear kernels can
be grouped at the high-opacity extreme; despite intensive
research on NN interpretation in the 1990s (see Andrews,
Diederich, &Tickle, 1995 for an overview), translating them into
readable form remains a non-trivial task.

In general, model complexity impedes understandability.
With the advent of systems biology, however, extremely
elaborate models have been produced to explain biological
systems and processes, which are naturally and overwhelmingly
complex. Such models are not completely devoid of utility, as
they can provide functional definitions of systems properties,
which can be tested against observed facts. Given two models of
equivalent explanatory power, however, the more parsimonious
one should be preferred—and parsimony, in mass spectra
classification, concerns above all the size of the variable set.
Eminently readable models such as DTs and rules can quickly
become incomprehensible as the number of variables increases;
this provides yet another justification for aggressive feature
selection in biomarker discovery.

Unfortunately the model interpretability issue has been
relatively neglected in computer scientists’ work onmass spectra
classification. Many of the studies reviewed above have focused
on reporting generalization performance without providing the
minimal information required to make classifiers useful to
biomedical researchers—the list of discriminatory m/z values.
Though it is beyond data miners’ competence to investigate the
identities and roles of the selected m/z values or peaks, a clear
idea of the direction andmagnitude of the impact of certain peaks
would ease considerably the burden of interpretation that awaits
the domain experts.Given such leads, biomedical researchers can
review related work and single out the masses or peaks on which
there is an emerging consensus. They can then undertake, on this
highly reduced candidate set, the laborious process of identifying
the associated proteins and discovering how these are related to
the disease process.

The issue of interpreting biomarker patterns mined from
mass spectra has been the subject of recent debate within the
biomedical community. The defenders of proteomic pattern
diagnostics claim that biomarker or proteomic patterns mined
from mass spectra could be used directly as biomarkers with no
need to identify the component proteins (Wulfkuhle, Liotta, &
Petricoin, 2003). Adversaries of this school of thought contend
that without knowing the identity of the individual proteins, it is
unlikely that the method will be useful for cancer diagnosis.
Diamandis (2003, 2004) observes that the patterns found in five
different prostate cancer studies were completely different, even
in those conducted by the same team. On the other hand, the best
prostate cancer marker to current knowledge, PSA, did not
appear in any of the published patterns. He raised the hypothesis
that MS technology may have trouble detecting validated cancer
markers which are low-abundance proteins and was instead
picking up molecules present in serum at much higher levels of
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concentration. In addition, he surmised that the discriminatory
molecules found did not originate from prostate, but were
actually epiphenomena of cancer, that is, they were produced by
other organs in response either to the presence of cancer or to the
patient’s general condition.

The same concern over reproducibility was aired by other
researchers who examined datasets on ovarian cancer published
by Petricoin after their Lancet publication in 2002. Sorace and
Zhan (2003) and Baggerly, Morris, and Coombes (2004) noted
that most discriminatory peaks belonged to the low-molecular
weight region; several confirmatory experiments revealed that
the patterns found in this region indeed displayed a discrimina-
tory ability that was well beyond that expected of random
noise. Both teams concluded, contrary to Diamandis, that this
structure in noise had nothing to do with the underlying biology,
but was due to artefacts of flawed experimentation (e.g., mid-
experiment protocol shift, suspect mass calibration (Baggerly,
Morris, & Coombes, 2004)). In reply to critics, Petricoin and his
colleagues remarked that the initial paper was a proof of
feasibility and that the methodology has undergone significant
refinement since then (Check, 2004). They however contest the
claim that low molecular weight values always represent noise.
Using MS to identify the entire low-molecular weight region of
the proteome, they have found that the region contains thousands
of whole proteins and fragments including oncogenes. The
ultimate goal of this identification effort is to be able to
investigate extracted proteomic patterns by searching directly
the corresponding identities in a database (Petricoin & Liotta,
2003).

There is in fact greater agreement on the basic issues than is
apparent at first sight. Petricoin and Liotta agree that knowing the
identities of the distinguishing proteins can lead to insights
concerning their relationship to the underlying pathology;
however, it is not an absolute precondition for the clinical
evaluation of proteomic patterns: for example, CA-125 was used
for cancer testing for many years before it was sequenced and
characterized. On the other hand, Diamandis (2003) agrees that
knowing the identities of the discriminatory molecules ‘‘is not
absolutely necessary for their use as biomarkers, but without this
knowledge, the method will remain empirical and probably
difficult to validate, reproduce, standardize, and quality control.’’
Wulfkuhle, Liotta, and Petricoin (2003) establish the same
requirements before proteomic pattern diagnostics can be
incorporated into routine clinical practice: ‘‘Standard operating
procedures must be established for sample handling and
processing. Reproducibility standards for proteomic patterns
and a universal reference standard for quality control of MS
instruments must also be developed. Equivalent reproducibility
and quality control/quality assurance release specifications,
spectral quality measures, machine-to-machine, lab-to-lab and
process-driven variability measures must be identified and
controlled for.’’ In summary, the seminal paper of Petricoin
et al. (2002) and the publication on theweb of the related datasets
have aroused both interest in and founded criticism of the
methodology used as well as the underlying assumptions of
proteomic pattern diagnostics. Beyond often intensive debate
which is part of the growing pains of MS-based clinical
proteomics, what appears today is a basic concurrence of views
on the priority tasks for the coming years.

VIII. CONCLUSION

Despite intensive ongoing research on preprocessing and
classification of protein mass spectra for biomarker discovery,
the field is still very much in its infancy. Data analysts
are only starting to unravel the computational difficulties
involved in building accurate predictive models from
extremely noisy, high dimensional, and often very small
samples. Digital signal processing and statistical techniques
need to be combined in order to assess the quality of raw mass
spectra and transform these into a representation appropriate
for knowledge discovery. As for the classification task
itself, the major challenge remains the high-dimensionality
small-sample or p, n problem common to mass spectra and
microarray classification.Much of existing work has focused on
applying off-the-shelf classification algorithms and reporting
predictive performance. However, there has been a recent trend
to devise approaches tailored to the specific idiosyncrasies of
mass spectral data, either by innovative combinations of
known methods (Baggerly et al., 2003) or by the introduc-
tion of novel algorithms (Tibshirani et al., 2004). Differences
in experimental conditions and even blatantly flawed
evaluation strategies preclude a comprehensive assessment of
the relative merits of the methods used, whether old or new.
However, several comparative studies on specific datasets
have led to independent and corroborating observations of
the resilience of SVM to the p, n problem, even where p is
on the order of several thousands. This is, however, no panacea
in the case of mass-spectra classification for biomarker dis-
covery, for the opacity of the resulting SVM classifiers render
them inexploitable for subsequent biological validation. Inter-
pretability is a condition of verifiability by domain experts, and
model parsimony in terms of the number of variables used is a
condition of interpretability.

It therefore seems that aggressive dimensionality reduc-
tion is an indispensable requisite for biomarker discovery. It
is essential to any approach that would provide a solution to
the p, n problem while satisfying stringent requirements on
model interpretability. Added to these constraints is the
practical impossibility, for the biomedical researcher, of
experimentally identifying and validating the impact of several
hundreds/thousands of candidate markers. In this context, the
most promising approaches to date include SVMs coupled with
filter/wrapper variable (subset) selection as well as methods
which embed variable selection into the learning process to
produce either a single model, e.g., shrunken centroids
(Tibshirani et al., 2002) or an ensemble of base level models,
e.g., RandomForest (Breiman, 2001; Izmirlian, 2004). While
the predictive performance of each of these approaches
depends on the characteristics of the dataset and the concept
underlying the class structure, there is general agreement on
relative interpretability. Linear models such as shrunken
centroids and linear SVMs give a clear indication of the
importance of each discriminatory peak; this is not the case for
ensemble classifiers and SVM models based on non-linear
kernels. A priority research issue is finding ways to decipher
these models and translate them into human-readable form if
their recognized predictive power is to be put to full use in
biomarker discovery.
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