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Résumé

Une des démarches permettant d’augmenter la qualité et la fiabilité des logiciels s’exécutant
sur des systemes répartis consiste en l'utilisation de méthodes de génie logiciel dites
formelles. La majorité des méthodes formelles actuellement existantes correspondent en
fait plus a des langages de spécifications formelles qu’a des méthodes proprement dites.
Ceci provient du fait que les deux aspects fondamentaux que sont: la logique d’utilisation
du langage et la couverture du cycle de vie du logiciel ne sont, pour la plupart, pas définis.
Le développement par raffinements successifs est 'un des moyens permettant de définir
ces deux aspects.

Cette these vise a la définition des notions de raffinement et d’implantation de spécifi-
cations formelles orientées-modeles. Elle apporte par la-méme une base méthodologique
permettant d’utiliser un tel langage de spécifications lors d’un développement par raffine-
ments successifs et lors de I’étape d’implantation.

Cette these définit, dans un premier temps, un cadre théorique pour le raffinement et
I'implantation de spécification formelles orientées-modeles. L’idée principale consiste a
associer un contrat a chaque spécification. Un contrat représente explicitement I’ensemble
des propriétés de la spécification qu’il est nécessaire de préserver lors d’un raffinement de
cette spécification. Pour montrer qu’une spécification concrete raffine une spécification
plus abstraite, il s’agit alors de montrer que le contrat de la spécification concrete est
suffisant pour assurer les propriétés correspondant au contrat de la spécification abstraite.

La seconde partie de cette these consiste a appliquer ce cadre théorique dans le contexte du
langage CO-OPN /2. CO-OPN/2 est un langage de spécifications formelles orienté-objet,
fondé sur les réseaux de Petri et les spécifications algébriques. Il est donc proposé pour
ce langage, une définition des notions de contrats, de raffinement et d’implantation. Les
contrats sont exprimés a 1’aide de la logique temporelle de Hennessy-Milner (HML). Cette
logique facilite la vérification des propriétés contractuelles, ainsi que la vérification des
étapes de raffinement. Le raffinement et I'implantation sont controlés sémantiquement par
la satisfaction des contrats; syntaxiquement, un renommage est autorisé. L’implantation
utilisant le langage de programmation Java a été plus particulierement étudiée. 11 est
montré comment spécifier des classes du langage de programmation Java a 'aide du
langage CO-OPN/2, afin que la derniere étape du processus de raffinement conduise a
une spécification entierement construite a I’aide de composants CO-OPN/2 spécifiant des
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classes Java. L’étape d’implantation dans le langage Java lui-méme en est ainsi facilitée.

La troisieme partie de cette these montre comment il est possible de vérifier pratiquement
qu’une spécification CO-OPN /2 satisfait son propre contrat, qu'une étape de raffinement
est correctement effectuée, et enfin que I’étape d’implantation est correctement réalisée.
Ces vérifications s’effectuent a 1’aide de la théorie du test fournie avec le langage CO-

OPN/2.

Finalement, la derniere partie de cette these illustre le bien-fondé de cette approche en
I’appliquant sur une étude de cas complete et détaillée. Une application répartie Java est
développée selon la méthode introduite pour le langage CO-OPN/2. Le raffinement est
guidé principalement par la satisfaction de charges fonctionnelles et par des contraintes de
conception intégrant la notion d’architecture client/serveur. Enfin, les étapes choisies lors
du processus de raffinement de ce développement permettent d’étudier certains aspects
spécifiques aux applications réparties, et de proposer des schémas génériques pour la
conception de telles applications.



Abstract

One of the steps making it possible to increase the quality and the reliability of the
software executing on distributed systems consists of the use of methods of software engi-
neering that are known as formal. The majority of the formal methods currently existing
correspond in fact more to formal specifications languages than to methods themselves.
This is due to the fact that the two fundamental aspects which are: the logic of use of
the language and the coverage of the software life cycle are not, for the majority, defined.
The development by stepwise refinement is one of the means making it possible to define
these two aspects.

This thesis aims to the definition of the concepts of refinement and implementation of
model-oriented formal specifications. It brings a methodological base making it possible
to use such a specifications language during a development by stepwise refinements and
during the implementation stage.

This thesis defines, initially, a theoretical framework for the refinement and the imple-
mentation of formal specifications. The main idea consists in associating a contract with
each specification. A contract explicitly represents the whole of the properties of the
specification which it is necessary to preserve at the time of a refinement of this specifica-
tion. To show that a concrete specification refines some abstract specification, it is then
a matter of showing that the contract of the concrete specification is sufficient to ensure
the properties corresponding to the contract of the abstract specification.

The second part of this thesis consists in applying this theoretical framework in the con-
text of the CO-OPN/2 language. CO-OPN/2 is an object-oriented formal specifications
language founded on algebraic specifications and Petri nets. Thus, definitions of the con-
cepts of contracts, refinement and implementation are proposed for this language. The
contracts are expressed using the Hennessy-Milner temporal logic (HML). This logic is
used in the theory of test provided with language CO-OPN/2. Thus, the verification
of the contractual properties, as well as the verification of the stages of refinement are
facilitated. Refinement and implementation are controlled semantically by the satisfac-
tion of the contracts; syntactically, a renaming is authorised. We specifically study the
implementation using the Java programming language. We show how to specify classes of
the Java programming language using language CO-OPN/2, so that the last stage of the
process of refinement leads to a specification entirely built using CO-OPN/2 components
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specifying Java classes. The stage of implementation in the Java language itself is thus
facilitated.

The third part of this thesis shows how it is possible to practically verify that a CO-OPN/2
specification satisfies its own contract, that a stage of refinement is correctly carried out,
and finally that the stage of implementation is correctly performed. These verifications
are carried out using the theory of the test provided with language CO-OPN/2.

Finally, the last part of this thesis illustrates the cogency of this approach by applying it to
a complete and detailed case study. A distributed Java application is developped according
to the method introduced for the CO-OPN/2 language. Refinement is guided mainly by
the satisfaction of functional requirements and by constraints of design integrating the
concept of client/server architecture. Lastly, the stages chosen in the refinement process
of this development make it possible to study aspects specific to distributed applications,
and to propose generic schemas for the design of such applications.
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Chapter 1

Introduction

Within software engineering techniques, formal methods provide a mathematical frame-
work to analyse, design, implement, and verify software systems.

A typical software development process begins with the analysis phase that enables to
characterise the client’s requirements. This phase produces the requirement specification,
that describes properties of the system to be developped. Once the requirements have been
established, the design phase produces first an abstract system specification that describes
an operational model (behaviour) of the system. The abstract system specification should
respect the requirement specification.

One of the ways for reaching an implementation from an abstract system specification
is provided by the stepwise refinement of formal system specifications. This technique
consists of gradually transforming the abstract system specification, in order to let it take
into account more and more operational constraints related to the execution environment.
After a series of refinement steps, a concrete system specification is reached that describes
an operational model of the system, and takes into account the constraints of the execution
environment (programming language, execution platform, etc.). The concrete system
specification should of course respect the abstract system specification and as well the
requirement specification.

At the end of the design phase, the implementation step leads to an executable program.
In the case of a design phase performed with stepwise refinement, the concrete system
specification is then translated into an executable program written using a programming
language.

During design and implementation, the verification step is necessary in order to show:
first, that the abstract system specification is correct wrt the requirement specification;
second, that every system specification, obtained during the design phase, is correct wrt
the system specification that precedes it in the refinement process, and is still correct wrt
the requirement specification; and, finally, that the executable program, obtained during
the implementation phase, is correct wrt the concrete system specification, and wrt the
requirement specification. The first and last verifications of correctness listed above are
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part of what is traditionally called validation.

Formal specifications languages allow to express requirement specifications, as well as
abstract and concrete system specifications. Property-oriented formal specifications lan-
guages, like logical languages, are well-suited for expressing the requirement specification,
but it is more difficult to use them for system specifications. Conversely, model-oriented
formal specifications languages, like Petri nets, are well-suited for expressing system spec-
ifications, but are not well-suited for expressing the requirements.

Formal methods traditionally use a single formal specifications language for expressing
both the requirement specification, and the system specifications. When the chosen formal
specifications language is a logical language, the specification task is more difficult, but
the verification tasks is reduced to showing logical implications. When the chosen formal
specifications language is model-oriented, specifications are more easily and powerfully
expressed. However, the verification task usually follows an informal way (e.g., simula-
tion), since it is difficult to determine if the (huge) set of all possible behaviours that are
represented by the specification, are possible and desired behaviours of the system.

The problem of the choice between a model-oriented and a property-oriented formal spec-
ifications language is not an easy task, since requirement specifications and system spec-
ifications are both important in the development process as noted by Pnueli:

(... ), even if we decide to adopt system specification as the main specifi-
cation mode for large systems, there is still an important role to requirement
specification. It is the best and most rigorous way to validate the correctness
of the system specification.” — A. Pnueli [54]

In order to bring a solution to the problem of the choice between a model-oriented and
a property-oriented formal specifications language, some model-oriented specifications
languages have acquired a property-oriented specifications language. This is known as the
two languages framework described, among others, by Pnueli in [54]: a logical language
is used for expressing requirements, and a model-oriented language is used for describing
models or implementations. In addition, the logical language is also used for translating
the system specification into logical properties, and the verification task is then realized
in the logical framework.

The verification that a program is correct wrt a system specification is a problem similar to
the one of verifying that a system specification is correct wrt the requirement specification.
Thus, the use of a logical language in addition to a programming language should help
for the verification task.

In the last decades, only few attempts have been undertaken to consider the idea of inte-
grating assertions into programs. More recently, Meyer [50] has promoted this idea, and
even goes a step further. Indeed, he advocates that, in order to face the problem of cor-
rectness, every program operation (instruction or routine body) should be systematically
accompanied by a pre- and a post-condition. He characterises this method:
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(... ) as a conceptual tool for analysis, design, implementation and docu-
mentation, helping us to build software in which reliability is built-in, rather
than achieved or attempted after the fact through debugging; in Mill’s terms,
enabling us to build correct programs and know it.” — B. Meyer [50]

The work presented in this thesis is performed in the framework of a model-oriented formal
specifications language, called CO-OPN/2 (Concurrent Object-Oriented Petri Nets). It is
an object-oriented formal specifications language, which allows concurrent and distributed
systems to be described in terms of: structured Petri net, describing behaviour, and alge-
braic specifications describing data structures. The verification that a program correctly
implements a CO-OPN/2 specification is currently realised by the means of automatically
generated test cases built with logical formulae derived from the CO-OPN/2 specification.
Formulae are expressed using the Hennessy-Milner branching-time temporal logic (HML),
which is a very simple logic well-suited for automatically generating formulae. A series
of works around the CO-OPN/2 language have considerably enriched the CO-OPN/2

framework. However, there is still a lack of a rigorous development methodology.

This thesis brings some elements useful for establishing such a development methodology.
A theory of stepwise refinement and implementation of model-oriented specifications is
proposed, that lies within the scope of the two languages framework, as described by
Pnueli, and that uses built-in features for addressing the correctness issue, as advocated
by Meyer. Indeed, this thesis proposes:

e a general theory for the stepwise refinement and implementation of model-oriented
formal specifications, which advocates the use of a model-oriented language and
a logical language during the whole development process and the implementation
phase;

e an application of this theory to the CO-OPN/2 language, using the Hennessy-Milner
logic;

e a way of practically verifying the correctness of the refinement process and the
implementation phase, by using test generation.

This chapter first presents the motivations and the principle of the stepwise refinement and
implementation theory. Second, it discusses the positioning of this work in the framework
of the CO-OPN/2 language, and finally it outlines the main contributions.

1.1 Motivation and Principle

Traditional definitions of stepwise refinement for model-oriented specifications languages,
require that the whole behaviour, or at least the whole observable behaviour described by
a specification (in case of object-oriented languages), has to be preserved by a subsequent
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refinement step. Such a requirement is too strong, since, from a practical point of view, it is
not realistic to require the whole behaviour to be preserved. In the case of model-oriented
specifications, the behaviour of the specification explicitly describes a particular solution,
and implicitly describes properties of the system. This set of properties can be split in
two parts: properties that are specific to the solution provided by the specification, and
essential properties required by the client. What has to be preserved during a refinement
step is not the whole behaviour (and hence all the particular properties), but only the
essential properties that make the system convenient for the client.

Then it becomes necessary to be able to make the distinction between particular properties
and essential properties. Since model-oriented specifications languages cannot be used to
express explicitly properties, we advocate the use of an additional logical language for
expressing the properties. Specifications are then made of two parts, a model-oriented part
expressed expressing the system specification, and a property-oriented part expressing
the properties to preserve. We call contract the property-oriented part, and contractual
specification the pair made of a specification and a contract.

The definition of refinement is divided in two parts: a syntactical part that settles syntac-
tical rules that a concrete specification has to respect wrt a more abstract specification;
and a semantical part which ensures that the contract of an abstract specification is pre-
served by the contract of a more concrete specification. We call such a refinement, a
refinement based on contracts.

As already mentioned above, the idea of combining a model-oriented specification with
properties expressed with a logical language is not new. Object-oriented specifications
languages like TROLL and VDM™*, as well as some classes of timed Petri nets employ a
similar technique. The use of a logical language for expressing properties enables these
specifications languages to formally prove that a refinement step is correct. The set of
properties used to make the proof is generally the whole set of properties satisfied by the
model of the specification.

The particularity of our approach is twofold: first it goes a step further and authorises
some properties to be lost during a refinement step. The specifier is then free to refine,
provided concrete specifications preserve the contract of more abstract specifications.
Second, the use of contracts explicitly joined to specifications and to programs enables to
address the problem of correctness. The specifier must explicitly give the properties that
he wants to be preserved during a refinement step. Thus, from a methodological point of
view, this facilitates the building of correct specifications, since the contract points out
the properties to be verified.

The ultimate goal of a stepwise refinement is to reach an implementation. It seems then
natural to extend the theory of refinement based on contracts, to the implementation,
more especially as programming languages do not express explicitly the properties of a
system. The implementation based on contracts requires that a contract be added to
a program, in order to form a contractual program, and that this contract preserve the
contract of the specification to implement.



1.2. POSITIONING d

According to these principles, a general theory of refinement and implementation based
on contracts has been defined for model-oriented specifications languages and logical lan-
guages. Although it is presented in a general way, this theory is mostly thought for
distributed and concurrent systems. Indeed, the work presented in this thesis is conduced
in the framework of the CO-OPN/2 language, which defines a class of high-level Petri

nets well-suited for specifying distributed and concurrent systems.

The general theory of refinement and implementation based on contracts has been ap-
plied to the CO-OPN/2 formal specifications language; the Hennessy-Milner logic (HML)
is used for expressing the contracts on CO-OPN/2 specifications. Since CO-OPN/2 is
an object-oriented specifications language, the implementation of CO-OPN/2 specifica-
tions has been investigated for object-oriented programming languages; HML is used for
expressing formulae on programs. Some other works on CO-OPN/2 attempt to directly
implement CO-OPN/2 specifications using the Java programming language. Therefore,
attention has been given to refinement processes ending with an implementation phase
using Java. In order to further built a development methodology using CO-OPN/2; the
correctness issue has been considered under the semantic approach: automatically gener-
ated tests are used for verifying the contracts preservation.

1.2 Positioning

Active research is currently being conduced in the CO-OPN/2 framework. The following
points summarise some past, present and future works on CO-OPN/2:

e The CO-OPN/2 Formal Specifications Language
The CO-OPN/2 language, presented by Biberstein [14], is an object-oriented for-
mal specifications languages based on Petri nets and algebraic specifications. This
language allows the definition of active concurrent objects dynamically created, and
includes facilities for sub-typing, and sub-classing;

o Strong Refinement
The current definition of refinement of CO-OPN/2 specifications, due to Buchs and
Guelfi [21], is based on the bisimulation equivalence. A more concrete CO-OPN/2
specification refines a more abstract CO-OPN /2 specification if the transition system
of the former, restricted to the elements of the latter, is bisimulation equivalent
to the transition system of the latter. Bisimulation equivalence requires that the
transition systems have the same branching structure;

e Incremental Prototyping Methodology
Hulaas [43] describes first a tool for compiling CO-OPN/2 specifications into an ab-
stract distributed implementation, and second a manual optimisation of the abstract
implementation, in order to reach a concrete implementation [43]. The possibility
to directly implement CO-OPN/2 specifications in Java is currently being studied.
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o Automatic Test Generation
Barbey, Buchs and Péraire [12] define a theory of test generation for CO-OPN/2
specifications. This theory enables to derive, from a very large set of test cases,
a reduced set of test cases, which is still fully representative of the specifications
behaviour. Péraire [52] has completed this theory with a tool able to automatically
generate the reduced set of test cases built with HML formulae;

e Towards an Aziomatic Semantics for CO-OPN/2
Inference rules for computing all valid transitions are defined for CO-OPN/2 by
Biberstein [14]. In addition, Vachon in [59] defines inference rules for computing all
invalid transitions. Given these sets of rules, Buchs and Vachon [59] currently study
how to obtain a complete axiomatic semantics for a subset of CO-OPN/2;

o Contextual Coordination
Buffo [22] defines a contextual coordination model for distributed object systems
and defines COIL, that is a language for the contextual coordination of CO-OPN/2
specifications. The model provides: coordination structures, by means of hierarchies
of contexts and objects; and dynamic configurations, by means of object migrations,
useful when the architecture of the distributed system dynamically changes;

o Tools

Co-opnTools [24] is a project aiming at developing a set of tools dedicated to the
visualisation, edition, and simulation of graphical and textual CO-OPN/2 specifi-
cations. Among others, we can mention Co-opnCheck, which is a tool able to
verify that a CO-OPN/2 specification has a correct syntax and static semantics.
Co-opnTest is a tool for automatically generating test cases [52]; it contains an
editor for graphically viewing CO-OPN/2 textual specifications as well. A viewer
and a simulator of CO-OPN/2 specifications are currently being studied. A former
tool, called TTool automatically transforms CO-OPN/2 specifications into highly-
parallelised CO-OPN/2 specifications [20].

The series of works mentioned above have contributed to first establish the CO-OPN/2
language, and second to enrich the language with theories and tools essentials to a prac-
tical and industrial use of the CO-OPN/2 language. However, the CO-OPN/2 framework
still lacks of elements like: formal proofs for asserting that a formula is satisfied or not by
the model of a CO-OPN/2 specification; a methodology of development and a tool for it;
a graphical simulator.

This thesis is a first step towards the establishment of a development framework, both
theoretical and practical, for CO-OPN/2. Figure 1.1 shows the theoretical basis of such a
development framework. After the analysis phase, informal requirements are determined.
On the basis of these requirements, an abstract contractual CO-OPN/2 specification
(Specy, Contracty) is devised, whose contract formally expresses the requirements. Dur-
ing the design phase, several refinement steps are performed, that finally lead to a concrete
contractual CO-OPN/2 specification (Spec,,, Contract,,). The implementation phase then
provides the contractual program (Program,Contract). The verification of correctness
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uses generated tests for: verifying that the model of a specification actually satisfies its
contract, and in a similar way for the program (horizontal verification); verifying that a
refinement step is correct (vertical verification); and finally, verifying that a program is a
correct implementation (program verification). Besides this semantic approach to correct-
ness, the refinement and implementation based on contracts can be used, in the future,
to perform axiomatic verification on the basis of the axiomatic semantics being currently
developped for CO-OPN/2. Moreover, future work could provide a compositional notion
of refinement based on COIL components.

Informal Requirements

Analysis

. Design Speco 1 Contracto Verification
Refinement Based on Contracts \L A ¢ $
! Generated Tests Horizontal Verification
Spec, . Contract 1
\+'
v | v Generated Tests Vertical Verification
Specn 3 Contractn
\ ‘ \ >,
| } : I I Generated Tests Program Verification
I mplementation ! !
Implementation Based on Contracts| ~ Program . Contract - )
o /

Generated Tests

Figure 1.1: A Development Framework For CO-OPN/2

1.3 Contribution

The results presented in this thesis, and which contribute to the establishment of a devel-
opment framework for CO-OPN/2 as explained above, can be split into three categories:
first, a general theory of stepwise refinement and implementation based on the use of con-
tracts; second, the application of these theories to the CO-OPN/2 language, in order to
provide a theory of stepwise refinement and implementation of CO-OPN/2 specifications;
and third, a development methodology for CO-OPN/2 which provides more particularly
a development method of Java applications, and which uses test generation in order to
perform verifications. The contributions of this thesis are as follows:

o A General Theory of Stepwise Refinement Based on Contracts
The theory of stepwise refinement based on contracts is defined for model-oriented
specifications. It advocates the joint use of a specification and a set of logical
formulae, called a contract, satisfied by the model of the specification. A refinement
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step is correct if the contract of a concrete specification preserves the contract of a
more abstract one;

o A General Theory of Implementation Based on Contracts
The theory of implementation based on contracts is defined in a way similar to
that of refinement: a set of logical formulae, satisfied by the model of the program,
is added to the program; the program correctly implements a specification if the
program contract preserves the specification contract;

o A Theory of Stepwise Refinement of CO-OPN/2 Specifications
The theory of refinement based on contracts is applied to the CO-OPN/2 specifi-
cations language. The Hennessy-Milner logic is used to express contracts on CO-
OPN/2 specification. This logic is currently used in the framework of CO-OPN/2
for automatically generating test cases. The choice of this simple logic for expressing
contracts is motivated by the will to further automate the proof that a refinement
step is correct, using automatically generated test cases;

o A Theory of Implementation of CO-OPN/2 Specifications
The theory of implementation based on contracts is applied to the CO-OPN/2
specifications language and to object-oriented programming languages. An abstract
definition of object-oriented programs is provided, and HML formulae are defined
on these programs;

o Implementation of CO-OPN/2 Specifications in Java

The implementation of CO-OPN/2 specifications using the Java programming lan-
guage 1s more particularly studied. The implementation step is trivially realized
if the most concrete CO-OPN/2 specification reached at the end of a refinement
process is very close to the Java program. By close, we mean that every instruction
of the program is specified, and that the behaviour of the CO-OPN /2 specification
and that of the Java program are the same. We show how to obtain a CO-OPN/2
specification which specifies a Java program and reflects the Java semantics. Ad-
vices are given on how to conduct a refinement process in order to easily perform
the implementation step when the Java programming language is used;

o Verification of Refinement and Implementation Using Test Generation
It is shown how test generation is used in order to practically verify that a set of
formulae is actually a contract for a given CO-OPN/2 specification, that a refine-
ment step is correctly performed, and that the implementation phase is correctly
realized.

1.4 Document Organisation

Chapter 2 is made of two parts: a survey of some definitions of refinement for model-
oriented specifications languages; and an analysis of these definitions, that enables to
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conclude that every definition of refinement can be reduced to the preservation of a set
of properties.

Chapter 3 defines the general theory of stepwise refinement and implementation based on
contracts, it gives some compositional results, and discusses the approach.

We intend to use this theory in order to define the formal refinement of CO-OPN/2
specifications. Therefore, Chapter 4 presents the syntax and semantics of CO-OPN/2
specifications.

Chapter 5 presents the Hennessy-Milner logic for expressing contracts on CO-OPN/2
specifications, and defines the theory of refinement based on contracts for the CO-OPN/2
specifications language. It defines as well a hierarchical operator on contractual CO-
OPN/2 specifications, and a compositional refinement.

Chapter 6 applies the theory of implementation based on contracts to the CO-OPN/2
specifications language and object-oriented programming languages. In addition, it defines
the compositional implementation of CO-OPN/2 specifications.

Since we are more particularly interested in implementations realized with the Java pro-
gramming language, Chapter 7 explains how Java programs can be specified using the
CO-OPN/2 specifications language, and gives some hints on how to conduct a refinement
process in order to reach easily a Java program.

In the CO-OPN/2 framework, the Hennessy-Milner logic is used for expressing automat-
ically generated tests. Chapter 8 shows how it is possible to use test generation in order
to prove first that the transition system of a CO-OPN/2 specification satisfies a set of
HML formulae, and second that refinement steps and implementation phase are correctly
realized.

Through a concrete case study, Chapter 9 realizes the complete development of an ap-
plication: starting from informal requirements, a refinement process ended by a Java
implementation, is performed and informally proved.

Finally, Chapter 10 gives a summary of the principal results of this thesis and lists some
future works.
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INTRODUCTION



Chapter 2

Related Works

The purposes of this thesis are first, to provide a formal definition of stepwise refinement
of model-oriented specifications, that is based on the use of an additional logical language;
and, second, to apply this definition to the CO-OPN/2 language, which is object-oriented
and based on Petri nets and algebraic specifications. This chapter gives an informal
description of some of the definitions of stepwise refinement that can be found in the
areas of Petri nets, and object-oriented specifications. In order to complete this overview
of definitions of refinement, we present also other definitions, which either are independent
of a specific formalism, or make use of a logical language.

Once we have reported these definitions, we compare them from several points of view:
syntactical obligations of the definition of refinement, e.g., preservation or not of the signa-
ture; semantical obligations of the definition of refinement, e.g., input/output behaviour
preservation or trace behaviour preservation. As we are interested in systems having
models based on events and states, emphasis will be given to refinements of such systems,
rather than to functional systems. Then we devise the properties that a refinement must
have and those that it may have. We discuss what should be the difference between an
implementation and a refinement; and give some hints on development methodologies.
Finally, we show how most of these definitions can be captured by a more “generic” def-
inition, based on the preservation of observable properties of interest. This definition of
refinement is informally stated at the end of this chapter. It is the core of this thesis;
it is formalised for specifications in general in chapter 3, and applied to the CO-OPN/2
language in chapter 6.

In the rest of this chapter, we use as synonyms the terms: abstract specifications and high-
level specifications; and the terms concrete specifications and low-level specifications. A
concrete or low-level specification stands for the refinement of an abstract or higher-level
specification. We also say that an element is abstract or concrete if it belongs to the
abstract or to the concrete specification respectively. Moreover, we will report below
diverse definitions of refinement, using the same words as the authors. For this reason, a
given word may have a different meaning in two different definitions of refinement. This
is particularly the case for the word "implementation”; either it is used as a synonym to
refinement, or it has its own, different, meaning.
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2.1 Refinement of Petri Nets/High-level Nets

This section presents some (of the numerous) definitions of refinements for different kinds
of Petri nets. First, we introduce some refinements of unstructured Petri nets. These
refinements usually rely on embedding techniques, such as the replacement of a transition
by a subnet, or the replacement of a place by a subnet. These techniques ensure either that
the initial net and the refined net have the same properties, or that two equivalent nets,
refined in the same way, lead to two equivalent nets. A survey of equivalence notions for
Petri nets, due to Pomello et al., can be found in [55]. Second, we introduce an example of
refinement of a kind of timed Petri nets based on the preservation of observable properties.
Third, we give two different definitions of refinement in the framework of structured nets.
Finally, a general definition of replacement of a subnet by another subnet is given. This
definition can be applied to several kinds of Petri nets.

2.1.1 Refinement of Unstructured Petri Nets

The techniques for refining unstructured Petri nets are based on the replacement of a
transition or a place by a subnet. These techniques differ in the way the subnet is
embedded inside the initial net. Moreover, some of these techniques ensure that the
initial net and its refinement have the same properties (they are equivalent in some sense).
Some other techniques ensure that, given an equivalence relation, two equivalent nets are
refined to two equivalent nets. According to the terminology used in the literature: if the
equivalence relation and the refinement operation are such that two equivalent nets refine
to two equivalent nets, then we say that the equivalence relation is a congruence wrt the
refinement operation. The first technique (a net refines to an equivalent net) is used when
both the original net and its refinement have the same behaviour. The second technique
(two equivalent nets refine to two equivalent nets) is used when the refinement introduces
new elements, such that the original nets and their respective refinements have different
behaviours.

We now introduce four definitions of refinements: the first two ensure that the refined net
preserves some properties of the original net, i.e., they are equivalent; and the last two
ensure that two equivalent nets are refined to two equivalent nets.

Refinement of a Transition

The survey of Brauer et al. [19] lists several refinements for unstructured Petri nets.
Among others, it describes the refinement of a transition ¢ by a refinement net. A re-
finement net D, which refines a transition ¢, is a net that has some initial transitions,
representing the beginning of ¢, and some final transitions, representing the end of . The
refined net is obtained by replacing the transition ¢ by the refinement net, and by con-
necting each place in the preset of ¢ with every initial transition of D, using an arc that
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has the same weight as the original arc between the place and t. Similarly, each place in
the postset of ¢ is connected with every final transition of D. This technique ensures that
if the original net is safe (live or bound) and if D is also safe (live or bound), then the
refined net is safe (live or bound).

Refinement of Places via Parallel Composition

Vogler [60] defines the refinement of a place by a refinement net. A refinement net D,
which refines a place p, in a net N, via parallel composition, is a net that has some
transitions labelled as the transitions adjacent to p. The parallel composition consists in
splitting up the transitions of NV, adjacent to p, such that each split transition is merged
with every transition of net D with the same label. The refined net is obtained by parallel
composition of the net N where place p has been replaced by D. This technique ensures
under certain conditions that net N and its refinement have the same failure semantics.
A dual approach exists for the refinement of transitions.

Action Refinement

Also taken from Brauer et al. [19], the action refinement consists in replacing every tran-
sition with some given label by a copy of the same refinement net. This technique ensures
that the process equivalence, and the failure equivalence are congruences wrt this refine-
ment. Two nets are process-equivalent if they have the same underlying process; they
are failure-equivalent if they have the same set of failures. For instance, in the case of
process equivalence, two nets, with the same underlying processes, refined by two process-
equivalent refinement nets, lead to two nets with the same underlying processes.

Replacement of a Transition by a Net Modulo a Function

Best and Thielke [13] define a refinement for coloured Petri nets. This refinement is based
on the idea that the replacement of a transition ¢, of a net Ny, by a subnet N, affects
the environment of ¢: the type (set of colours) of the places before and after ¢ will change
in the refined net (after replacement) as well as the type (i.e., occurrence mode) of the
transition corresponding to ¢t and the labels of the arcs. In order to be able to insert
the subnet Ny into the net Ni, a function is needed. This function is a mapping from
the places of N, to the set {e,7,2}. The places mapped to e, meaning entry, are to be
combined with the places in the preset of ¢, the places mapped to z, meaning exit, are
to be combined with the places in the postset of ¢, and the places mapped to 7, meaning
internal, are new places not related to a place of Ny.

The refinement is conducted in several steps. The places of N; that are in the preset and
postset of ¢ are merged with the places of Ny mapped to e and z. The type of this new
place is a combination (the set of all sums of multisets) of the types of the places of Ny and
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those of Ny. The transition ¢ is merged with all the transitions of N, adjacent to places
mapped to e and x. The type of this new transition is the set of all sums of the types of
t with every transition adjacent to places mapped to e and x. An arc links the new place
to the new transition: its label stands for all the possible combinatorial ways of removing
values when firing the merged transitions. Similarly, an arc links the new transition to
the new place: its label stands for all the combinatorial ways of adding values when firing
the merged transitions. Some more arcs link the new place to transitions of Ny and the
new transition to the internal places of Ns.

The transformation equivalence is a congruence wrt this refinement. Two nets, NV; and
Nji, are transformation-equivalent if they lead to the same net after having isolated the
transition to be replaced, and merged its adjacent places. Two subnets, Ny and N}, are
transformation-equivalent if they lead to the same net after having merged all the places
mapped to e and x and merged their adjacent transitions. This technique ensures that if
a net Ny is refined by a subnet N, and if a net Nj, transformation-equivalent to Ny, is
refined by subnet N;, transformation-equivalent to Ny, then the two refined nets are still
transformation-equivalent.

In addition, this technique is commutative modulo this equivalence, i.e., first replacing t;
by net N, and then ¢35 by net N; is equivalent to replacing first ¢, and then ¢;. A dual
definition can be given for the replacement of a place.

A similar definition of refinement for M-nets, a high-level class of Petri nets, has been
given by Devillers et al. [29].

2.1.2 Refinement of Timed Petri Nets

We present now an interesting approach concerning the refinement of timed Petri nets
based on the use of a temporal logic. TRIO is a linear, first-order typed temporal logic
due to Ghezzi et al. [39]. A TRIO axiomatisation, due to Felder et al. [34], has been given
to a kind of timed Petri nets where each transition is associated with a firing time interval
describing its earliest and latest firing time after enabling. A transition consumes exactly
one token from each place in its preset, and produces exactly one token into each place
in its postset. At a given time a transition may fire several times.

The TRIO axiomatisation of these timed Petri nets is based on two predicates: nFire(v,n)
means that, at the current time, transition v fires n times, and tokenF'(s,, p, v, j, d) means
that, at the current time, the ¢*! firing of transition s produces a token that enters place
p, this token is consumed after d time units by the j*! firing of transition v. Given a net
N, a set of axioms Axz(N) is built, that take into account the net and its initial marking.
From Az(N) a theory is derived, noted N'. On the basis of the two above predicates
and arithmetic operators, formulae can be expressed over the net. If a formula ¢ can be
derived from the theory Fu ¢ then every execution of the net satisfies the property ¢.

The implementation relation, of Felder et al. [33], of a net S by a net I, is based on
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the preservation of observable properties. A net [ implements a net S if the observable
properties of S are also observable properties of [ after translating them into I. The only
observable events in a net are transition firings. Therefore, an observable property ¢, of a
net S, is a formula constructed on the basis of the firing predicate nFire(v,n) only, and

must be derived from S (the theory of S): Fs ¢.

During a refinement step, it is possible to refine a transition by several transitions (not
just one). An event function, A : Ty — T's, maps transitions of I to transitions of S. The
event function may be partial (a transition of I has no corresponding transition in S), has
to be surjective (every transition in S must have at least one corresponding transition in
I, so that every observable property of S can be translated into an observable property
of I). The event function may be non-injective: a transition in S may be associated to
several transitions in /.

Given an event function A, a property function, A : & — Z is univocally derived. It
translates properties of the theory S, of S, to properties of the theory Z, of I. The
translation is based on the translation of the firing predicate:

A(nFire(v,n)) = 3ny...3Ins(n1 + ...+ ns =n AnFire(vi,n) A ... AnFire(vs,ns))

where {v1,... ,vs} is the set of all transitions of I mapped to v (A(v;) = v, 1 <7 < ).
The predicate that asserts that transition v fires n times is translated into a predicate
that says that the sum of firings of the transitions of I mapped to v is also n.

A net [ implements a net S through X iff for each observable formula ¢ of S:
Fs ¢ = tr A(¢).

Every observable formula of S is translated into an observable formula of 1.

In addition, Felder et al. [33] give a method for proving implementation. It is based on
the idea that for each observable property ¢ of a net S there exists in the axiomatisation
of the implementation net [ a proof of A(¢) that mirrors the proof of ¢. They give also
some refinement rules that ensure a correct refinement.

2.1.3 Refinement of Structured Petri Nets

In the field of structured Petri nets, a small number of definitions have been given. We
mention two of them. The first is based on method calls, and the second is based on the
preservation of the bisimulation equivalence.

Refinement as a Method Call

Kiehn [45] considers that if a transition ¢ of a net N is refined by a subnet N’, ¢ is not
statically replaced by N', but the firing of t is replaced by a call to N'. In the refined net,
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the firing of ¢ leads to the initial marking of N’, once N’ reaches a final marking, control
is given back to N, i.e., the tokens produced by the firing of ¢ are inserted into the places
of the postset of t. This definition of refinement is based on a structuring technique: a
refinement is achieved when more structure is added to the original net. In addition, this
technique aims at deriving the behaviour of the refined system from the behaviour of N

and that of N'.

CO-OPN

CO-OPN is an object-based specifications language due to Buchs and Guelfi [21]. An
object is an algebraic Petri net able to synchronise with another object. Objects have
an external and an internal part. The external part is made of special transitions called
methods that are used for the synchronisation. The internal part is made of transitions
and places. It cannot be accessed by other objects. A method can fire only if the synchro-
nisations it requires with the methods of other objects is possible, i.e., if these methods
can fire simultaneously. The firing of a method is atomic (i.e., it occurs entirely or not at
all). The semantics is a step semantics (several methods may fire simultaneously). It is
given by a transition system taking into account an algebra (a model) for the algebraic
specification part.

Two kinds of refinements, based on the preservation of the bisimulation equivalence, are
defined: object replacement and algebra replacement. Given two CO-OPN specifications
Sy and S5, and their corresponding transition systems 7Sy and T'S,, a bisimulation is a
relation over states such that, if a state m; of T'Sy is in relation with a state mg of 155,
then: (1) for every transition of 7Sy, which transforms m; into a new state m/, there is
a transition of 7Sy with the same event that transforms m, into a state mj, and m] is in
relation with m; (2) vice-versa for the transitions of 7'Sy transforming my. In addition,
the initial states (initial markings) must be in relation.

Given an algebra A of the algebraic specification, the object replacement consists in
replacing a sub-specification by a bisimular sub-specification. The transition system of
the whole initial specification must be bisimular to the transition system obtained after
the replacement.

A transition system of a CO-OPN specification is given with an algebra A; for the al-
gebraic specification. The algebra refinement consists in replacing the algebra A; by an
algebra A,, which is another model of the same algebraic specification, in the transi-
tion system of the CO-OPN specification. The new transition system obtained must be
bisimular to the initial one.
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2.1.4 Abstract Definition of Refinement for Petri nets

We now introduce an abstract definition of refinement for Petri nets, based on category
theory, that encompasses technical definitions of refinement for several kinds of Petri
nets. This refinement, due to Padberg [51], is called rule-based refinement. It considers

the refinement as a production rule p = (L LKL R), where L, K, R are nets (objects
in a category of nets), and [, r are morphisms. The meaning of the production rule is the
following: the parts of the net L that are not in the image of K by [ are deleted and they
are replaced by the parts of the net R that are not in the image of K by r. K stands for a
"common” part to keep. The particular case where K is empty leads to the replacement
of the whole net L by the whole net R. K is actually a common part of both L and R
when [, r are identities. The rule is applied to a net N where L is part of the net and
produces a net M where [(K') (a part of L) has been replaced by r(K) (a part of R). The
net N is said to be transformed to net M.

This theory has been applied to several kinds of Petri nets, among others: place/transition
nets, algebraic high-level nets, predicate/transition nets, coloured nets. In the case of
algebraic nets, the morphisms map places to places, transitions to transitions and there is
a morphism from the algebraic specification of a net to that of the other. In addition the
morphism between algebraic nets must be compatible with the pre- and post-conditions.
By its abstractness, this technique generalises several notions of refinements for several
kinds of Petri nets.

In addition, it ensures that: under certain conditions (independence), two transformations
are commutative (they lead to the same object); parallel transformations (component-wise
application of two transformations) can be viewed as a sequence of transformations and
vice-versa. Moreover, horizontal structuring (fusion, union) is compatible with transfor-
mations. Fusion removes multiple copies of the same item, while union glues together two
nets by a shared subpart. If we make first a transformation of net G and then we fusion
the resulting net H, we obtain the same object as if we first make a fusion of G and then
apply the transformation. If we make the union of two nets and then we apply a parallel
transformation, we obtain the same object as if we first transform each net separately,
and then make their union.

2.2 Refinement of Object-Oriented Specifications

Object-oriented specifications have visible parts and hidden parts. They define attributes,
object identifiers, states and methods. The refinement of object-oriented specifications
deals with problems like: the preservation or not of the visible parts, the management of
object identifiers, the transformation of the attributes, the transformation of the state,
and the preservation of the behaviour. This section reports the refinement of FOOPS,
TROLL, and VDM™™ specifications.
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2.2.1 FOOPS

FOOPS, reported by Borba and Goguen in [17], is a concurrent object-oriented specifi-
cations language having an operational semantics. The FOOPS language clearly distin-
guishes between data elements and objects: a functional level is used to describe abstract
data types (ADTs) and an object level is used to describe classes of objects. The func-
tional level is a variant of OBJ defined by Goguen [40]. It enables to define sorts, sub-sort
relations, operations, and properties the operations have to satisfy. The object level en-
ables to define modules, i.e., sets of classes of objects with visible and hidden methods
and attributes (state values), object identity, dynamic object creation and deletion, over-
loading, polymorphism, inheritance with overriding. Attributes are defined as operations
from an object identifier to a value. Attributes are inquiry operations: they do not update
the state of an object, they only return the value of the state. Methods are updating oper-
ations associated to an attribute. Their behaviour is specified with axioms indicating the
new value for the attribute to be updated. The evaluation of a method is atomic unless
the method behaviour is specified in terms of other operations using method combiners.
A specification is a module.

The definition of refinement in FOOPS, due to Borba and Goguen [18, 16], is based on
the notion of experiment and (P,Q)-simulation of a state by another state. An experiment
is the invocation of a visible operation with arbitrary arguments (object identifiers and
elements of ADTs). A visible operation is a visible attribute, a visible method, or an
object creation and deletion routine. Informally, “a state P is simulated by a state ()
if whatever can be observed by performing experiments with () can also be observed by
performing the same experiments with P.” In other words, “we cannot detect whether ()
or P is being used.” This implies that all experiments feasible with P must be feasible
with ) and must yield the same results. However, () may allow more experiments than

P.

The operational semantics of a FOOPS specification P is given by a transition relation
—pC Conf(P) x Conf(P), where Con f(P) is made of all pairs (e, P), e an expression, i.e.,
a composition of experiments, and P a state.

Given two FOOPS specifications P and Q, such that all experiments and object identifiers
of P are also experiments and object identifiers of Q, and ADT's of P, restricted to primary
sorts (sorts needed for experiments), are ADTs of Q:

e a (P.Q)-simulation is a relation S C Conf(P) x Conf(Q) such that (P,Q) € S
implies: (1) that any state immediately reached from @ is related to some state that
might eventually be reached from P; (2) if the expression in ) cannot be further
evaluated then the expression in P might eventually reach the same situation and
the resulting state is related to () by S. The results of the evaluation of expressions
in ) might eventually be observed in a state reachable from P; (3) performing the
same experiment in () and P leads to states related by .S, thus they yield the same
result;
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e a state () refines a state P, noted P Cpq) ), if there is S a (P,Q)-simulation such
that (P, Q) € S;

e an expression ¢ refines an expression p, noted p Cpyq) ¢, if there is S a (P,Q)-
simulation such that ({(p, @p), (¢, Fq)) € S, where Tp stands for the initial state of
P, and @y stands for the initial state of Q. The refinement of an expression is a
congruence wrt FOOPS combiners: e.g., p C(pq) ¢ implies p || 0 C(pq) ¢ || 0, where
|| is the parallel operator between expressions;

e finally a specification Q refines a specification P, noted P C Q, if every experiment of
P is refined by the same experiment in Q.

To summarise: a specification Q refines a specification P if syntactically and semantically
several conditions hold. Syntactically: (1) all visible methods and attributes of P are also
visible methods and attributes of Q; (2) the ADTs of P restricted to the primary sorts
are also ADTs of Q; (3) the object identifiers of P are also object identifiers of Q. This is
necessary in order to be able to perform in Q the same experiments as in P. Semantically:
all experiments of P must be experiments of Q, and the results (new reachable states, or
end states) obtained when performing these experiments in Q are related to results that can
be obtained when performing these experiments in P. This definition of refinement allows
data refinement (states are abstracted by the means of observations, i.e., experiments)
as well as action refinement (refinement of expressions). Refinement is achieved by the
reduction of non determinism, and the introduction or the removal of stuttering steps
(sequences of the same state are allowed in a trace).

2.2.2 TROLL

TROLL, reported by Denker and Hartel in [28], is an object-oriented specifications lan-
guage with a denotational semantics based on event structures. A TROLL object is a unit
of structure described by its attributes (local state), actions and axioms (behaviour). The
axioms describe the effects of actions on attributes, the enabling conditions for actions,
and the communication structures between objects. A TROLL system is a community of
concurrently existing and communicating objects. In a system, several objects as well
as their interactions: concurrent composition and synchronous communication (action
calling) may be defined.

Every object has a behaviour represented by the set of all possible runs. A run is called a
sequential life cycle; it is a sequence of local actions of the object. The model of an object
is a labelled sequential event structure, i.e., a rooted tree where each branch of the tree
is a sequential life cycle and each branching point is an alternative behaviour.

The behaviour of a TROLL system is given by the set of all system runs. A system run
is called a distributed life cycle. 1t consists of the sequential life cycles of each objects
belonging to the system (one life cycle per object) glued together at communication points.
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When the objects communicate, they share an event in their life cycles and perform a
synchronous action. The semantics of a TROLL system is also given by an event structure.

The refinement of TROLL systems, due to Denker [27], is guided by the idea of inte-
grating database aspects into a refinement theory for object-oriented specifications. The
fundamental idea is the following: a TROLL action is refined (reified, in the TROLL ter-
minology) to a transaction (a sequence of concrete actions). The correctness criterion,
which forces the sequential execution of two abstract actions to be reified only by the
sequential composition of the corresponding transactions, is considered to be too strict.
For this reason, the sequential composition of transactions is liberalised such that inde-
pendent concrete actions, i.e., actions which are not accessing the same resources, may
be interleaved arbitrarily and do not have to wait for each other.

More precisely, to every distributed life cycle of a concrete TROLL system is associated a
set of all sequential schedules. This set is obtained by interpreting concurrency between
sequential life cycles as an arbitrary order. Over the set of all sequential schedules of all
distributed life cycles is defined an equivalence relation partitioning this set into equiv-
alence classes such that: two schedules are equivalent if they have been derived from
the same distributed life cycle, i.e., they can be considered as two correct interleaved
sequences of the same distributed life cycle. The number of equivalence classes is less or
equal to the number of distributed life cycles. Finally, a concrete event structure refines
an abstract event structure if there is a surjective map from the equivalence classes of
the concrete event structure sequential schedules to the set of all distributed life cycles of
the abstract event structure. This means that: (1) there is no behaviour in the refined
model which does not correspond to some abstract behaviour; (2) the entire behaviour
of the abstract system is represented in the concrete model. The concrete runs can be
characterised as equivalence classes of sequential schedules. It is only necessary to have at
least one equivalence class in the refined model for any abstract concurrent system run.

Besides this database driven aspect of reification, temporal logic issues related to the above
semantic refinement have been investigated by Huhn, Wehrheim and Denker [26, 42]. In
this approach, a system specification is a pair SysSpec = (X, ®), where ¥ = (Id, Att, Ac)
is a triple made of Id, a set of object identifiers, Att, an Id-indexed set of attributes, and
Ac, an [d-indexed set of actions. The set ® is an [/d-indexed set of formulae. This set
is derived from the specification by translating each TROLL concept to an appropriate
temporal formula. This set of formulae establishes all the possible runs of the systems.
The signature ¥ is constructed on top of a data signature.

Given two system specifications: SysSpecA® = (34 ®4%) and SysSpeclic! = (NReS ohel),
SysSpecte! refines SysSpec?® if there is a total reification function p : 34% — NRe/
mapping identities to identities, attributes to attributes and actions to actions or trans-
actions, such that:

Ve 4 1 0l = p(g)

where p(¢) is the extension of the reification function to formulae over Y.7¢/.

This notion of refinement ensures that there exists a mapping from abstract signatures
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to reified signatures, such that the reified system models at least the behaviour of the
abstract system (the reified system has more formulae than the abstract system).

2.2.3 VDM**

VDM**, due to Lano [47], is an object-oriented specifications language. A VDM*™ class
defines: (1) a data part with data types, constants and functions; (2) attributes of the
class (including identifiers of instances); (3) invariants of the attributes; (4) initial states
of the attributes; (5) update methods (changing the attributes); (6) inquiring methods
(returning a result without changing the attributes); (7) a sync clause describing either
an explicit history of an object, or a set of permissions restricting the conditions under
which methods can be invoked; (8) a thread clause describing allowed execution paths.
Methods are defined with pre- and post-conditions.

The definition of refinement is based on the following idea: ”If D is a refinement of C, it
must not be possible for a user of the common interface to be able to devise an experiment
which would allow him to deduce whether he had an instance of C' or of D.” This implies
the following: D must not remove functionality of behaviour from €', and D can add new
methods only if the behaviour of the new methods can be described as a combination of
the behaviour of methods of C.

More precisely, D refines C' if there is a retrieve function R from the attributes of D to
those of (', and a renaming ¢ of the visible methods of C' to those of D. The retrieve
function R and the renaming function must satisfy several conditions: (1) every attribute
of ', satisfying the invariant, must be related to an attribute of D, satisfying the invariant
(adequacy condition); (2) initial and invariant constraints must be compatible; (3) a
method ¢(m) of D can be used every time the corresponding method m of C is used
(weaker pre-condition in D); (4) the method ¢(m) of D must lead to the same conclusions
when used in the same conditions than the corresponding method m of C (stronger post-
condition); (5) the renaming ¢ must be total (every method of C is refined by a method in
D), ¢ can be non-injective (two methods of C' can be refined by the same method in D),
and ¢ can be non-surjective (new methods can be introduced in D) provided that these
new methods can be expressed (via R) with methods of C'. Semantical conditions are
required on method executions: every possible behaviour (trace) of C' must be a (possibly
renamed) behaviour of D; and every trace possible for D corresponds to a trace possible

for C.

For each class C a logical RTL (Real Time Logic) language L is defined, and a theory
['c expressing the semantics of €' in this language is given. Similarly for D, a theory I'p
is given. The refinement is defined on the basis of these theories. D refines C' via R and
¢, noted C' EZ:IJ; D, if:

Vip € Lo, To b = TpF d(¢[R(v)/u]).

The translation in D of every formula that is true in the theory of C leads to a formula
that is still true in the theory of D. The translation of a formula in C' consists in replacing
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each attribute of C' appearing in the formula by the corresponding expression of D (built
with attributes of D) given by the retrieve function, and by renaming the methods using

é.

Composition of VDM™* refinement is obtained in the following way: if a class D is a
client of a class (', and C refines C', then substituting C'y for C' in D produces a class D
which refines D.

An implementation class is a class that is directly translatable into a procedural lan-
guage, and which has no abstract type. Translation rules allow to implement VDM*+
specifications into programs written in procedural languages. Testing is used to assert
the correctness of the implementation.

2.3 Still Other Refinement Notions

This section describes some refinements that either discuss some aspects also considered
in this thesis, or are not defined for a specific formalism, i.e., they can be applied to any
system independently of the specification formalism used. First, we consider algebraic
specifications. Second, we introduce the ASTRAL language, which specifies real-time
systems. Third, we discuss the B method, which views a system as an abstract machine.
Fourth, we report the refinement calculus, where programs are predicate transformers
and refinements are given by order relations. Fifth, we describe the Temporal Logic of
Actions, which defines a system with a next-state relation, and verification of refinement
reduces to verification of implications. Finally, we report a definition of refinement that
expresses a refinement as a property and vice-versa.

2.3.1 Refinement of Algebraic Specifications

An algebraic specification is a pair SP = (o, E), where ¥ = (S, F') is a signature (sorts and
operations), and F is a set of equations on the operations of the signature. A X-algebra
A consists of an S-sorted family of non-empty carrier sets { As}ses and of a total function
JA DA, x ... x A, foreach f:s) x...xs, €F. Alg(Y) is the set of all X-algebras.
A model of SP is a Y-algebra A satisfying the formulae of E. Mod(SP) is the set of all
models of SP. There are several notions of refinement for algebraic specifications, they
are based on the inclusion of the models. These definitions may be applied to algebraic
specifications but also to specifications in general.

Wirsing [61] defines the refinement of a specification SP by a specification SP’ by the
inclusion of the models of the latter in the models of the former, i.e.,

Mod(SP") C Mod(SP).

It is noted SP ~» SP’. This implies that both specifications have the same signature.
There is a diminution of the number of models when more design decisions are taken,
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i.e., when more formulae are satisfied. For parameterised specifications, if P ~» P’ and

SP ~ SP' then P(SP) ~ P'(5P").

A version, due to Sannella and Tarlecki [57], allows to change the signature. It uses the
notion of constructor. A constructor  is determined by a function f, : Alg(¥') — Alg(¥)
on algebras. The constructor k transforms a specification SP’, with signature ¥’ to a
specification S P, with signature ¥, such that Mod(k(SP')) = {f.(A)| A € Mod(SP')}.

A specification SP is implemented by a specification SP’ via a constructor & if:
SP ~» k(SP'), i.e., Mod(k(SP')) C Mod(SP).

The kind of refinement obtained depends on the choice of k. For instance the derive
constructor can be used to hide and/or rename some of the sorts and operations of SP’.
In this case, an implementation S P’ of SP may have more sorts and operations than S P,
or the sorts and the operations may have a different name.

Sannella and Tarlecki [57] extend this definition of refinement with the notion of abstractor.
This notion is motivated by the abstract model specification technique, in which the user
defines desired results, any model giving the same results being acceptable. An abstractor
« is determined by an equivalence relation =C Alg(¥) x Alg(X) on X-algebras. The
abstractor transforms a specification SP, with signature ¥, into a specification a(SP),
with the same signature. Models of a(SP) are all the models equivalent to at least
one model of SP, i.e., Mod(a(SP)) = {A € Alg(X) | A" € Mod(SP) s.t. A = A'}.
Abstractors and constructors are complementary techniques, which lead to the following
definition of refinement. A specification SP is implemented by a specification S P’ wrt an
abstractor a via a constructor « if:

a(SP) ~ k(SP'), i.e., Mod(k(SP")) C Mod(a(SP)).

The kind of refinement obtained depends on the choice of the constructor and on the
choice of the abstractor. For instance, the behavioural abstraction is based on the ob-
servational equivalence relation that does not distinguish between algebras that give the
same results on terms of external sorts (i.e., sorts of interest for the observation). In this
case, a refinement is an implementation of the (abstract) behaviour of SP rather than an
implementation of SP itself.

2.3.2 ASTRAL

ASTRAL, due to Ghezzi and Kemmerer [37] is a formal specifications language for rea-
Itime systems, that uses types, variables, constants, transitions, and invariants. A real-
time system is modelled by a collection of state machines specifications and a single global
specification. There may be multiple instances of each state machine, one for each process.
Operations of a state machine are specified with transitions defined by an entry assertion,
an exit assertion and a duration time. In order to validate ASTRAL specifications, Ghezzi

and Kemmerer [38] translate them into TRIO formulae, and apply the validation theory
of TRIO.
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Coen-Porisini et al. [25] define the refinement of ASTRAL specifications. An imple-
mentation mapping is used, that maps every type, constant, variable and transitions of
a high-level ASTRAL specification to a corresponding term in a lower-level specifica-
tion. Transitions may be refined either by selection or by sequence. Selection consists
of mapping a high-level transition 7' to a choice between several lower-level transitions

Ty | ... | Ty, such that every time T fires, one and only one T; (1 <7 < n) fires. Sequence
consists of mapping a high-level transition T' to a sequence T ;... ; T, of lower-level
transitions.

Proof obligations use logical formulae for formally proving a refinement step: proofs are
built on logical equivalences of entry and exit assertions. More precisely, proof obligations
for selection mapping requires first, that at least one 7} fires when and only when 7' fires
(entry assertions of T' and entry assertions of T; (1 < 7 < n) logically imply each other);
second, that the effect of T; logically implies the effect of T' (exit assertion of 7 implies
that of T' (1 < j < n) ); and third, the duration of 7; (1 < 7 < n) is equal to that of T

In the case of sequence mapping, proof obligations are similar: first, sequence 7y ;... ; T,
is enabled iff T' is enabled (logical equivalence of their entry assertions); second, the effect
of Ty ;...; T, logically implies the effect of T' (logical implication); and third, their
duration is the same.

233 B

B, due to Abrial [5, 4], is a method for specifying, refining and coding software systems.
The B method is based on the notion of abstract machine. An abstract machine can be
viewed as a class, an abstract data type, a module or a package. It allows to organise large
specifications as independent pieces having well-defined interfaces. An abstract machine
models a software system in terms of a state and operations that either modify the state
or return a result. The state is specified with: variables (attributes), an invariant, i.e., a
logical statement constraining the variables, and an initial value for the variables. There
are two kinds of operations: those changing the state without returning a result, and those
returning a result (possibly changing the state). The operations modify the state within
the limits of the invariant: the new state reached after the modification of the former
state by the operation must still validate the invariant. Operations are given by a pre-
condition and the way they modify the state. Large abstract machines can be constructed
from smaller ones.

The refinement process is part of the method. The refinement M; of an abstract machine
M is an abstract machine such that: (1) M; has the same name as M; (2) M; has the
same operation names and parameters as M; (3) M; has usually a different state (low-
level variables y) than M (high-level variables z), thus the invariant clause of My, defines
an invariant on variables y of My, as well as a change clause linking the variables of M
and those of M;. In simple cases, the change clause may be given by a function A from
the variables of M to the variables of My: y = h(x); (4) the pre-condition of the methods
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in M; may change as well as the definition of the methods. M correctly refines M if:

e the initial state of M; is compatible with the initial state of M, i.e., h(v) = w, where
v is the initial state of M and w is the initial state of Mj;

e for every method of M which changes the states, if the invariant and the pre-
condition of the method hold in a state e, then the invariant of M; and the pre-
condition of the corresponding method in M; hold for the state h(e), and if the
method of M changes state e into state €', then the corresponding method in M,
must change state h(e) into h(e’);

e for every method of M which returns a result, if the invariant of the method and
the pre-condition of the method hold in a state e, then the invariant of M; and
the pre-condition of the corresponding method in M; hold for the state h(e), and
the result returned by the corresponding method of M; must be equal to the result
returned by the method of M.

It is not necessary that all computations of the methods of M have a low-level counterpart.
The refinement of a method has a weaker pre-condition than its high-level counterpart, it
can be used in any context where the high-level method can be used, and also in contexts
where the high-level method cannot be used. In addition, the low-level method is less
non-deterministic than the high-level method. The refinement is correct if the low-level
method, used in any context where the high-level method is used, yields the same results,
and if the internal states are compatible via the change clause.

An implementation is a machine that refines either an abstract machine or a refinement.
An implementation cannot be refined further, it has no abstract variables and the op-
erations must be “implementable” (direct translation into a programming language is
possible). An implementation may import other abstract machines, whose operations
are used to define the operations of the implementation. These machines can be refined
further.

2.3.4 Refinement Calculus

The refinement calculus of Back and von Wright [8] views a program as a predicate trans-
former. A predicate p : ¥ — Bool is a function from X, a set of states, to Bool = {T', F'},
the boolean values. The predicate mentions for each state whether it satisfies or not the
predicate. Pred(X) is the set of all predicates over ¥. Given two sets of states: ¥ and I,
a program is a predicate transformer, S : Pred(X) — Pred(I).

Pred(X) is a complete lattice (a partial order with least upper bound and greatest lower
bound for every subset of Pred(X)). The order relation over Pred(X) corresponds to the
implication ordering: p < ¢ if p = ¢, it is defined point-wise, i.e., p < ¢ if p(o) < g(0)
for every o € Y. It defines a refinement ordering on the programs as follows: 7' refines
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S, noted S < T, if S(q) < T(q) for every q € Pred(X). The set of all programs from
Pred(X) to Pred(l') is a complete lattice wrt this order relation.

This notion of refinement models the notion of correctness given by a pre-condition /post-
condition pair (or assumption/guarantee): for every pre-condition P and post-condition
@, if S validates post-condition (), assuming pre-condition P, then T, refining S, validates
also post-condition (), assuming pre-condition P. This definition is extended to data
refinement by the means of encoding and decoding commands, £ and F'. S is refined by
S" through encoding F and decoding F'if S < E;S’; F~!, where the ”;” operator is the
composition of predicate transformers. Modularity is supported in the following way: if
T(S) is a program containing S as a subprogram then S < 5" = T(S) < T(5").

The refinement calculus is extended by Back [7] to parallel and reactive programs and
by Back and von Wright [9] to action systems. Among others, the following results are
presented: (1) the parallel composition is monotonic wrt refinement, i.e., A < A" and
B < B' implies A||B < A'||B’; (2) if A’ refines A then replacing A by A’ in any context
using A leads to a refinement, i.e., A < A’ implies C[A] < C[A'], where C' is the context
using A; (3) all temporal properties, validated by C[A], are still validated by C[A’].

Utting [58] has extended the refinement calculus to object-oriented programming. This
refinement allows modular reasoning about sub-typing, i.e., if ¢ is a sub-type of d, then
replacing ¢ by d in a system leads to a refinement.

2.3.5 TLA

The Temporal Logic of Actions (TLA), due to Lamport [46], specifies both closed systems
and their properties. Verification tasks are reduced to verification of logical implications:
a system satisfies a property if the formula specifying the system implies (logically) the
formula specifying the desired property; a system refines another system if the formula
specifying the former system implies the formula specifying the latter.

TLA formulae are essentially constructed over actions. An action is a relation between an
old state and a new state (before and after the action has taken place). The canonical form
of a formula specifying a system is made by the conjunction of: (1) an initial predicate,
which gives initial conditions on states; (2) a next-state action part, which gives the action
(disjunction or conjunction of smaller actions) that must be performed at each step, this
part also specifies stuttering steps, i.e., allows that some states may remain unchanged.
The next-state action part can be seen as an invariant to be preserved at each step; (3)
a fairness part, which allows to express liveness properties. A low-level formula ¢ refines
a higher-level one ¥ if ¢ = 1. There are three points that need to be proved: the initial
predicate of ¢ implies the initial predicate of v; a step of ¢ simulates a step of ¢ (same
sequence of states after removing stuttering steps), and ¢ implies the fairness condition

of .

In addition, a TLA formula may have visible and internal variables. Internal variables are
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existentially quantified. In the case of a refinement of a formula with internal variables,
the proof that the lower-level system implies the higher-level one can be made easier if we
exhibit a refinement mapping, which maps the internal variables of the lower-level system
to those of the higher-level one.

More generally, for other formalisms, in order to prove that a low-level specification re-
fines a higher-level specification, it is in some cases sufficient to prove the existence of a
refinement mapping. A refinement mapping is a function that maps executions (sequences
of states) of the low-level specification to executions of the higher-level one (possibly with
stuttering). However, the existence of a refinement mapping is sufficient but not nec-
essary to prove a refinement: indeed, it may happen that no refinement mapping from
the low-level specification to the higher-level one exists, but the low-level specification is
actually a refinement of the higher-level one. The existence of refinement mappings and
the way to find a refinement mapping by adding variables to the low-level specification
have been discussed by Abadi and Lamport [1].

An extension of TLA to open systems using an assumption/guarantee style is given by
Abadi and Lamport [2]. An assumption/guarantee expresses what services are guaran-
teed by a component, provided its environment (the other components) satisfies some
assumptions. A whole system made of several components is specified by the conjunction
of the specifications of the components. The conjunction of assumption/guarantees does
not trivially imply the conjunction of the assumptions, the conjunction of the guarantees,
or another assumption/guarantee, when assumptions are not safety properties.

2.3.6 Refinement as Properties

Jacob [44] advocates that each refinement relation defines a property. He gives the follow-
ing informal definition of refinement: ”a product refines another means that the former
product is no worse with respect to some property of interest than the latter.” This means
that the refined model satisfies more specifications than the initial model.

A specification is a contract between a customer and an implementor. A specification is
defined as the set of all products that would satisfy the customer. A product p satisfies a
specification S if p € S. Such a product is called an implementation. A specification S is
a reification of a specification T' if any implementation of S is also an implementation of
T, ie., S CT. Jacob shows that any property defines a refinement relation on products
and vice-versa. A property P is defined as a set of specifications (closed under union and
intersection). These specifications stand for all the specifications that satisfy the property.

Given a property, the corresponding refinement relation on products r C Products x
Products is defined such that: a product p is refined by a product ¢ , noted (p,q) € r, if
g appears in any specification where p appears. Conversely, given a refinement relation r
on products, the set of specifications forming the property is given by the sets of products
S such that: r(S) = 5; where r(S) = {q € Products | (p,q) € r Ap € S}. Indeed, as r

is a refinement relation, every product p € S must be refined by a product in S or in a
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subset of .S, thus r(.9) C 5, in addition r is reflexive, thus r(S) = S. Conversely, r(S) € S
means that there are products of S refined by products which are not in S, thus S is too
small to be part of the property, S must be enlarged to 7" with »(7") = T.

If several properties are required simultaneously, the refinement relation is obtained by
the intersection of the refinement relations of each property. If the properties are contra-
dictory, this intersection may lead to the empty set.

2.4 Discussion

Let us have a look at some informal definitions that apply to the refinements reported
above:

A specification T refines a specification S if all experiments of S are also exper-
iments of 7" and the results obtained when performing these experiments in T
are related to results that can be obtained when performing these experiments

in § (FOOPS).

If D is a refinement of C' it must not be possible for a user of the common
interface to be able to devise an experiment which would allow him to deduce

whether he had an instance of C' or of D (VDM*T).

A concrete method, implementing an abstract method, has a weaker pre-
condition than the abstract method (it is applicable in at least the same states
as the abstract method) and a stronger post-condition (the concrete method
returns the same results as the abstract one) (B, Refinement calculus).

A common idea emerges from these definitions: the concrete specification is different from
the abstract specification, but it must be compatible with the abstract specification. The
exact meaning of compatible varies from one definition to the other, as well as how far the
concrete specification can be from the abstract specification. Several different techniques
are used to prove the compatibility of the abstract and the concrete specification, their
differences being given. The aim of this section is to discuss the following points. First,
the differences allowed between the concrete and the abstract specification are investi-
gated. These differences are constrained by syntactical conditions. Second, we list the
semantical conditions that define the compatibility between the concrete and the abstract
specifications. Third, we list properties of the definition of a refinement. Then, we discuss
the differences between an implementation and a refinement, as well as the use of tempo-
ral logic in definitions of refinement, and we report some development guidelines. Finally,
we devise a "generic” definition of refinement, based on the preservation of properties.
Throughout this section, emphasis is given on model-oriented specifications languages.
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2.4.1 Formal Definitions of Refinement: Syntactical Conditions

A concrete specification is a transformation of an abstract specification. It can change
syntactical visible elements: names of operations or methods, exported types and sorts
(interaction refinement); or hidden elements: states, attributes (data refinement), defini-
tion of operations or methods (action refinement).

There are two policies for the visible part: either the abstract and the concrete specifica-
tions have a common identical visible part, or they are allowed to have different visible
parts. Usually, the abstract and concrete specifications have different hidden parts.

The preservation of signatures (sorts, operations) is a technique that forces the abstract
and the concrete specifications to have a common identical visible part. When visible
and/or hidden parts are different, the refinement requires that abstract operations are
renamed to concrete operations, that abstract elements are refined to concrete elements,
or that abstract states are retrieved from concrete ones.

Preservation of Signatures

The preservation of the signature is required when the concrete specification has to allow
the same observations (experiment, or property) as the abstract specification. The fol-
lowing cases occur: (1) the abstract and the concrete specifications must have the same
signature, i.e., the concrete specification is not allowed to introduce new visible sorts or
operations; (2) the signature of the concrete specification contains that of the abstract
specification, i.e., the concrete specification may introduce new visible elements, but must
keep those of the abstract specification; (3) the concrete specification contains a part of
the signature of the abstract specification, i.e., both specifications have a common signa-
ture part, which will be used for the observations; (4) the concrete specification has no
obligations towards the abstract signature, i.e., it is not necessary to preserve any element
of the signature.

Algebraic specifications require that the abstract and the concrete specifications have
the same signature. CO-OPN requires that the abstract and the concrete specifications
have the same events. FOOPS requires that all experiments, and primary sorts (sorts
needed for experiments) of the abstract specification are also experiments and sorts of
the concrete specification. The B method requires that the high-level machine and the
lower-level one have the same name and the same operation names (with the same types).

Use of Retrieve, Refine and Renaming Functions

Some formalisms allow visible or hidden elements of the abstract specification to be differ-
ent from the visible or the hidden elements of the concrete specification. Thus, essentially
for proof purpose, it is necessary to relate abstract and concrete elements, e.g., to trans-
late the former into the latter. Retrieve, refine and renaming functions are used to map
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abstract and concrete elements. Usually, functions are used. However, in some cases, it
is not possible or desirable to use functions. Thus, relations are used instead.

A retrieve function is a function from elements of the concrete specification to those of the
abstract one. It is usually defined on object-oriented specifications, and it maps concrete
attributes to abstract attributes or concrete states to abstract states. A refine function
is a function from elements of the abstract specification to those of the concrete one.
They may be defined either on syntactic and visible elements or on hidden elements, i.e.,
defined on elements of the signature of the specification, or on the attributes or states
of the specification. A renaming function is a function from methods of the abstract
specification to methods of the concrete specification; it is sometimes part of a refine
function.

The definition of refinement implies the following constraints, according to whether these
functions are injective, surjective or total functions:

If the refine (or renaming) function is injective this means that: two distinct abstract
elements are still refined to two distinct concrete elements. For methods it means that
two different methods cannot be refined by the same method. Otherwise, the refine
(or renaming) function is non-injective, and a concrete element can refine two distinct
abstract elements. If the refine (or renaming) is surjective it means that every concrete
element has an abstract counterpart, and no new element can be added. Conversely, if
it is non-surjective, new elements (e.g., new methods) can be added. The use of a total
refine (renaming) function means that every abstract element has exactly one concrete
counterpart. It is not possible that an abstract element has no concrete counterpart, and
it cannot have more than one.

If the retrieve function is injective, it means that two distinct concrete elements have two
distinct abstract counterparts. Otherwise, two or more concrete methods could refine the
same abstract method. It is then necessary to stress in the definition of the refinement
what it means if two or more concrete methods refine the same abstract method. For
instance in timed Petri nets with a TRIO axiomatisation, several concrete transitions can
refine the same abstract transition. This means that several firings of the same abstract
transition are distributed over the firings of the concrete transitions that refine the abstract
transition. If the retrieve function is surjective, then every abstract element has a concrete
counterpart. Usually this is required for elements taking part into observations, since all
possible abstract observations have to be translated into concrete observations. The use
of a total retrieve function means that every concrete element has exactly one abstract
counterpart. It is not possible for a concrete method to refine two abstract methods, and
it is not possible for a concrete element to be a new element not related to an abstract
element.

The event function of timed Petri nets with a TRIO axiomatisation is a partial, surjective
retrieve function, mapping transitions. The morphisms of the rule-based refinement are
a kind of refine function. The reification function of TROLL is a total refine function
coupled with a renaming function, mapping object identifiers, attributes and actions.
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The change function of B is a retrieve function, mapping attributes. VDMt uses both a
retrieve function mapping instance variables, and a total renaming function. A refinement
mapping is a retrieve function on states. ASTRAL uses a refine function mapping types,
constants, variables and transitions.

2.4.2 Formal Definitions of Refinement: Semantical Conditions

We have seen that syntactically, the concrete specification must be related to the abstract
one in some way. Given these syntactic changes, the behaviour of the concrete specification
must be "compatible” with the behaviour of the abstract specification.

The semantical conditions of refinement define what ”compatible” means. They are de-
fined on the basis of the refine, retrieve, or renaming functions seen before; and they work
on the underlying models of both the abstract and the concrete specification. Compatibil-
ity often means preservation of behaviour. The behaviour of a system is devised through
the observations that can be made on the system, and the abstract view that the user has
of the system’s state.

There are two kinds of behaviour preservation: the input/output behaviour preservation,
which is mostly concerned with the result obtained when a method is invoked, and the
whole behaviour preservation, i.e., the compatibility of traces of the concrete and the
abstract systems. The algebraic specifications and the refinement calculus are based
solely on input/output behaviour. The other formalisms reported in this section use the
behaviour preservation as well.

A supplementary aspect, interesting for object-oriented languages, concerns the use of
object identifiers, and the obligations of the concrete specification wrt the object identifiers
of the abstract specification.

Observations

A system can be seen as a black box that has an interaction with a user (another system
or a human being). The user of the system expects some result or behaviour from the
system. An observation is a property that the interaction with the system must have. We
will use as synonyms the terms observation and observable property.

The notion of observation, or observable property, is present in every definition of re-
finement: in some cases, the properties are part of the specification and they must be
preserved by a refinement; in some other cases, the proof of refinement constructs explic-
itly the observable properties to be preserved; finally, in other cases, the preservation of
observable properties is only implicitly required by the refinement.

For algebraic specifications, the observations are explicitly given by the equations on the
operations of the signature. For Petri nets the observations are either properties asserting
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that the net is safe, live or bound, or properties built on firings of the net. For object-
oriented specifications languages, observations are built on method calls. In the case of
the B method, pre-conditions, results and invariants are the observations. For refinement
calculi, the assumptions and the guarantees are the observations. TLA is based on a
next-state action to be preserved, thus observations are built on sequences of states.

Abstract States

An abstract state is the view of the actual system’s state observed by the user. In some
cases, the user observes only a small part of the actual state: the abstract state is the
visible part of the state; the hidden part may be freely modified by a refinement. In other
cases, the user does not observe a part of the state, but some input/output parameter
whose value depends on the actual value of the state: the abstract state is given by these
parameters; the actual state is completely hidden, and a refinement may change it.

The abstractors, used in algebraic specifications, explicitly define abstract states. For
the other formalisms reported here, the abstract state is either explicitly given by visible
attributes, or implicitly given by the parameters of method calls, or by firable transitions.

Input/Output Behaviour Preservation

The definition of refinement is based on input/output behaviour preservation, when the
user of the system is mostly interested by the (isolated) requests it can ask the system.
When some (input) conditions hold, a request feasible in the abstract system must be
feasible in the concrete one, and the result (output) returned by the concrete system
must be compatible or equal to the one returned by the abstract system. The user is not
interested by the way the result has been obtained (number of steps used, method called,
etc) or by the sequences of requests it can perform.

The input/output behaviour preservation uses the weaker pre-condition/stronger post-
condition technique. Indeed, the refinement relation may require that the operations of
the concrete specification be used in any situation when the operations of the abstract
specification are used. This is known as the ”weaker pre-condition”. It is coupled with
a condition on the result: each time the concrete operation is used, it yields the same
(or compatible) result as its abstract counterpart. This is known as the "stronger post-
condition”. This means that the concrete specification may be used in more situations
than the abstract one, but when used in the same situations as the abstract one, it must
return the same result, or one of the results that the abstract specification would return.
The stronger post-condition is coupled with less non-determinism. Indeed, the concrete
operation usually has less non-determinism than the abstract operation, since it is allowed
to return one of the results of the abstract operation. It is not necessary that it returns
all the possible results of the abstract operation.

Specifications whose model is not a transition system, as well as specifications defined
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with an assumption/guarantee style, employ this kind of refinement. In the latter case,
the assumption is the pre-condition, and the guarantee is the post-condition. Other
specifications languages use both the input/output behaviour preservation and the whole
behaviour preservation.

Algebraic specifications, B, FOOPS, VDM™**, and the refinement calculus use the weaker
pre-condition /stronger post-condition.

Whole Behaviour Preservation

The definition of refinement is based on behaviour preservation, when the user is not only
interested in the results returned by the system, but also by the sequences of requests it
can ask the system, the sequences of states reached by the system, or the choices offered
by the system at each point. For instance, the user wants to be able to perform in the
concrete system the same choices, or the same sequences of actions as those it can perform
in the abstract system.

Systems whose refinement requires behaviour preservation have a semantics based on
events and states, e.g. transition systems, event structures or traces.

Simulation notions are used to define behaviour preservation. Simulations are oriented:
an abstract behaviour is simulated by a concrete behaviour; or a concrete behaviour is
simulated by an abstract behaviour. When both simulations are required, we say that
it is a bisimulation. Simulation notions are focused either on events or on states, and
the simulation may be weaker or stronger. Among others, we may have the following
cases: (1) the concrete and the abstract behaviour must be equal; (2) the concrete and
the abstract behaviour must be equal modulo stuttering, i.e., the concrete behaviour
may use more steps than the abstract behaviour to reach the same result (or vice-versa);
(3) abstract and concrete behaviours are identical on the event part, but states may be
different; (4) the concrete and the abstract behaviours must have the same failure set.

The definitions of refinement are usually based on a simulation notion, and requests that
every abstract behaviour must be simulated by a concrete behaviour. These definitions
usually request as well that every concrete behaviour has an abstract counterpart, i.e., no
new concrete behaviour that cannot be considered a refinement of an abstract behaviour

can be added.

Except the algebraic specifications, B, and the refinement calculus, all the formalisms
reported in this chapter use a whole behaviour preservation. Refinements of Petri nets are
based on equivalence relations given on the abstract and the concrete transition systems.
The refinement is correct, if the abstract and the concrete transition system are equivalent.
The CO-OPN formalism uses the bisimulation equivalence, which forces the concrete and
abstract trees derived from their respective transition systems to be equal on the event
parts. Timed Petri nets using TRIO require the possible abstract firings (sequences
or choices of firings) to be also possible (translated) concrete firings. FOOPS requires
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every abstract experiment to be a concrete experiment, and the concrete results obtained
(states) to be related to the abstract results. TROLL allows every possible interleaving of
concrete transactions (several actions) to be a refinement of an atomic action. VDM*+
requires every abstract experiment (sequences or any composition of method calls) to
be also a concrete experiment (possibly with renaming) and every concrete experiment
using new methods to be obtained as a concrete experiment using only the abstract
(possibly renamed) methods. ASTRAL requires identical firings of high-level transitions
to correspond to firings of lower-level transitions, i.e., same starting time, same duration,
and same result. TLA refinement requires the abstract and the concrete sequences of
(visible) states to be equal modulo stuttering, i.e., the abstract trace is allowed to have a
sequence of the same visible state.

Management of Object Identifiers

The semantics of object-oriented specifications languages imply that instances of objects
are created/destroyed at run-time. Usually, every abstract object identifier has to be
related to a concrete object identifier (using a retrieve or a refine function). This is
essential if the refinement requires that the same or translated observations be performed
in both the abstract and the concrete system, since observations are built with calls of
objects’ methods.

FOOPS requires every object identifier of the abstract class to be also an object identifier
of the concrete class. TROLL uses a refine function that maps abstract object identifiers
to concrete object identifiers. VDM™* uses a retrieve function from the attributes of the
concrete class to those of the abstract class.

2.4.3 Properties of the Refinement Relation

Clearly, in order to perform a stepwise refinement, it is necessary that the definition of
refinement is a pre-order relation, otherwise the last step of a sequence of refinements
cannot be considered itself as a refinement of the most abstract specification.

In addition, if the system decomposes into smaller parts, it would be interesting to refine
every smaller part separately, and then assemble the concrete smaller parts into a con-
crete specification. If the refinement relation is compositional, the concrete specification,
obtained by the composition of concrete smaller parts, is actually a refinement of the
abstract specification. However, every refinement relation is not compositional, and the
above result is not always guaranteed.
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Refinement is a Pre-Order

The refinement relation has to be reflexive, i.e., any specification can be replaced by itself;
and transitive, i.e., if P refines to () and () refines to R then P refines to R. This is the
fundamental requirement that enables the refinement relation to be used for stepwise
refinement. Transitivity is also called vertical composition.

A relation which is reflexive and transitive is a pre-order. A pre-order is an order if
it is also anti-symmetric, i.e., if P refines to () and () refines to P implies that P = ().
This requirement cannot be fulfilled by every specifications language and every refinement
relation.

Indeed, if the specifications language allows information hiding, and if the refinement rela-
tion is concerned with the visible information only, both P and () could lead to observable
behaviours that are refinement of each other, but they could be different specifications
(especially on the hidden parts). If the specifications language does not allow information
hiding, but the refinement relation allows different syntaxes related by refine, retrieve and
renaming functions, it may happen that two different specifications have identical models
or models that are refinement of each other.

However, if the specification does not allow information hiding, and if the refinement
relation is concerned with the preservation of all properties (all properties are observable
since no information is hidden), and if it does not allow renamings, then the refinement
relation is anti-symmetric.

In the specifications languages described in this chapter, the refinement relation is an
order for the refinement calculus, but only a pre-order for the others.

Compositional Refinement

A refinement is said to be compositional, or to be a congruence wrt compositional op-
erators, or compositional operators are said to be monotonic wrt refinement, if: the
refinement of a composed system is obtained by the refinement of its components. This
property of refinement is also called horizontal composition. It deals with the proof of re-
finement: if an abstract component, part of an abstract compound system, is refined by a
concrete component, then the replacement of the abstract component by the concrete one,
leads to a concrete compound system which is a refinement of the abstract system. The
horizontal composition of the refinement relation depends on a compositional operator.
Compositional operators are not necessarily monotonic wrt a refinement relation, thus
the refinement relation is not always compositional. In addition, compositional operators
are of different kinds: the use of parameters; the synchronisation with the method of a
CO-OPN object; the use of a class (client-ship); or a parallel, sequence or choice operator.

In the formalisms discussed above, some of the refinement relations are compositional:
the refinement of parameterised algebraic specifications is a congruence wrt the use of
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parameters; in the field of structured Petri nets, the CO-OPN refinement of an object is a
congruence wrt the use of a Petri net; the union of two nets is monotonic wrt rule-based
refinement; FOOPS method combiners (parallel, sequence, choice) are monotonic wrt the
refinement of FOOPS methods; the use of a VDM** class is monotonic wrt VDM*+
refinement; B refinement is a congruence wrt the client-ship, and defines as well several
operators that are monotonic wrt B refinement; extensions of the refinement calculus are
congruences wrt the parallel operator, and the contexts are monotonic wrt the refinement.

2.4.4 Implementation vs Refinement

For our part, we think that refinement and implementation should be two different things.
A refinement should be seen as the replacement of a specification by another specification
(expressed with the same specifications language). Each refinement step produces a new
specification. The replacement has to follow certain rules in order to be correct. The
refinement process produces a chain of specifications, with Spec; begin the most abstract
one, and Spec, the most concrete one; each specification is a correct refinement of the
previous one. The refinement process ends when the obtained specification is sufficiently
detailed to be immediately translated into a programming language, or has a known
implementation (by test or other techniques). An implementation is the replacement of
the last specification Spec, of the refinement process by an actual program, expressed in
a programming language (different from the specifications language).

In some of the specifications languages discussed in this chapter, implementation is not
mentioned at all. In other languages, the words implementation and refinement are used
as synonyms, thus there is no distinction between them. VDM** and B make a distinction
between refinement and implementation and explain how to reach an actual implemen-
tation. VDM** defines implementation classes - which are directly translatable into a
procedural language, and which have no abstract type - and gives translation rules to
implement specifications by programs. In B, an implementation machine is an abstract
machine with no abstract variables and whose operations can be translated into a pro-
gramming language. An implementation machine cannot be refined further, but if it uses
other abstract machines, these machines can be refined further (provided they are not
already implementation machines). Both VDM™* and B consider the last specification
of the refinement process, i.e., specification Spec,, as the implementation; the program is
further derived from this implementation.

2.4.5 About the Use of Temporal Logic

Temporal logic is often used for defining and/or proving a refinement. Some of the for-
malisms reported above use temporal logic for that purpose. TRIO is a temporal logic used
to give an axiomatisation to timed Petri nets; observable properties are expressed with the
logic, and the refinement is defined as the preservation of these properties. TROLL and
VDM™** make use of a temporal logic; properties to be preserved by a refinement step are
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expressed in the logic. In these three cases, the temporal logic is used in addition to the
considered specifications language. ASTRAL uses logical implications in order to prove
the correctness of a refinement step. In the case of TLA, the specifications language is
itself a temporal logic, thus a specification is a property, and the verification of refinement
is reduced to the proof of implication.

2.4.6 Development Methodologies

The stepwise refinement process is the part of the development of a software system,
where design decisions directed by implementation constraints are taken into account.
In our opinion, the refinement process should begin with a very abstract view of the
system, describing only the essential functionality of the system. Gradually, complexity
is added to this view, so that the more concrete specification, produced by the refinement
process, integrates the original functional requirements, as well as some non-functional
requirements, and constraints imposed by the chosen programming language.

A development methodology should help the specifier in making design decisions, i.e., it
should give gutdelines for integrating design decisions or implementation constraints in
the refinement process. None of the investigated definitions of refinement give guidelines
for integrating design decisions into the refinement process.

In the case of a formal specifications language, allowing the structuring (inheritance,
sub-typing or client-ship relations) of specifications, a development methodology should
answer the following questions as well: Is the structure of the specification describing the
system, allowed to vary during the refinement process? If yes, how does the structure
vary? Is it necessary to refine abstract components into concrete components preserving
the same inheritance, sub-typing or client-ship relations? Does the program have to follow
the same structure than the last specification of the refinement process?

Except for VDM** and B, the definitions of refinement for the specifications languages
reported in this chapter do not discuss the evolution of the structure of the system’s
specification during the development process.

Lano in [47] discusses two ways of refining the structure of a VDM*T specification: inde-
pendent structure and continuity of structure. The independent structure does not force
the structure of the lower-level specification to be identical to that of the higher-level
specification. This kind of development is used when the more concrete level makes use
of already developped components, which cannot fit into the new abstract structure. In
addition, it allows the structure to grow, since a concrete class, refining an abstract class,
may be in a client-ship relation with more classes than the abstract class (annealing).
The continuity of structure imposes the following constraints: if an abstract class €' is a
client of an abstract class S, then a class ' refining class C' would also be a client of S;
if an abstract class C' is a sub-type of D, then a class C'; refining class C' would also be a
sub-type of D or a sub-type of Dy a class refining D.
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In both cases however, the class that is at the top of the abstract structure hierarchy is
refined by a class that is also at the top of the concrete structure hierarchy. The difference
is that in the case of independent structure, the classes used in the rest of the concrete
hierarchy can be completely different from those of the abstract hierarchy (e.g., they
do not have to refine a class of the abstract hierarchy), and the abstract and concrete
structure (inheritance, sub-typing, client-ship) can be completely different. In the case
of continuity of structure, the abstract and concrete structures must be the same, e.g., a
type and its sub-type in the abstract structure are refined by a type and its sub-type in
the concrete structure.

In some cases, the definition of refinement is such that it implicitly leaves or not some
degrees of freedom for the structure of a lower-level specification wrt the structure of the
higher-level one.

A FOOPS specification contains several classes and their relationships, the refinement of
a FOOPS specification requires only the experiments of the abstract specification to be
also experiments of the concrete specification. It seems that the relationships between
the abstract and the concrete classes may be different.

A TROLL system is a collection of objects, the refinement maps abstract objects to con-
crete objects, as well as their attributes and actions. Thus, the set of objects constituting
the abstract system can be totally different (smaller, bigger) from the set of objects con-
stituting the concrete system.

2.4.7 Refinement Preserves Observable Properties

The semantical conditions of refinement define: (1) the observations, i.e., observable
properties, that can be made on a system; and (2) the preservation of these observations
during a refinement step.

Two cases occur, either the same properties, without any change, have to be validated by
the concrete specification, or properties of the abstract specification are translated into
properties of the concrete specification, and those properties have to be validated by the
concrete specification. The first case occurs when the syntactical conditions of the re-
finement impose the same signature on both the abstract and the concrete specifications.
The second case occurs when the abstract and the concrete specifications may have dif-
ferent signatures, and refine, retrieve or renaming functions are used. When properties
are expressed as formulae, extensions of the refine, retrieve and renaming functions to the
formulae are used to actually translate the abstract properties into concrete properties.

Properties are explicitly given by the specification as properties of interest (algebraic spec-
ifications, and TLA), or built for proof purpose (TRIO, TROLL, VDM*"), or implicitly
required by the refinement relation (CO-OPN, FOOPS, B, refinement calculus). We will
now explain for each formalism described in this chapter, how the refinement relation
preserves properties and what are the kind of properties that are preserved.
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Algebraic specifications are given as pairs of signatures and equations. These equations
define properties that the models of the specifications must satisfy. The refinement of
algebraic specifications implies that the concrete specification preserves the same prop-
erties of interest as the abstract one. The properties of interest are either the whole set
of properties of the abstract specification, or the observable set of properties of the ab-
stract specification, this is the case when abstractors are used. In addition, the concrete
specification usually introduces more properties of interest to be preserved by subsequent
refinements.

In the case of Petri nets, the refinement is defined on the preservation of properties or
on the preservation of equivalences. The refinement of a transition preserves properties
asserting that the net is safe, live and bound. The refinement of places via parallel compo-
sition preserves failures. The refinement of a timed Petri net using a TRIO axiomatisation
preserves all temporal formulae built on firings and that are verified by every execution
of the net. These three cases preserve translated properties.

The CO-OPN refinement implies that the abstract specification and the concrete specifi-
cation have the same events, thus the same properties have to be preserved. In the case
of CO-OPN, properties are all the possible sequences and choices of events’ firing, given
in the transition system.

In the case of object-oriented specifications, the refinement of FOOPS implies that the
experiments that can be performed in the abstract specification are also experiments that
can be performed in the concrete specification, and they lead to related results. The same
experiments can be performed, they do not lead necessarily to the same result (state),
but they lead to states that allow same experiments to be performed. The properties are
the sequences and choices of experiments, or composition of experiments. The refinement
requires that the same properties are preserved.

To each TROLL specification is associated a set of temporal logic formulae. These prop-
erties represent the set of distributed life cycles of the abstract TROLL system. A refine
function is used, that translates every property of the abstract specification into a prop-
erty of the concrete specification. The refinement implies the preservation of translated
properties.

To each VDM™* class is associated a theory, expressing the semantics of the class in a
temporal logic language. The properties are all the possible sequences of method calls,
or composition of method calls, and their results. A retrieve function and a renaming
function translate every property validated by the theory of the abstract class into a
property of the concrete class. The refinement implies that the theory of the concrete
class validates the translated properties.

An ASTRAL specification is correctly refined if the lower-level transition has the same
starting time, the same duration, and provides the same result. Since logical implications
on entry and exit assertions are used in order to actually prove a refinement step, the
refinement of ASTRAL specification implies that the translated properties, i.e., starting
time, duration, and result, expressed with entry and exit assertions are preserved.
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A B class defines invariants, and methods that either change attributes or return a result
(possibly changing the attributes). Methods cannot be renamed, and those returning a
result are refined to methods producing the same results. The properties are all possible
calls of methods and their results (when there is any). A method call is possible if the
pre-condition holds, the new values for the attributes validate the invariant. The low-level
specification validates the same set of properties as the high-level specification; the same
calls are possible, and when there is a result, the same result is returned.

The refinement calculus implies that for every pre-condition P and post-condition @,
if program S validates post-condition (), assuming pre-condition P, then program 7',
refining S, validates also post-condition (), assuming pre-condition P. The properties are
all these pairs of pre-condition and post-condition for S, and the refinement preserves the
same pairs. Back [7] extends the refinement calculus to reactive programs, and shows
that the simulation refinement of reactive program preserves any temporal logic property
insensitive to stuttering.

The specification of a system in TLA ¢s a temporal logic formula, i.e., it is a property.
This property is made of some invariant (the next-state part) and some liveness property
(the fairness part). A concrete system refines an abstract system if the former implies the
latter. Thus, the refinement implies the preservation of the same properties.

2.4.8 Conclusion

We have shown that the refinements described in this chapter are all based on the preser-
vation of (possibly translated) properties (either implicitly, or explicitly by the means of
additional logical formulae). This joins the ideas of Jacob [44], who shows that every
refinement defines a set of properties and vice-versa.

The definitions of refinement discussed in this chapter can all be described by the informal
following definition:

A specification Spec’ refines a specification Spec if the properties of
interest of Spec are preserved by Spec'.

The preservation of these properties with or without syntactical changes forces a concrete
specification to satisfy some syntactical requirements. If the same properties must be
preserved, then the concrete specification and the abstract specification have a part of
the signature in common. Otherwise, translated properties must be preserved and retrieve,
refine or rename functions are used to relate the abstract and the concrete specification.

The kind of properties to preserve will affect the semantical requirement of the definition
of refinement. If the property deals with the returned results, the refinement requires an
input/output behaviour preservation; if the property deals with a sequence of experiments,
the refinement requires a whole behaviour preservation.
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In addition, the refinement must be a pre-order, in order to perform sequences of refine-
ments leading to a very concrete specification, which is actually a refinement of the most
abstract specification. However, it is not necessary for the refinement to be an order.

If the refinement can be performed on smaller parts of a system, and the composition of
the concrete smaller parts builds a concrete specification, which is actually a refinement
of the abstract specification, then the refinement is compositional.

Finally, an implementation is the last step before the program is obtained, or it is the
program itself. Therefore, it should be distinguished from a refinement.
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Chapter 3

A Theory of Refinement and
Implementation

At the end of Chapter 2, we drew the conclusion that a low-level specification always
preserves some properties of interest of a higher-level specification. Thus, any definition
of refinement can be captured by the following informal definition:

A specification Spec refines a specification Spec if the properties of
interest of Spec are preserved by Spec.

Our goal is to define a general theory of refinement of model-oriented specifications, that
relies explicitly on properties of interest. Therefore, the set of properties of interest is
joined to every specification; it is a subset of the set of all properties that the specification
guarantees. This subset is called a contract. Formulae of the contract are expressed using
a logical language. Pairs of model-oriented specifications and contracts are called con-
tractual specifications. A lower-level contractual specification is thus a correct refinement
of a higher-level contractual specification, if it preserves the contract of the higher-level
contractual specification. This approach to refinement lies then within the two languages
framework described by Pnueli [54]; and integrates built-in features, for correctness as
advocated by Meyer [50], since correctness is based on the contracts.

A series of refinement steps is followed by an implementation phase. The implementation
is defined in a way similar to the refinement: a contractual program, i.e., a pair made of
a program and a contract, implements correctly a contractual specification if it preserves
the contract of the contractual specification.

First this chapter defines contractual specifications and their refinement. Second, it de-
fines contractual programs and the implementation of contractual specifications by con-
tractual programs. Third, the conditions that enable to perform a stepwise refinement
followed by an implementation are discussed. Fourth, the compositional refinement and
the compositional implementation of contractual specifications are defined. Finally, this
chapter ends with a discussion aiming at a better understanding of the use of contracts
in a development process.
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3.1 Refinement Based on Contracts

As we intend to make explicit the use of properties in order to constrain the refinement,
we require every specification to be linked with a set of properties. This set of properties is
called a contract. The pair formed by a specification and a contract is called a contractual
spectfication. Since we are interested more particularly by formal specifications languages
that are model-oriented, we advocate the use of a logic, in order to express properties on
specifications. Indeed, model-oriented specifications languages are well suited to model
a system, but they are not well suited to express properties of a system. Therefore, the
contract is actually a set of formulae expressed on the specification, that is satisfied by
all models of the specification.

The basic idea of refinement consists in replacing a high-level contractual specification by
a lower-level contractual specification whose models preserve the contract guaranteed by
the higher-level specification.

In order to remain on a general level, we will not constrain syntactically the lower-level
contractual specifications wrt the higher-level ones, i.e., syntactical changes are allowed.
A refine relation associates one or more elements of the low-level contractual specification
to elements of the high-level contractual specification. The refine relation explains the
syntactical evolution of the high-level specification towards the low-level specification.

The use of a refine relation, allowing syntactical changes, implies the translation of the
high-level contract into a set of formulae expressed on the lower-level specification. The
translation is performed by the means of a formula refinement, i.e., a function, univocally
defined on the basis of the refine relation, which maps every high-level property of the
contract into a low-level formula. The formula refinement explains the semantical evo-
lution of the high-level specification to the low-level specification, e.g., when a high-level
element is related to several lower-level elements, the formula refinement has to explain
how the lower-level elements replace the single higher-level element in a formula.

The refinement is then defined as the replacement of a high-level contractual specification
by a lower-level contractual specification whose contract contains the translated contract
of the higher-level contractual specification. In this way, every model of the lower-level
specification satisfies the translated contract of the higher-level specification, since it
satisfies the contract of the lower-level specification.

First this section defines contractual specifications, then presents the refine relation, and
the formula refinement, and finally gives the definition of the refinement of contractual
specifications.

3.1.1 Contractual Specifications

Contractual specifications are pairs of specifications and contracts. A contract is a set
of formulae satisfied by all the models of a specification. In a contractual specification,
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the specification part stands for the complete description of the system, functionality and
behaviour. The contract stands for the essential requirements of the specification that
must be satisfied by a refinement step or an implementation step. The contract is not
a means to make a selection between models of a specification in order to retain only
those models satisfying the contract; it is a means to make a selection between all the
specifications in order to retain those that correctly refine the high-level specification.
Therefore, the contract does not correspond to an extra set of requirements, it is a subset
of all the properties satisfied by all the models of the specification.

We assume that we have a given formalism that formally defines the syntax and semantics
of specifications.

Notation 3.1.1 Specifications, Models.

We denote by SPEC the set of all specifications that can be expressed in the formalism, by
MoD the universe of all models, by Mod € MOD a model, and by MODg,.. C P(MOD)
the set of all models of a specification Spec € SPEC.

We are mostly interested in systems having models based on events and states. These
systems usually have only one model, i.e., a transition system, an event structure or a set
of traces. However, in order to as general as possible, we consider MODg,.. as a set, even
if in most cases, this set reduces to a singleton.

We assume as well that we have a given logic which enables to express formulae on the
specifications of the given formalism; and a satisfaction relation between the models of a
specification and the formulae.

Notation 3.1.2 Formulae, Satisfaction Relation, Properties.

We denote by PROP the set of all formulae that can be written in the given logic and that
are expressed on specifications of the given formalism, and by PROPg,.. C PROP the sel
of all formulae that can be expressed on Spec € SPEC.

We denote F the satisfaction relation: E C MOD x PROP. [t is such that (Mod,¢) € E
iff Mod is a model that satisfies ¢. We note Mod E ¢ when (Mod, ¢) € F.

Given the satisfaction relation F, we extend the notation to sets of formulae and sets of
models of specifications. We write MODg,.. F ¢, tf Mod F ¢ for every Mod € MODg,,;
Mod E @, if Mod F ¢ for every ¢ € ®; and MODgpe. F @, tf MODgpee F ¢ for every
¢ € ®. The models of Spec satisfy the empty set of formulae: MODg,.. F &, for every
Spec € SPEC.

We denote by ®g,e. the set of all formulae satlisfied by all the models of Spec: Pgpe. =
{¢ € PROPgpe. | MODg,e. F ¢}

A formula ¢, satlisfied by all models of Spec, t.e., ¢ € Pg,.., is called a property of Spec.
The set g, is called the set of properties of Spec.
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A contract on a specification Spec is a set of properties of Spec, i.e., a set of formulae
satisfied by all the models of Spec.

Definition 3.1.3 Contract.
Let Spec be a specification. A contract on Spec, denoted @, is a set of properties of Spec:

o g (I)Spec-

As we said before, the contract does not make a selection between models of a specification.
The contract is defined in such a way that it is satisfied by all models; it is only a subset
of the set of all properties satisfied by the models of the specification, i.e., it may even
be a strict subset ® C ®g,... When & = ®g,.., we say that the contract is total, when
¢ C ®g,.., we say that the contract is partial.

A contractual specification is a pair formed by a specification and a contract on the
specification.

Definition 3.1.4 Contractual Specifications.
Let Spec be a specification, and ® C Pg,.. be a contract on Spec. A contractual specifi-
cation 1s a pair:

C Spec = (Spec, D).

Notation 3.1.5 CSPEC denotes the set of all contractual specifications.

The models of (Spee, @) are simply given by the models of Spec.

Definition 3.1.6 Models of a Contractual Specification.
Let CSpec = (Spec, @) be a contractual specification, and MODg,.. be the models of Spec.
The set of models of C'Spec, denoted MODcgpe., ts given by:

MOD¢spec = MOD gpec

3.1.2 Refine Relation

We allow syntactical changes between a high-level and a low-level specification. As we
have seen in Chapter 2, syntactical changes imply either the use of refine, and renaming
functions, in order to be able to map elements of the higher-level specification to elements
of the lower-level one; or the use of a retrieve function, in order to map elements of the
lower-level specification to elements of the higher-level one. By elements, we mean any
syntactical term of a specification. Elements can appear in formulae.



3.1. REFINEMENT BASED ON CONTRACTS 47

If we use a refine function, we will not be able to allow a single high-level element to
be refined by two or more low-level elements. Conversely, if we use a retrieve function,
we will not be able to allow two distinct high-level elements to be refined by the same
low-level element. In order to encompass functional requirements, we will use a relation
instead of a function. We will call this relation, the refine relation.

Since elements may appear in formulae, the only restriction that the refine relation must
satisfy is that every abstract element of the specification that takes part in properties of
the contract must have at least one concrete counterpart. Indeed, we want to be able
to translate every property of the high-level contract into a formula of the lower-level
specification.

Notation 3.1.7 Elements of a Specification.
We denote by ELEMc g, the elements of a contractual specification C Spec.

Definition 3.1.8 Refine Relation.
Let CSpec, CSpec be two contractual specifications. A refine relation on CSpec and
CSped, denoted X, is a relation on elements of C'Spec and elements of C Spec':

A C ELEM¢spec X ELEMggpee

such that for every e € ELEMcgpe. that takes part in properties of the contract of CSpec,
there is ¢’ € ELEM¢csper and (e,€’) € A.

Remark 3.1.9 The identity refine relation, denoted [dELEMcspec C ELEM¢spec X ELEM@gpec,
is such that: (e,€') € Idpipucs,.. iff e =€

During a refinement process, a high-level contractual specification is refined by a lower-
lever contractual specification, which in turn is refined by a lower-level specification, etc.
We want to be able to follow the syntactical changes applied to the elements of the
high-level contractual specification during the whole refinement process. The following
composition of refine relation is a means to follow these changes.

Definition 3.1.10 Composition of Refine Relations.

Let CSpec, CSpec, and CSpec” be three contractual specifications, A C ELEM¢gpee X
ELEMcspeer be a refine relation on C Spec and C Spec’, and X' C ELEM¢gpeer X ELEMgpecr
be a refine relation on CSpec’ and CSpec”. The composition of X and X', noted \; N is a
relation on CSpec and C Spec”:

A N C ELEMgspee X ELEMcgpecr

such that (e, e") € X\; X' iff there exists € € ELEMcgpee with (e,€’) € X and (€',¢e") € X.
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Remark 3.1.11 Composition A\; X' is a relation on elements of CSpec and elements of
C Spec”, but it may happen that it is not a refine relation, i.e., it is not total' on elements
of the contract of C'Spec.

3.1.3 Formula Refinement

As we said before, we want to define a refinement that preserves the contract. The use of
a refine relation implies the translation of the formulae.

Given a refine relation, a formula refinement is univocally? defined. The formula refine-
ment is a function that maps a formula, expressible on the high-level specification, into a
formula expressible on the low-level specification. The formula refinement may be partial,
but must be total on properties of the high-level contract. Indeed, if a property of the
high-level contract has no corresponding low-level formula, this means that during the
refinement we lost this property, and that it will be guaranteed neither by the lower-level
specification nor by further refinement steps. The formula refinement is not necessarily
injective, since two or more abstract elements can be related to the same concrete ele-
ment, and thus different abstract formulae are translated into the same concrete formula.
Similarly, the formula refinement is not necessarily surjective, since the refine relation
does not necessarily relate every concrete element with an abstract one, thus there are
concrete formulae that cannot be considered as refinement of an abstract formula.

When the refine relation can be seen as a function, i.e., every abstract element has at
most one counterpart, the formula refinement is a trivial extension of the refine relation
to the formulae. When the refine relation associates several concrete elements to a single
abstract element, the formula refinement must clearly describe how the abstract formula,
containing the abstract element, is refined into a concrete formula. We will not impose
any formula refinement here, since it depends both on the specifications language and
the logic used for specifying the contracts. We will only impose several conditions on the
formula refinement in order to ensure that the refinement relation, defined in the sequel,
is a pre-order.

Definition 3.1.12 Formula Refinement.

Let CSpec = (Spec,®), CSped = (Spec’,®’) be two contractual specifications, A C
ELEM¢spee X ELEMesgyee a refine relation on CSpec and CSpec’. A formula refinement,
denoted A, is a function, univocally defined from X, which maps formulae expressed on
Spec into formulae expressed on Spec':

A : PROPg .. — PROPgy. ,

such that:

Ta relation » C A x B is said to be total on A if every element of A is related by r to some element of

B.

2we assume that from any refine relation it is possible to obtain, in an unambiguous way, a formula

refinement.
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o A maps every property of the contract of CSpec to formulae of Spec, i.e., A(¢) is
defined for every ¢ € ®;

o the formula refinement A derived from A = Idgipucg,,, must be the identity on
PROPspec, i.6. A(¢) = @, for every ¢ € PROPgpe.. It is noted Idpropy,,.;

e given two refine relations A\ and X' such that their composition is defined X" = \; X
and 1s a refine relation, the formula refinement A" derived from X' is such that A" =
AN o A; where A, A are the formula refinements derived from X' and X respectively,
and o is the composition operator on functions.

Notation 3.1.13 Refinement of a Set of Formulae.
Given A : PROPg,e. — PROPg e a formula refinement, we denote by A(®) the image of
O under A. A(®) ={¢' € PROPg,er | I € ® s.1. A(¢) = &'}

3.1.4 Refinement Relation

A low-level contractual specification is a correct refinement of a higher-level contractual
specification if the former preserves the contract of the latter. As syntactical changes are
allowed, this means that the contract of the lower-level contractual specification contains
the translated contract of the higher-level contractual specification. The translation of
the contract is obtained by the means of the formula refinement that is univocally defined
from the refine relation.

Definition 3.1.14 Refinement of Contractual Specifications via X.

Let CSpec = (Spec,®), CSped = (Spec’,®’) be two contractual specifications, A C
ELEM¢cspee X ELEMeg,eer be a refine relation on CSpec and CSpec’, and A be the for-
mula refinement univocally defined from X. (Spec, ®') is a refinement of (Spec, ®) via A,
noted (Spec, ®) C* (Spec, @), iff

A(®) C P

If (Spec’,®") refines (Spec, @) then every model of (Spec’, ®') satisfies at least A(®).
Indeed, every model of (Spec’, ®') satisfies the contract @', thus every model satisfies
A(®). A lower-level specification has no obligation towards the properties of the higher-
level specification that are not in the contract, i.e., towards ®g,.. — P.

Definition 3.1.15 Refinement Relation.
The refinement relation, noted C, is a relation on contractual specifications:

C C CSpEC x CSPEC ,
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such that for every CSpec = (Spec,®), CSpec = (Spec’,®’") € CSPEC, (Spec,®) C
(Spec, ") iff

IX € ELEMcspec X ELEM@sper a refine relation on C' Spec and C Specd’, s.t.
(Spec, ®) T (Spec, @').

Remark 3.1.16 The definitions of refinement given for TROLL, timed Petri nets using
a TRIO aziomatisation, and VDM, are very close to the definition of refinement using
contracts. Indeed, each of them uses a temporal logic to express formulae on the specifica-
tions. A lower-level specification is a correct refinement of a higher-level specification if the
translated properties of a whole given class are logically implied by lower-level properties.

Remark 3.1.17 Definition 3.1.14 requires an inclusion of the translated high-level con-
tract into the lower-level contract. The reason for requiring an inclusion, instead of a
logical implication, lies in the fact that a set of formulae ® on Spec s actually a contract
iff every model of Spec satisfies ®. Therefore, logical implication ® = ®g,.. holds, since
every model satisfying ® is also a model satisfying Psye.. If we require ' = & (assuming
that A = [dpROpspec), then we have ®" = ®g,... This is clearly what we want to avoid.

The use of inclusion takes as well its motivation from the application of the general theory
of refinement to the CO-OPN/2 language and the HML logic, presented in the following
chapters. For such a simple logic, inclusion naturally provides the requirements needed
for establishing the definition of refinement.

However, in order to fully assess the choice of inclusion of the contracts wrt that of
implication, it is necessary to further apply the general theory, presented in this chapter,
to another model-oriented specifications language, and to another logic.

3.1.5 Properties of the Refinement Relation

A refinement relation is useful for stepwise refinement if it is reflexive and transitive. We
will now state and show this result for the refinement relation defined above.

Proposition 3.1.1 Refinement Relation s a Pre-Order.
The refinement relation © C CSPEC x CSPEC s a pre-order.

Proof.

Let C'Spec = (Spee, ®), CSpec’ = (Spec’,®") and CSpec” = (Spec”, ®") be three con-
tractual specifications. Relation C is a pre-order if it is: (1) reflexive, i.e, (Spec, @) C
(Spec, @) for every (Spec, ®) € CSPEC; and (2) transitive, i.e, (Spec, ®) C (Spec’, ') and
(Spec, ")y T (Spec”, ®") implies (Spec, @) C (Spec”, ®"), for every (Spec, @), (Spec, ®'),
(Spec”, ®") € CSPEC.
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o Reflexivity.
For every contractual specification C'Spec = (Spec, @), we consider A = Idgipuo,..
as the refine relation. The formula refinement obtained is given by A = [ dpROPSPeC,
and A(®) = ®. It follows trivially that A(®) C &, thus (Spec, ®) [ dBuvic spee
(Spec, ®). This implies (Spec, @) C (Spec, D).

e Transitivity.
(Spec’, "y T (Spec”, ") implies that there exists A’ C ELEM¢gpeer X ELEMgpecr
a refine relation such that (Spec’, ®') T (Spec”, ®"). A, the formula refinement
univocally defined from X, is such that A'(®’) C ¢”.

(Spec,®) T (Spec’,®’) implies that there exists A C ELEMcgye. X ELEMogper a
refine relation such that (Spec, ®) C* (Spec, ®'). A,
vocally defined from A, is such that A(®) C ¢'.

the formula refinement uni-

A and A can be composed in order to form A = X\; A C ELEM¢gpee X ELEMegpecr.
A" is actually a refine relation, i.e., it is total on the contract ®. Indeed, first, X is
total on elements of contract ®, and CSpec’ refines C'Spec via A, thus all elements
of contract ® are related to elements of contract ®’. Second, X' is total on elements
of contract ®', thus all elements of contract ® are related to elements of contract
®” by A; X. Consequently, A = A; X is a refine relation. By definition, if A" is a
refine relation, then A”, the formula refinement, univocally defined from A", is such

that: A" = A" o A.

Therefore, we have: A'(A(®)) C A’(®'). Since A'(®') C ", we derive that
A (A(®)) C @”. Thus, A'(A(®)) C &” implies A”(®) C &”, which in turn implies
(Spec, @) MY (Spec”, @"), which finally implies (Spec, @) T (Spec”, ®").

3.2 Implementation Based on Contracts

A refinement step consists of replacing a high-level specification by a lower-level specifica-
tion, both specifications being expressed within the same language. The implementation
step replaces a specification by a program, expressed in a programming language, which
is usually different from the specifications language. The implementation links the world
of specifications to the world of programs. Thus, the implementation shares a lot of sim-
ilarities with the refinement, even though, due to this change of world, it slightly differs
from the refinement.

The basic idea of implementation consists of replacing a contractual specification by a
contractual program whose models preserve the contract of the contractual specification.
A contractual program is defined like a contractual specification, it is a pair made of a
program and a contract, i.e., a set of properties that the program guarantees.
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We do not constrain syntactically a low-level specification wrt a high-level specification.
Due to the change of language, the gap between the program and the specification is
bigger than that between two specifications. Thus, we will neither constrain syntactically
the program wrt the contractual specification. An implement relation associates elements
of the contractual specification to elements of the contractual program. Formulae of the
specifications are translated to formulae expressed on the programs, by the means of a
function called formula implementation.

The implementation is then defined as the replacement of a contractual specification by
a contractual program whose contract contains the translated contract of the contractual
specification.

This section presents contractual programs, the implement relation, the formula imple-
mentation, and finally the implementation of a contractual specification by a contractual
program.

3.2.1 Contractual Programs

A given program Prog, written in a given source code of a given programming language,
has as many models as the number of target machines. Indeed, the same source code
may be compiled by different compilers (one for each target machine), and thus we obtain
different machine codes. Once we have a machine code, we can associate it to a transition
system, i.e., the set of all possible executions of the machine code. This transition system
is considered as @ model of the original source code Prog. Thus, one source code may have
several models (one for each target machine). In the case of virtual machines, we consider
the model in the virtual machine, instead of every model in every actual machine. The
correspondence between the virtual and the actual machine is ensured by the interpreter,
which respects the semantics of the virtual machine.

In the rest of this chapter, we associate a set of models to a program source. This set
of models contains only the models associated to machines on which the program will
actually be executed. Then, a contractual program is a pair made of a program and a set
of formulae that every model of this set satisfies.

We assume that we have a given programming language, which formally defines the syntax
of programs; to every program is attached a set of models, one for each envisaged target
machine.

Notation 3.2.1 Programs, Models.

We denote by PROG the set of all programs (source code) that can be written with the
given programming language, by MODprog the set of all their models, by Mod € MODpgrog
a model, and by MODp,,;, € P(MODpgog) the set of the considered models of a program
Prog € PrROG.
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We also assume that we have a given logic that makes it possible to express formulae
on the programs of the given programming language; and a satisfaction relation between
the models of the programs and the formulae. This logic can be different from that
used for the specifications, since the formal specifications language is different from the
programming language.

Notation 3.2.2 Formulae, Satisfaction Relation, Properties.

We denote PROP the set of all formulae that can be written in the given logic and that are
expressed on the programs of the given programming language, and PROPp,,;, C PROP
the set of all formulae that can be expressed on Prog € PROG. It will be clear from the
context if a formula is expressed on a program or on a specification.

We denote E the satisfaction relation: E C MODprog X PROP. [t is such that (Mod, ) € E
iff Mod is a model that satisfies v». We denote Mod F i when (Mod, ) € E.

Given the satisfaction relation F, we extend the notation to sets of formulae and sets of
models of programs. We write MODp,,, E ¢, tf Mod F ¢ for every Mod € MODp,,,;
Mod F U, if Mod F ¥ for every ¢ € ¥; and MODp,,, F U, if MODp,,, F ¥ for every
Y € W. The models of Prog satisfy the empty set of formulae: MODp,,, & @, for every
Prog € PROG.

We denote Up,,, the set of all formulae satisfied by all the models of Prog: Vp,,, = {¢ €
PROPp,,; | MODp,oy E 9}

A formula v, satisfied by all models of Prog, i.e., ¥ € Up,,,, is called a property of Prog.
The set Up,,, is called the set of properties of Prog.

As for contractual specifications, a contractual program is a pair made of a program and
a contract, i.e., a set of properties of Prog.

Definition 3.2.3 Contract.

Let Prog be a program. A contract on Prog, denoted ¥, is a set of properties of Prog:
v g LI}Pr’og-

Definition 3.2.4 Contractual Programs.

Let Prog be a program, and ¥ C Up,,, be a contract on Prog. A contractual program is
a pair:

C Prog = (Prog, V).

Notation 3.2.5 CPROG denotes the set of all contractual programs.

The models of (Prog, ¥) are simply given by the models of Prog.
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Definition 3.2.6 Models of a Contractual Program.
Let CProg = (Prog, V) be a contractual program, and MODp,,, be the models of Prog.
The set of models of C'Prog, denoted MODcp,o,, s given by:

MODCProg = MODProg .

As for contractual specifications, the contract of a program does not limit the set of
models, since it is a set of formulae "naturally” satisfied by all models of the program.

3.2.2 Implement Relation

The refine relation relates elements of a high-level contractual specification to elements
of a lower-level contractual specification, because syntactical changes are allowed during
a refinement step. In the case of the implementation step, syntactical changes are nec-
essary between a specification and a program, since the formal specifications language is
usually not a programming language. While a refine relation is a relation on elements of
contractual specifications, an tmplement relation is a relation on elements of a contractual
specification and elements of a contractual program. By elements of a contractual pro-
gram, we mean any syntactical term related to the program, for example, a Class name
or a method name (in the case of object-oriented programming languages).

Notation 3.2.7 FElements of a Program.
We denote by ELEMcp,,, the elements of a program Prog.

Definition 3.2.8 Implement Relation.

Let CSpec be a contractual specification, and C Prog be a contractual program. An im-
plement relation on CSpec and C Prog, denoted N, is a relation on elements of C Spec
and elements of C'Prog:

M C ELEM@spec X ELEM@ Py,

such that for every e € ELEMcgye. that takes part in the properties of the contract of
C Spec, there is ¢ € ELEMcp,,, and (e, e') € M.

During a refinement process, we follow the syntactical changes of the elements of a con-
tractual specification by composing refine relations. An implementation step occurs at
the end of a series of refinement steps. The implementation of the most concrete specifi-
cation should be as well an implementation of the most concrete. In order to examine the
syntactical changes that occur during a refinement step followed by an implementation
step, we define the composition of refine relations and implement relations.
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Definition 3.2.9 Composition of Refine Relations and Implement Relations.

Let CSpec, CSpec, be two contractual specifications, and X C ELEM¢gpec X ELEMcgpecr
be a refine relation on C Spec and CSpec’. Let C Prog be a contractual program, and X' C
ELEMcspecr X ELEMcproy an tmplement relation on C'Spec’ and C Prog. The composition
of X and M, noted \; \! is a relation on elements of C Spec and elements of C Prog:

A AT C ELEM(spec X ELEM(prog

such that (e,e") € \; A iff there exists ¢ € ELEMpgpeer with (e,¢') € X and (¢',¢e") € M.

Remark 3.2.10 The composition of refine relations is not always a refine relation. Sim-
ilarly, the composition of a refine relation and an implement relation s a relation which
is not necessarily an implement relation.

3.2.3 Formula Implementation

In the case of refinement, the use of a refine relation on elements of a high-level contractual
specification and elements of a low-level contractual specification, implies the use of a
formula refinement, mapping high-level formulae to low-level formulae. It is identical
in the case of the implementation. The use of an implement relation, on a contractual
specification and a contractual program, leads to the use of a function, called formula
implementation, that maps formulae expressed on the specification to formulae expressed
on the program. The formula implementation is used to translate the contract of the
contractual specification into formulae on the program. Thus, the formula implementation
may be partial on formulae expressed on the specification, but must be total on the
contract of the specification.

Formula refinements are submitted to conditions necessary to ensure that the refinement
relation is a pre-order. Formula implementations are submitted only to the conditions
necessary to ensure that the implementation relation, defined in the next subsection, is
compatible with the refinement relation; i.e., an implementation step that follows a refine-
ment process is such that the program which implements the most concrete specification
implements the higher-level specifications as well.

Definition 3.2.11 Formula Implementation.

Let C Spec = (Spec, @) be a contractual specification, C Prog = (Prog, V) be a contractual
program, \' C ELEM¢gpec X ELEMcp,oy be an tmplement relation on C'Spec and C' Prog.
A formula implementation, denoted A, is a function, univocally defined from N, which
maps formulae expressed on Spec into formulae expressed on Prog:

A : PROPg,.. — PROPp,,, ,

such that:
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o A maps every property of the contract of CSpec to formulae of Prog, i.e., A(¢)
is defined for every ¢ € ®;

o given \ a refine relation, X' an implement relation such that their composition,
N = MM is defined, and is an implement relation; the formula implementation
A1) derived from X', is such that A" = A! o A; where AL, A are the formula
implementation and formula refinement derived from N and )\ respectively, and o
is the composition of functions.

Notation 3.2.12 Implementation of a Set of Formulae.
Given AT : PRrROPg,.. = PROPp,,, a formula implementation, we denote by AI(CI)) the
image of ® under AT. AI(®) = {1 € PROPp,,, | ¢ € ® s.t. AI(p) = o},

3.2.4 Implementation Relation

The implementation relation is defined in the same way as the refinement relation. A con-
tractual program is a correct implementation of a contractual specification if the contract
of the program contains the translated contract of the specification. While the refine-
ment relation is a relation on specifications, the implementation relation is a relation on
specifications and programs.

Definition 3.2.13 Implementation of Contractual Specifications via \.

Let CProg = (Prog,V) be a contractual program, CSpec = (Spec, ®) be a contractual
specification, N C ELEM¢spee X ELEMcpro, be an tmplement relation on CSpec and
C Prog, and A! be the formula implementation univocally defined from M. (Prog, ¥) is
an implementation of (Spec, ®) via M, noted (Spec, ®) A (Prog, V), iff

A(®) C .

If (Prog, V) implements (Spec, ®), then every model of (Prog, V) satisfies A/(®). The
program has no specific obligation towards properties that are not in the contract of

C Spec.

Definition 3.2.14 Implementation Relation.
The implementation relation, noted ~», is a relation on contractual specifications and
contractual programs:

~» C CSPEC x CPROG ,

such that for every CSpec = (Spec,®) € CSPEC, and every CProg = (Prog,¥) €
CPROG, then (Spec, @) ~» (Prog, ¥) iff

N C ELEM¢spec X ELEMepro, an tmplement relation on C'Spec and C'Prog, s.t.
(Spec, D) e (Prog, V).
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3.3 Refinement Process and Implementation

We intend to perform a stepwise refinement process, followed by an implementation phase.
The refinement process leads to a chain of contractual specifications (Specy, ®1), ...,
(Spec,, @,,): the first contractual specification, (Specy, @), stands for the most abstract
specification and the last specification, (Spec,,®,), stands for the most concrete one.
In the chain, each contractual specification refines its predecessor. Since the refinement
relation is a pre-order (see Proposition 3.1.1), every specification is a refinement of the
higher-level specifications of the chain, e.g., (Specy, 1) T (Spec,,, D,.).

The last contractual specification is considered to be the most concrete one, it should
be easily translated into a contractual program CProg = (Prog,¥), and this program
should actually implement the contractual specification, i.e., (Spec,, ®,) ~» (Prog, V).
Since the implementation phase is a final step after a series of refinement steps, it must
be compatible with the refinement relation, i.e., the program which implements the most
concrete specification implements all the specifications of the chain as well.

This section defines: the refinement process, the implementation step, the compatibility of
a refinement relation and an implementation relation. Finally, it shows that the refinement
and implementation relations based on contracts are actually compatible.

The following definitions formally define the refinement process and the implementation
step.

Definition 3.3.1 Chain of Contractual Specifications.
A chain of contractual specifications is an ordered set of contractual specifications:

(Specy, ®4),...,(Spec;, ®;),...,(Spec,, ®,) ,
such that each contractual specification refines its predecessor in the chain:

(Speci, @) C (Speciyr, Pipr), 1<i<n—1.

Definition 3.3.2 Refinement Step, Refinement Process.

A refinement step is the act of replacing a contractual specification by another contractual
specification which refines the former contractual specification. A refinement process is a
series of consecutive refinement steps leading to a chain of contractual specifications.

Definition 3.3.3 Implementation.

Given a chain of contractual specifications, (Specy, ®1),...,(Spec;, ®;),...,(Spec,, ®,),
the implementation is the replacement of the most concrete contractual specification of the
chain by a contractual program which implements this contractual specification:

(Specy, @,) ~ (Prog, V).
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The refinement process ends by the implementation of the most concrete contractual
specification. The program, implementing the most concrete contractual specification,
should be an implementation of every contractual specification of the chain as well, in
particular of the most abstract one. It is formalised by the following definition:

Definition 3.3.4 Compatible Refinement and Implementation Relations.

Let T be the refinement relation on contractual specifications, and ~~ be the implementa-
tion relation on contractual specifications and contractual programs. T and ~» are com-
patible iff for every pair of contractual specifications (Spec’, ®"), (Spec,®), and every
contractual program (Prog, V) the following holds:

(Spec, ®) C (Spec’, @) A (Spec’, ®') ~» (Prog,¥) = (Spec,®) ~ (Prog, V).

The refinement relation and the implementation relation defined in the previous sections
are compatible.

Proposition 3.3.1 Compatibility of the Refinement and the Implementation Relations.
The refinement relation on contractual specifications, =, and the implementation relation
on contractual specifications and contractual programs, ~~, are compatible.

Proof.
Let C'Spec = (Spee,®), and CSpec = (Spec’,®") be contractual specifications, and
C Prog = (Prog, ¥) be a contractual program.

(Spec, @) C (Spec’, ®') implies that there exists A C ELEM¢gye. X ELEMcgper, @ refine
relation such that (Spec, ®) C* (Spec’, ®'). A, the formula refinement univocally defined
from A, is such that: A(®) C ¢’

(Spec’, ®') ~» (Prog, ¥) implies that there exists Al C ELEM¢gsyeer X ELEMcp,,, an im-

plement relation such that (Spec’, ®') A (Prog,¥). Al the formula implementation,
univocally defined from A, is such that: Af(®') C W,

A and M can be composed in order to form N = M C ELEM¢spec X ELEMcp,og. NTis
actually an implement relation, i.e., it is total on the contract ®. Indeed, first, A is total
on elements of contract ®, and C' Spec’ refines C Spec via A, thus all elements of contract @
are related to elements of contract ®. Second, A’ is total on elements of contract ®’, thus
all elements of contract ® are related to elements of contract ¥ by X; A!. Consequently
M = X\ M is an implement relation. By definition, if A’/ is an implement relation, then
AT, the formula implementation, univocally defined from A7, is such that: A7 = A’ o A.

Therefore, A(®) C @ implies A(A(®)) C AL(®"). As AL(®') C U, we have AL(A(®)) C W.
This implies (Spec, @) A AN (Prog, V), which in turn implies (Spec, @) ~» (Prog, V). R

A consequence of this property is that, given two contractual specifications (Spec’, ®’)
and (Spec, @), with (Spec’, ®") refining (Spec, @), then every program that implements
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(Spec’, ®") implements (Spec, @) too. Thus the set of programs implementing (Spec’, d')
is included in the set of programs implementing (Spec, @).

A contractual program, implementing the most concrete contractual specification of a
chain of specifications, satisfies (via the formula implementation) the whole set of prop-
erties of this contractual specification. Due to the compatibility of the refinement and
the implementation relations, and due to the transitivity of the refinement relation, this
contractual program satisfies the contract of each of the other contractual specifications
of the chain as well, and thus is an implementation of every contractual specification of
the chain.

Corollary 3.3.1 Compatible Refinement Process and Implementation.

Let (Specy, @4),...,(Spec;, ®,),...,(Spec,, ®,,) be a chain of contractual specifications.
If (Prog,V) is an implementation of (Spec,,®,), then (Prog, V) is an implementation
of all the contractual specifications of the chain:

(Specn, @) ~ (Prog, W) = (Speci, ®;) ~ (Prog,¥), 1<i<n-—1.

Proof.
Due to the transitivity of C, (Spec,, ®,) refines every contractual specification in the
chain:

(Spec;, ®;) C (Spec,, ®,), 1 <i<n-—1.

(Prog, V) implements (Spec,, ®,), ie., (Spec,, ®,) ~» (Prog,V¥). The compatibility
between C and ~» implies:

(Spec;, ®;) ~» (Prog,¥), 1<i<n-—1.

Summary

Figure 3.1 shows a refinement process followed by an implementation phase, and depicts
the proofs necessary to ensure that the whole process is correct.

The refinement process starts with the pair C'Specy =< Specg, Py > as the most abstract
contractual specification. A first refinement leads to the pair C'Spec; =< Specy, @, >;
the refinement process continues and reaches the pair C'Spec, =< Spec,, ®, >. Finally,
the implementation phase provides the contractual program C Prog =< Prog, ¥ >.

Horizontal proofs ensure that every pair C'Spec; =< Spec;,®; > (0 < ¢ < n) ob-
tained during the refinement process is actually a contractual specification, and that
the C'Prog =< Prog, ¥ > is actually a contractual program. Therefore, it is necessary
to show:

Modsyee, E ®; (0 <7 <n), and
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Modpmg EW.

Vertical proofs assert the correctness of the refinement steps, by requesting:

Finally implementation proof ensures that the contractual program C' Prog =< Prog, ¥ >
correctly implements the contractual specification C'Spec, =< Spec,, P, >, and hence
every contractual specification C'Spec; (0 <1 < n). It requests, similarly to vertical proof,
that:

¢, C V.

Horizontal Proof Refinement Process Vertical Proof

\
Modspee, F @ L < Specg, Py >

o ‘ Ir1 ‘AO« Ao(®o) C &4

Modspee, F @1 wmmi < Specy, @ >

1M
1M « An—l(q)n—l) g q)n
Modgye., F @, < Spec,,®, > .
o ‘pec D Implementation Proof

|
M| P AN A(D,)CT

MOdpmg Fw

Figure 3.1: Refinement Process, Implementation and Proofs

3.4 Compositional Refinement and Implementation

When the considered formal specifications language is such that there exists a composi-
tional operator that enables a specification to be considered as the composition of several
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sub-specifications (also called components), and when the refinement of components is
defined, then we can consider it to be a compositional refinement.

A refinement is said to be compositional wrt a compositional operator, or to be a congru-
ence wrt a compositional operator; or a compositional operator is said to be monotonic
wrt the refinement relation, if:

Given a high-level specification made of the composition of several components,
the replacement of each component, by a lower-level component refining it,
leads to a lower-level specification which is a refinement of the higher-level
one.

If, in addition, the programming language defines a compositional operator that enables
a program to be considered as the composition of several sub-programs (also called com-
ponents), and if the implementation of components is defined, a compositional implemen-
tation can be considered.

An implementation is said to be compositional, or to be a congruence wrt a compositional
operator on the specifications and a compositional operator on the programs, if:

Given a specification made of the composition of several components, the re-
placement of each component, by a program implementing it, leads to a program
which is an implementation of the specification.

First this section defines compositional contractual specifications, and the compositional
refinement of contractual specification. Second, it defines compositional contractual pro-
grams, and the compositional implementation of contractual specification. Finally, it
discusses different ways of achieving the composition of contracts and the composition of
specifications.

Compositional Contractual Specification

As this chapter does not consider a particular formal specifications language, we will
not discuss any particular compositional operator. We will assume the existence of a
compositional operator that applies to a set of specifications. The composition of the
contracts depends on the composition of the specifications. Thus, we assume the existence
of a compositional operator that is able to return from a set of contractual specifications
a compound contractual specification, whose specification part is the composition of the
specification parts and whose contract is the composition of the contract parts.

Definition 3.4.1 Compositional Operator on Contractual Specifications.
A k-ary compositional operator, denoted f, is a partial function on contractual specifica-
tions:

f: CSpEC* — CSPEC.
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A k-ary compositional operator is not necessarily a total function, since any set of k con-
tractual specifications cannot be composed to form a compound contractual specification.

Definition 3.4.2 Compositional Contractual Specification.

Let (Spec;, ®;), 1 < i <k, be k contractual specifications. Let f : CSPEC* — CSPEC be
a k-ary compositional operator on contractual specifications. A compositional contractual
specification is a contractual specification given by the composition of (Spec;, ®;), 1 <1 <

k, by f:
f((Specr, 1), ..., (Spec,, Pr)).

According to this definition, components are themselves contractual specifications. Thus,
the refinement of a component is defined as the refinement of a contractual specification,
and the implementation of a component is defined as the implementation of a contractual
specification.

Compositional Refinement

The refinement of contractual specifications is a congruence wrt a k-ary compositional op-
erator on contractual specifications if, given a high-level compositional contractual spec-
ification, the lower-level contractual specification, obtained by replacing each high-level
contractual component by a lower-level component, is a refinement of the higher-level
contractual specification.

Definition 3.4.3 Compositional Refinement.

Let f : CSPEC* — CSPEC be a k-ary compositional operator on contractual specifications.
Let (Spec;, ®;), (Spec:, @), 1 < i < k be contractual specifications. The refinement
relation on contractual specifications, C, is a congruence wrt f, iff:

(Spec;, ®;) C (Spect, @), 1 <i <k =
f((Speclvq)1>7 s 7<Speck7q)k>) L f((Specll,(I)/1>, s ,<Spec;m(1);€>).

Compositional Contractual Program

We assume the existence of a compositional operator on contractual programs. Like the
compositional operator on contractual specifications, so the compositional operator on
contractual programs is a partial function, since any set of programs cannot be composed
in order to form a compound program.

Definition 3.4.4 Compositional Operator on Contractual Programs.
A k-ary compositional operator, denoted g, is a partial function on contractual programs:

g : CPrROG" — CPROG.
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Definition 3.4.5 Compositional Contractual Program.

Let (Prog;,V;), 1 <1 <k, be k contractual programs. Let g : CPROG* — CPROG be a
compositional operator on contractual programs. A compositional contractual program is
a contractual program given by the composition of (Prog;,¥;), 1 <1 <k, by g:

g((Progy,Vy), ..., (Prog,, Vi)).

Compositional Implementation

The implementation of contractual specifications is a congruence wrt a k-ary compo-
sitional operator on contractual specifications and a k-ary compositional operator on
contractual programs if, given a compositional contractual specification, the contractual
program, obtained by replacing each contractual component by a program implementing
the component, is an implementation of the compositional contractual specification.

Definition 3.4.6 Compositional Implementation.

Let f : CSPEC® — CSPEC be a k-ary compositional operator on contractual specifications,
and g : CPROGF — CPROG be a k-ary compositional operator on contractual programs.
Let (Spec;, ®;), 1 < i < k, be k contractual specifications, and (Prog;,V;), 1 <1 < k,
be k contractual programs. The implementation relation on contractual specifications and
contractual programs, ~», is a congruence wrt f and g iff:

<Speci7q)i> ~ <PT‘092-’\IJZ->71 < i < k =
f(<5pec1,q)1>,. .o 7<Speck7q)k>) ~ g((PTOgl,\I/1>,. . ,<P7“ng’\11k>).

Refinement Process and Implementation

When the refinement relation is a congruence wrt f a compositional operator on con-
tractual specifications, and the implementation relation is a congruence wrt f and to g,
a compositional operator on contractual programs, then a compositional program imple-
menting, component by component, a low-level compositional specification implements
as well component by component any higher-level compositional specification that the
lower-level one refines.

Corollary 3.4.1 Compatible Compositional Refinement and Implementation.

Let f : CSPEC* — CSPEC be a k-ary compositional operator on contractual specifications.
Let g : CPROG* — CPROG be a k-ary compositional operator on contractual programs.
Let (Spec;, ®;), (Speci, ®t), 1 < i < k, be contractual specifications, and (Prog;, V),
1 <1<k, be k contractual programs.

If C is a congruence wrt f, and ~ is a congruence wrt f and g, then the following holds:
(Spec;, ®;) C (Spec;, @) A (Spec;, ®}) ~» (Prog;, ¥;),1 <i<k =
f(<Specl, (I)1>7 sy (Specn, (I)k>) ~ g(<P7“Ogl, \I}1>7 SRR <PT'Ogn7 \I}k>)
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Proof.

The compatibility between T and ~» implies that: (Spec;, ®;) ~» (Prog;,¥;),1 <1 <k,
since (Spec;, ®;) C (Spect, ®!) A (Spect, ®)) ~» (Prog;,V;),1 <1 < k. The fact that ~ is
a congruence wrt f and ¢ implies the result. [ |

Remark 3.4.7 Fiadeiro [35] shows that it is not sufficient that a component program sat-
isfies its specification to ensure that the composition of the component programs satisfies
the composition of their respective specifications. It is necessary to have a functor from
the category of programs to the category of specifications. Thus, the compositional refine-
ment or compositional implementation are not guaranteed for any formal specifications
language, programming language, refinement relation, and implementation relation.

Compositional Operators

As mentioned above, we did not choose a particular operator for composing either the
specifications or the contracts. Abadi and Lamport [3] give a method for deducing prop-
erties of a system by reasoning about its components: every component is specified by a
TLA formula, the parallel composition is represented by the conjunction of the formulae.
If contracts are given by TLA formulae, the conjunction of the contracts could be the
compositional operator.

Wirsing [61] distinguishes the structured specifications from the parameterised specifica-
tions. Structured specifications are obtained with specification-building operators (ab-
stractors and constructors of section 2.3.1). These operators are necessarily monotonic
wrt the refinement relation, thus the fact that the refinement relation is compositional fol-
lows immediately. Hierarchical specifications are structured specifications obtained with
a particular specification-building operator. In order to form a hierarchical specification,
a specification is extended with an incomplete specification, i.e., all the elements used in
the specification are not defined in the specification. The monotonicity of the operator
ensures that if an algebraic specification S P; refines an algebraic specification S P,, then
the hierarchical specification extending S P with an incomplete specification refines that
extending S P, with the same incomplete specification. The refinement of the incomplete
specification is not considered.

Parameterised specifications P(SP) are not obtained with specification-building opera-
tors. The refinement of a parameterised specification is defined in the following way: P
refines P if for any actual parameter S Py, then P(SPy4) refines Pi(SPy). It is interesting
to note that, even though the P part of a parameterised specification is an incomplete
specification, its refinement is defined.

We apply these definitions of compositional refinement to contractual specifications. When
contractual specifications are complete, i.e., all the elements used in the specification are
defined in the specification, then the compositional refinement presented in this section
can be compared to the refinement of structured specifications. Indeed, in this case,
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the refinement of incomplete contractual specifications is not defined. The compositional
operator f on contractual specification may freely add an incomplete contractual specifi-
cation to a k-tuple of complete contractual specification in order to form a new complete
contractual specification. The complete contractual specification obtained with f is con-
sidered for the refinement.

When contractual specifications are allowed to be incomplete, the compositional refine-
ment of contractual specifications can be compared to the refinement of parameterised
specifications. Indeed, the refinement of incomplete components is defined, and a k-tuple
of contractual specifications may contain incomplete components.

Remark 3.4.8 Chapters 5 and 6 define a compositional CO-OPN/2 refinement and a
compositional CO-OPN/2 implementation in a way similar to the refinement of hierar-
chical specifications.

3.5 Discussion

The previous sections have lead to the definition of a theory of refinement based on the
preservation of properties explicitly collected in what we have called a contract. They
also lead, with similar definitions, to the implementation of specifications by programs
satisfying the properties of interest of the specifications.

This section is devoted to a deeper understanding of the use of a contract in a development
process. It discusses: the syntactical and the semantical requirements implied by a refine-
ment constrained by properties; correct and incorrect refinements; the evolution of the
contract during a refinement process and the implementation phase; the way the evolution
of the contracts restricts the set of programs implementing the most abstract contractual
specification; and some advantages and disadvantages due to the use of contracts.

3.5.1 Syntactical Conditions

The refine relation conveys the syntactical requirements of the refinement, and has an
impact on whether the structure of specifications will be preserved. Indeed, during the
refinement process, the syntactical obligations of a lower-level contractual specification
towards a higher-level contractual specification, are reduced to the existence of a refine
relation, which ensures that every abstract element that takes part in the contract is in
relation with at least one concrete element.

The theory presented in this chapter does not constrain the refine relation. However,
when the theory is practically applied to a specifications language, the refine relation
is submitted to specific constraints (partial, total, functional, injective or surjective, on
observable elements only, etc). Therefore, the refine relation implies structural constraints
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on lower-level contractual specifications. For instance, a refine relation which is a total
function forces the structure of a high-level specification to be totally maintained by a
lower-level specification, even though it authorises the lower-level specification to add new
components. On the contrary a refine relation which is a partial, surjective function does
not preserve the whole high-level structure in its entirety, and prevents the lower-level
specification to add new components.

The same discussion applies for the the implement relation, since it is very similar to a
refine relation.

3.5.2 Semantical Conditions

The semantical requirements of the definitions of refinement and implementation are
conveyed by the contract. Indeed, the obligations of the low-level specification wrt the
higher-level one are restricted to the preservation of the contract only. If a property of
high-level specification is part of the contract, then, the translation of this property is a
property of the lower-level specification, i.e., it is satisfied by every model of the lower-level
specification. If a property of a high-level specification is not part of the contract, then,
the translation of this property is a formula expressed on the lower-level specification
which is not necessarily satisfied by all the models of the lower-level specification.

Therefore, we can say that a high-level contractual specification and a lower-level contrac-
tual specification, which correctly refines it, are equivalent modulo the contract. Indeed,
the contract is the only part of the behaviour of the high-level contractual specification,
that is ensured to be part of the behaviour of the lower-level contractual specification.

Classes of Properties

We have seen in Chapter 2 that the definitions of refinement usually require two kinds
of semantical obligations: input/output behaviour preservation; and whole behaviour
preservation. A contract may contain properties of different classes:

e Functional Properties.
These properties relate to the essential functionality expected by the system. They
can be seen as a kind of input/output behaviour. For instance, the system func-
tionality consists of computing sums.

e Non-Functional Properties.
The functionality is a small part of the whole behaviour of the system. The non-
functional properties describe the rest of the behaviour. They encompass depend-
ability constraints (fault-tolerance, error recovery, ... ), as well as performance
constraints (high degree of parallelism, time taken for a computation, ... ), or
architectural constraints (client/server, ... ).
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e Refinement choices.
Some properties of the contract reflects refinement choices performed during the
refinement process. For instance, the introduction of a client/server architecture.

e Visible or not.
Some properties may be observable for a user: given an input, a certain output is
obtained; or a given sequence of operations can be performed while another cannot;
etc. Some properties may be non observable: if the underlying architecture of the
system is a client /server architecture, the user of the client system cannot know if
requests are made to the server, or if the system computes everything itself.

Refinement Depends on the Logic

We have seen that the contract decides on the kind of refinement, e.g., a refinement which
preserves input/output behaviour or a refinement which preserves the whole behaviour.
The contract is made of properties expressed in a given logic. Depending on the kind of
logic used (classic, modal, temporal), and depending on the expressivity of the logic wrt
the formal specifications language, it is not possible to express every property that the
specification satisfies. Thus, it is not possible to define every kind of refinement. A logic
which is more expressive enables to discriminate more finely the specifications wrt the
refinement relation.

For a given logic and a specification Spec, the strongest refinement is obtained with the
maximal contract, i.e., & = ®g,... If the logic is such that ® is able to describe very
precisely behavioural details of Spec, the number of contractual specifications which are
able to refine Spec will be rather low. If the logic is such that ® is able to give only rough
information on Spec, then the number of contractual specifications that are able to refine
Spec will be greater than that obtained in the first case.

The use of a temporal logic, instead of a classical logic, is best suited for expressing
formulae on specifications languages whose semantics is based on events and states, since
temporal logics provide a means to assert if a formula is true at a given point (state) of the
execution of the system. Moreover, temporal logics are traditionally used in addition to
process algebra in order to express essential requirements of a process. They are also used
to express the semantics of object-oriented specifications languages (TROLL, VDM**).

Weak and Strong Forms of Refinement and Implementation

Depending on the size of the set of properties that must be preserved between a speci-
fication and its refinement, the refinement relation will be more or less constrained. At
one end of this spectrum, we find a refinement relation imposing that all the properties
of the specification to refine must be preserved; this is the strongest refinement relation:
only few specifications can refine the given specification. At the other end, we find a
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refinement relation where no properties at all have to be preserved; this is the weakest re-
finement relation: every specification refines the given specification. In between, we have
refinement relations imposing that some properties (or some properties of a given class
of properties) have to be preserved: some specifications refine the given specification.

The weak or strong form of the refinement depends as well on the kind of logic used, since
the set of properties that can be expressed on a specification depends on the logic.

3.5.3 Correct and Incorrect Refinements

A refinement is correct if either the translated contract is equal to the lower-level contract,
or is a strict subset. In both cases, the translated contract is also part of the set of all
properties of the lower-level specification. A refinement is incorrect if either the translated
contract is satisfied by the models of the lower-level specification - but is not included into
the lower-level contract -, or the translated contract is not satisfied by all models of the
lower-level specification. In the last case, the translated contract is not part of the set of
all properties of the lower-level specification. In all case, the set of high-level properties
that are not in the contract may be totally, partially or not at all satisfied by all models
of the lower-level specification.

Figure 3.2 depicts these four cases. The left part of the figure shows two correct refine-
ments while the right part shows two incorrect ones. In the examples of this figure, the
set of high-level properties that are not in the contract is not at all satisfied by all models
of the lower-level specification.

In the left part of the figure, a high-level contractual specification (Specy, @) is refined by
two different contractual specifications: (Speca, ®21) and (Specaa, P22). Pspe, denotes
the set of properties of Spec;, i.e., the set of all formulae satisfied by the models of
Specy. Similarly, ®g,eq,,, 1 <@ <2, denotes the set of properties of Specy;. The formula
refinement Ay; translates every property of Spec; into a formula of Specyy, and the formula
refinement Ay translates every property of Spec; into a formula of Specy;. The formula
refinement Ay; translates the contract ®; of Spec; into a part of the contract of Specsy,
and hence into a strict subset of ®g,..,,. Thus, contractual specification (Specar, P21) is a
correct refinement of (Specy, ®1). The formula refinement A5 translates the contract @,
of Specy into ®@y5. Thus, contractual specification (Specas, Paa) is a correct refinement of

(Specy, ®q).

In the right part of the figure, the same high-level contractual specification (Specy, ®)
is refined by: (Specas, P23) and (Specas, P2g). The formula refinement Ay3 translates the
contract ®; of Spec; into a subset of ®g,.,,. This means that every model of Specys
satisfies A13(®1). However, the contract ®23 does not contain Aj3(®;), thus a subsequent
refinement will not be obliged to preserve Aj3(®;). Therefore, contractual specification
(Specas, Pas) is not a correct refinement of (Specy, ®1). The formula refinement Aq4
translates the contract ®; of Specy into a set of formulae of Specyy which is not completely
a subset of ®g,.,,, thus the part of the translated contract which is not in ®g,,,, is not
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satisfied by all models of Specss. Therefore, the contractual specification (Speca, @o4) is
not a correct refinement of (Specy, ).

)
Spec;

Ny N Ma
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Ap(®) = @ @, M@ Specyy
12 23
By DM@ v Dy
(a) Correct (b) Incorrect

Figure 3.2: Correct and Incorrect Refinements

Figure 3.3 explains why a lower-level specification, whose set of properties contains the
translated contract of a higher-level specification, but whose contract does not contain
the translated contract of the higher-level specification, cannot be a correct refinement of
the higher-level specification.

Contractual specification (Specy, ®1) is "refined” by contractual specification (Specy, ®s).
The models of (Specs, @,) satisfy the translated contract of the higher-level specification,
since A;(®1) C Pgpecz. However, @5 does not contain A;(®;). Thus, if we consider
(Speca, ®2) to be a correct refinement of (Specy, ®1), and if we perform a subsequent
refinement step, we may reach the lower-level contractual specification (Specs, ®3) whose
models do not satisfy Ay(Ai(®1)), since Az(A1(®1)) € Pspec,. Thus the original contract
has not been preserved. Therefore, even though the models of (Specy, ®,) satisfy the
original contract, (Specy, ®2) is not a correct refinement since ®, breaks the preservation
of the original contract.

Figure 3.4 shows the case of a low-level contractual specification (Specs, ®,), that refines
a high-level contractual specification (Specy, ®1) but not (Spec;, ®}), even though the two
high-level contractual specifications have the same specification part (Specy).

3.5.4 Evolution of the Contract during the Refinement Process

When they are necessary for the final implementation, refinement choices will be indicated
in the contract. For instance, a refinement process starts with a high-level specification
whose contract mentions only the basic functionality. If the final implementation has to
be built according to the client /server paradigm, then at some moment in the refinement
process it will be necessary to specify the system in that way. If the contract does not
require the client/server architecture, then any subsequent refinement step and the final
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@

Figure 3.4: Correct Refinement Depends on the High-Level Contract

implementation will not have to follow the client/server architecture. If, on the contrary, it
is essential for the final implementation to follow a client/server architecture, the contract
will require it. Complexity, necessary for the final implementation, is added at each step,
and the growth of the contract reflects the essential complexity.

The growth of the contract can also be seen as a means to measure the degree of refinement
reached. Basically, the more the contract grows, the more the lower-level specifications
are fine grained, or conversely the higher-level specification are coarse grained wrt the
contract.

Let (Specy, ®1) be a contractual specification and (Specy, ®3) be a refinement of (Specy, ®4).
We will say the the contract ®, is bigger than @, if A1(®1) C ®5. The contract ®, is the
same as ®q if A1(Py) = Ds.

During a refinement step two cases occur: either the contract of the lower-level specifi-
cation is bigger than the contract of the higher-level specification, or it the same. The
contract cannot decrease, otherwise it is not a correct refinement step, i.e., if A(®1) € @
then (Specs, @3) is not a correct refinement of (Specy, 4).
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When the contract grows, the models of a lower-level contractual specification, refining a
higher-level contractual specification, satisfy entirely the translated contract of the higher-
level contractual specification, plus properties of their own. The growth of the contract
indicates refinement choices made at each step of the refinement process. The added
properties, i.e., ®3 — A;(P1) represent refinement choices that have been made at this
step, and that must be kept in subsequent refinement steps. When the contract grows,
we say the the lower-level specification is more precise than the higher-level specification
wrt the contract. The growth of the contract can be used to measure the degree of
refinement. If the low-level contract is bigger than the higher-level contract, then the
high-level specification is coarser grained wrt the low-level specification, or the low-level
specification is finer grained wrt the higher-level specification.

When the contract remains the same, the models of a lower-level specification, refining a
higher-level specification, satisfy at least the translated high-level contract, and probably
other properties of their own, but further specifications in the refinement process are not
required to satisfy these extra properties, so that these properties will not be maintained
till the implementation. In this case, on the basis of the contract alone, we cannot say if
the low-level specification is finer grained than the higher-level one.

Figure 3.5 shows an example of the evolution of the contract during a refinement process
leading to a chain of specification made of three contractual specifications

(Specy, 1), (Specy, Pa), (Specs, P3). The example chosen here is such that at each step the
translated contract is a strict subset of the lower-level contract A;(®;) C @44, 1 < i < 2;
thus the lower-level contract is bigger than the higher-level one. At each step the contract
grows. The part of the high-level properties which is not in the contract is not preserved
by the lower-level specification (®spe., — ;) ¢ Dspeciris 1 <t < 2. According to the
methodology, the contract of the most concrete contractual specification (Specs, ®3) is
given by ®g,.., = ®3. Thus, the implementation requires that the program must satisfy
the whole set of properties ®g,.., of the most concrete specification. In this example, the
contract of the program W contains this set of properties: ®g,.., C ¥; the contract of the
program is bigger and the program has properties of its own that are not properties of
Specs.

3.5.5 Evolution of Programs

We consider a chain of specifications obtained by a refinement process:

(Specy, ®1),...,(Spec,, ®,,); and the sets of programs implementing each specification.
We will call PROG; the set of programs that correctly implement (Spec;, ®;), 1 <1 < n.
If the contract grows at each step, then the sets of programs PROG;1; C PrROG;, 1 <
1 < n — 1, since the compatibility between the implementation and the refinement rela-
tion of Proposition 3.3.4 imply that any program implementing a low-level specification
implements also the higher-level specifications. Thus, the number of programs decreases
at each step. If the contract remains the same at each step, then PROG;;; = PROG;,
1 <17 <n —1, since nothing in the contract is added, that can specialise the program.
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Prog

Figure 3.5: Evolution of Contract during the Refinement Process and Implementation

Figure 3.6 depicts the reduction of the number of programs implementing the contractual
specification during the refinement process. For the scope of this example, we assume that
exactly three contractual programs are able to implement (Specy, 1), since Ay; (@) C U,
1 <1< 3. In order to be concise, the figure depicts a special case, where Ay;(®4) are all
equal, 1 <1 < 3. However, they could be completely different, e.g., with no intersection
at all.The refinement process leads to (Specy, ®4), which is a refinement of (Spec;, @1),
and whose contract @, is bigger than the translated contract of (Speci, ®1). At this
point of the refinement process, only two contractual programs are able to implement
(Specy, @3): (Progs,Vsy), and (Progs, ¥s). (Progi,V¥;) cannot implement (Specy, ®s),
because W; does not contain Ag(®3). Finally, the refinement process leads to a third
contractual specification, (Specs, ®3), the contract @5 is bigger than ®,, and a unique
implementation is given by (Progs, Us).
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Figure 3.6: Reduction of the Set of Programs During the Refinement Process
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Figure 3.7 shows another example, where the lower-level contracts are not bigger than
the higher-level ones. The set of programs, implementing every contractual specification
obtained during the refinement process, does not change.
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Figure 3.7: Immutable Set of Programs During the Refinement Process

As for the previous example, we assume that exactly three contractual programs are
able to implement (Specy, ®1). The refinement process leads to (Specy, @2). It is a
refinement of (Specy, ®;), whose contract is the same as those of (Specy, ®1): ¢y =
A1(®1). Thus, every program implementing (Specy, ®1) implements (Specy, ®2) as well.
(Specs, ®3) is a refinement of (Specy, @) with the same contract, thus the same set of
programs implements (Specs, ®3).

3.5.6 Advantages of the Use of Contracts

Contracts may be used during the whole software life cycle; they correspond to pragmatic
refinement and implementation processes; they are useful for proof purposes; and they
provide a more general theory of refinement and implementation.

Software Life Cycle

During the analysis phase, the requirements are formally expressed with a first contractual
specification. The contract part stands for the requirements, while the whole specification
stands for an abstract solution that enables the requirements to be fulfilled.

During the design phase, the abstract solution is progressively replaced by more concrete
solutions; it is the refinement process. The contract guides each refinement step: it
guarantees that the requirements of the previous step are maintained, and enables to
integrate new requirements (i.e., new design constraints).

Finally, during the implementation phase, a program replaces the most concrete specifi-
cation obtained during the previous phase. The contracts ensure that the program fulfils
the requirements of the most concrete specification, and hence of the most abstract one.
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Practical Refinement and Implementation

Due to the choice of the formal specifications language, a system is specified in such a
way that its models exhibit a certain behaviour. It is not always necessary or possible
that a lower-level specification or a program, refining or implementing the specification
respectively, exhibits exactly the same behaviour.

For instance, a formal specifications language, may have a semantics - given by a tran-
sition system - that allows parallel operations to be events of the transition system. For
practical reasons, the program cannot be implemented on a parallel machine, but only
on a sequential machine. If the implementation phase requires that the whole behaviour
of the specification must be kept by the program, then, if only a sequential machine is
available, no program can be considered as a correct implementation. Another exam-
ple is provided by a specifications language whose syntax and semantics are such that a
specification becomes complex not because the system itself is complex but because the
specifications language does not allow simple formulation of the problem. If a program-
ming language allows more expressivity than the formal language, then a more concise
program will implement the specification. In this case, a complex program sticking to the
specification is not necessary.

The use of the contract alleviates the refinement process and the implementation phase,
since it allows both the program and the lower-level specifications to take certain freedom
wrt higher-level specifications. The contract conveys exactly the part of the high-level
specification that must not be forgotten in a lower-level specification. For instance, the
specifier is free to change the architecture of the system, to change algorithms used,
provided these changes do not interfere with the preservation of the contract.

Proof

In most definitions of refinement, the proof of refinement is stated informally. The con-
tracts enable formal proofs to be realized both wvertically, i.e., during a refinement step,
and horizontally, i.e., for a given specification.

Vertically, the use of contracts enables to prove that a lower-level specification is a correct
refinement of a higher-level one. The proof of refinement is reduced to the proof of
inclusion of the translated high-level contract into a lower-level one.

Horizontally, given a formal specification, a proof is performed, that enables to state
that a set of formulae is actually a contract, i.e., it is satisfied by all the models of the
specification. The contract ensures that a proof has been performed, and enables the user
of the specification (a human being or another system) to know the behaviour which is
guaranteed by the system.

Practically, these proofs are realized by model-checking, formal proofs on the basis of
the formal specifications (in the case of a sound and complete logic), or tests (for partial
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proofs).

The use of contracts provides a built-in feature for correctness, and makes our approach
similar to that proposed by Meyer [50].

A More General Theory

As observed in Chapter 2, the definitions of refinement can always be reduced to the
preservation of properties. Since the theory of refinement based on contracts is founded
on the preservation of explicit properties, this theory is, in some aspects, more general
than other existing theories of refinement:

e Meta-Refinement.

The theory of refinement presented in this chapter is a kind of "meta-refinement”,
since the contract decides upon the refinement performed. Given a formal speci-
fications language, and a high-level specification Spec, there are as many possible
contracts satisfied by this specification as the number of sets in the power set:
P(Pspec). This means that there are as many different definitions of refinements
as the number of different sets forming the contracts. In the case of a CO-OPN
specification, we can use a contract specifying the bisimulation between the tran-
sitions systems. Thus, the refinement leads to the same set of possible lower-level
specifications as the one we obtain when we use the refinement defined by the CO-
OPN formalism; or we can use a contract specifying only input/output behaviour,
and the refinement leads to a set of possible lower-level specifications completely
different from those obtained with the bisimulation. Similarly to the implementa-
tion, given two contractual specifications with the same specification part, but two
different contracts, the set of programs implementing correctly one of the two con-
tractual specification is different from the one implementing the other contractual
specification;

e Nature of the Contract.

Properties of a contract may be of different classes, and it is not necessary that
a whole class is part of a contract. In addition, the nature of the contracts can
change during the refinement process. For instance, the refinement process may
start with a high-level contractual specification whose contract specifies only its
functionality, say computing sums. Due to refinement choices or to implementation
constraints, non-functional requirements, e.g., dependability constraints or high-
parallelisation of the computations, are integrated. Thus the final system has to
perform the original functionality, and in addition, it must be able to recover from
certain faults or the sums must be computed in parallel as much as possible. The
existing definitions of refinement imply that the same class of properties be preserved
during the whole refinement process.

e Tuning.
The use of contracts enables the specifier to adapt the refinement to each system.
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Emphasis is put on specific needs and requirements of the system to develop, and
not on semantical requirements generally stated by the specifications language.

3.5.7 Disadvantages of the Use of Contracts

The specifier is aware of the semantical requirements of each refinement step. This aware-
ness allows the advantages we have discussed above, however it implies some disadvan-
tages.

More effort has to be produced at each step, since the specifier must build not only the
specification, but also the contract, and he must prove that the models of the current
specification satisfy the contract. In addition, the specifier must prove at each step that
the lower-level contract contains the translated high-level contract.

If the contract stands for a whole class of properties, it may contain an infinite number
of formulae. Thus, practically, it may be impossible to write them down, unless the logic
used allows to express infinite properties with a finite number of formulae.

Even with the use of an expressive logic, it may happen that the number of formulae of
the contract is huge. In this case, a specifier cannot write all the formulae himself. A tool
assisting the specifier is necessary to write the formulae and to prove them. The contract
becomes huge especially when non-functional properties are part of the contract, e.g., all
the traces of the models of the high-level specification must be kept by the models of the
lower-level one.

However, these disadvantages are present in other definitions of refinement as well, since
the use of contracts enables to simulate existing definitions of refinements. The use of
contracts explicitly points out problems (like the proof of refinement when the contract
is infinite) that already exist in other definitions of refinement.

Loss of Original Requirements

Refine relations enable to rename high-level elements. This feature can be useful in certain
cases. However, the possibility of renaming, combined with a small contract, can lead to a
semantical change of the original formulae. We consider the following example: a system
whose purpose is to make sums. Formulae of the contract are built with the ”4” operator,
which adds up two integers. During a refinement step, the 747 operator is renamed to the
7—7 operator. If the ”—" operator actually behaves like the subtraction of integers, and if
the contract contains no formula of the kind 0 + 1 = 1, which ensures that the semantics
of the ”4+” operator is preserved, then formulae built with the addition are translated to

formulae built with the subtraction.

This effect can be ignored if the important point is the ability to make operations on
integers (it is not important whether the operation is an addition or a subtraction). On
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the contrary, if the operation has to be the addition, then the specifier must be very
careful, and must put into the contract all formulae necessary to ensure that, even though
a renaming is performed, the semantics of the addition is preserved.
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Chapter 4

CO-OPN/2

Chapter 3 defines a theory of refinement and implementation based on contracts, which
advocates the joint use of a model-oriented formal specifications language, and a logical
language. The following chapters carry out this general theory to an object-oriented
formal specifications language, called CO-OPN/2. The current chapter is dedicated to
the description of the syntax and the semantics of CO-OPN/2 specifications.

CO-OPN/2 is an object-oriented formal specifications language based on partial order-
sorted algebraic specifications [61] and Petri nets which are combined in a way that is
similar to algebraic nets [56]. Algebraic specifications are used to describe the data struc-
tures and the functional aspects of a system, while Petri nets allow to model the system’s
concurrent features. To compensate for algebraic Petri nets’ lack of structuring capabil-
ities, CO-OPN/2 provides a structuring mechanism based on a synchronous interaction
between algebraic nets, as well as notions specific to object-orientation such as the no-
tions of class, inheritance, and sub-typing. A system is considered as being a collection
of independent objects (algebraic nets) which interact and collaborate together in order
to accomplish the various tasks of the system. The formal semantics of a CO-OPN/2
specification is given in terms of a concurrent transition system expressing all the possible
evolutions of objects’ states.

CO-OPN/2 is the object-oriented version of CO-OPN [21]. CO-OPN provides the same
mechanism of synchronous interaction between algebraic nets, but is simply object-based
(no dynamic creation of instances, no inheritance, no sub-typing). A definition of refine-
ment for CO-OPN has been defined, which is based on strong bisimulation between the
states of transition systems. A series of tools is available for CO-OPN [15]; it includes
a syntax checker, a simulator, a property verifier based on temporal logic, a graphical
editor, and a transformation tool supporting the derivation of specifications.

First the current chapter presents the syntax of CO-OPN/2 specifications and then their
semantics.

The definitions, theorem, propositions, examples, as well as explanations of this chapter
are all taken from Biberstein’s Ph.D. thesis [14].
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4.1 Syntax

The CO-OPN/2 formalism introduces the notion of modules. Two kinds of modules
are provided: ADT modules and Class modules. The ADT modules are used for the
specification of the abstract data types involved in a CO-OPN/2 specification while the
Class modules correspond to the description of the objects obtained by instantiation. Both
these kinds of modules are composed of a part which groups the elements accessible by
other modules, called the ADT module signature or the Class module interface, according
to the type of module. The other elements, which compose the module, describe the
properties of the module; they are grouped in a body part, and are not accessible by other
modules.

Throughout this chapter, as well as in the following chapters, we use the notation below:

Notation 4.1.1 Universe of all names.

We consider a given universe U which includes the disjoint sets: S,F,M,P V,0.These
sets correspond, respectively, to the sets of all sort, operation, method, place, variable and
static object names.

The set S is divided into two disjoint sets SR and S¢, S = SA U S€ with SA NS¢ = &.
The former is dedicated to all the usual sort names involved in the algebraic description
part, whereas the latter consists in all the type names of the classes.

First we present ADT module signatures and Class module interfaces; and describe how
global signatures and global interfaces are derived from a set of ADT module signatures
and Class module interfaces. Second, we define ADT modules and Class modules. Then,
we present CO-OPN/2 specifications.

4.1.1 ADT Module Signature

The elements of an ADT module that can be used from the outside are defined in the ADT
module signature. It groups three elements of an algebraic abstract data type, i.e., a set
of sorts, a sub-sort relation, and some operations. However, in the context of structured
specifications, an ADT signature can intrinsically use elements not locally defined, i.e.
defined outside the signature itself. For this reason, the profile of the operations as well
as the sub-sort relation in the next definition are respectively defined over the set of all
sorts names S and SA, and not only over the set of sorts S defined in the module itself.

Definition 4.1.2 ADT module signature.
An ADT module signature (ADT signature for short) (over S and F) is a triple YA =
(SA, <A F), where

o SA is a set of sort names of S*;
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o <AC(SA xSR)YU(SA x SA) is a partial order (partial sub-sort relation);

=

o = (vas)wes*,ses is a (8* x S)-sorted set* of function names of F.

The A superscript indicates that the module and its components are in relation with the
abstract data type dimension.

We often denote a function name f € Fs .5, s by f:s1,....5, = s or by f 5.5 and
a constant f € F.; by f: — s or by fs (€ represents the empty string). The index
($1--8p,s) is called the arity of the members of Fj, .., .

The profile of the operations is built over S, therefore some elements with such profiles
can imply sorts of S€. Thus, ADT modules can describe data structures containing object
identifiers, for example: stack or arrays of object identifiers.

Remark 4.1.3 When a signature only uses elements locally defined we say that the sig-
nature is complete.

CO-OPN/2 provides abstract definitions as well as textual representations. Figure 4.1
gives the textual representation of an ADT module defining three sorts: chocolate,
praline and truffle. Sorts praline and truffle are both sub-sorts chocolate. This
ADT defines only two generators P and T producing pralines and truffles respectively.

Adt Chocol at e;
I nterface
Sorts chocol ate, praline, truffle;
Subsort
praline < chocol at e;
truffle < chocol ate;
Generators
P : praline;
T : truffle;
End Chocol at e;

Figure 4.1: CO-OPN/2 Chocolate ADT Module

Example 4.1.4 ADT Module Signature.
The ADT module signature corresponding to Figure 4.1 is given by:

B hocolate = <{ chocolate, praline, truffle}, {(praline, chocolate), (truffle, chocolate)},

{ Ppraliney Ttrufﬂe}> .

la S-sorted set A is a family of sets indexed by S, we write A = (As)ses-
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4.1.2 Class Module Interface

A Class module describes a collection of objects with the same structure by means of an
encapsulated algebraic net. Similarly to the notion of ADT module signature, the elements
of a Class module which can be used from the outside are grouped into a Class module
interface. The Class module interface of a Class module includes: (1) the type of the
class; (2) a sub-type relation with other classes; (3) the set of methods that corresponds
to the services provided by the class, methods being particular transitions of the net; (4)
and the set of static objects provided by the Class, static objects are always available
independently of the number of instances of the Class that have been created.

Definition 4.1.5 Class module interface.
A class module interface (class interface for short) (over S, M, and Q) is a 4-tuple*
0¢ = ({c}, <%, M, 0), where:

c € S© is the type® name of the class module;

<€ C ({e} x S€) U (S® x {c}) is a partial order (partial sub-type relation);

M = (M..,) is a finite ({c} x §*)-sorted set of method names of M;

weS*

O = (0,),esc 15 a finite SC-sorted set of static object names of O.

A method is not a function, but a parameterised transition which may be regarded as a
predicate. The set of methods M is ({c}x8*)-sorted, where ¢ is the type of the class module
and S§* corresponds to the sorts of the method’s parameters. A method m € M., 5, is
often noted m, : sy,...,8, or mey, 5., while a method without any argument m € M.,
is written m. (e denotes the empty string). Set M contains also non-default generators
of instances of the class.

From a set of ADT signatures ¥ = {¥% |1 <: <n} and a set of class interfaces Q =
{Q5 |1 < j < m} such that £ = (SA, <} F) for 1 <i <nand Qf = ({¢;},<$, M;,0;)
for 1 < 7 < n, we construct a global sub-sort/sub-type relation noted <s o which is the
reflexive and transitive closure of the union of the partial sub-sort and sub-type relations
of the elements of ¥ and €:

§2,92< U <t U U §§:>*

1<zi<n 1<5<m

Since a class interface includes two elements closely related to the algebraic part, namely
the type of the class and the sub-type relation, a class interface Q¢ = ({c}, <% M, O)
induces an ADT signature that contains the operations necessary for the management of
the objects identifiers, as well as one constant for each static object.

Zhere the C superscript stresses the belonging to the class (algebraic net) dimension.
3in general, we use s symbols for sorts of the abstract data type dimension and ¢ symbols for types
(in fact sorts) of the classes.
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Definition 4.1.6 ADT signature induced by Class interface.
Let Q¢ = ({c}, <%, M, O) be a Class module interface, the ADT signature induced by Q°,

noted X8, is such that X5 = ({c}, <%, Foc), and:

Foc= {op:—=d]o: €0} U
{init. : = ¢,new, : ¢ = ¢} U
{sub.e 1 ¢ = ¢ super, . :c—= " | <z cc<zqc}
Function o. provides object identifiers of static objects. Function init. provides the object
identifier of the first object of type ¢ that is created either statically or dynamically.
Function new, generates a new (the next) object identifier from a given object identifier.
Functions sub. . and super, .» map object identifiers of type ¢ with object identifiers whose
type is a sub-type or a super-type of ¢ respectively.

Figure 4.2 gives the textual representation of the Class module interface of a Class module
called Packaging. This Class module defines chocolate boxes of type packaging. Such
boxes offer two services: £ill for putting a chocolate inside a box, and full-praline
which is used to know when the box is full of chocolates. A non-default generator of
instances is provided create-packaging. Class module Packaging defines no sub-type
and no static object.

O ass Packagi ng;
Interface
Use Chocol at e;
Type packagi ng;

Met hods
fill _ : chocol ate;
full-praline;
Creation
Cr eat e- packagi ng;
Body

End. i:’éckagi ng;

Figure 4.2: CO-OPN/2 Packaging Class Module Interface

Example 4.1.7 Class Module Interface.
The Class module interface of Class module Packaging given by Figure 4.2 ts the follow-

ing:

anckaging = <{ packaging}, ®7 {ﬁupackaging,chocolatm fuH_prahnepackaging}? ®> :
The ADT signature induced by this Class interface is given by:

S = ({packaging}, @, Fc

Packaging Packaging

>’
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and:

FQC

€ craging = {initpackaging : — packaging, NeWpackaging : packaging — packaging}.

4.1.3 Global Signature and Global Interface

From a set of ADT module signatures and a set of a Class module interfaces, it is possible
to build a global signature and a global interface. Intuitively, a global signature groups
the sorts and types, the sub-sort and sub-type relations, as well as the operations of ADT
signatures and Class interfaces. As for a global interface, it groups the types, the sub-type
relations, the methods, and the static objects of a set of class interfaces.

Definition 4.1.8 Global signature and global interface.
Let ¥ = (24) be a set of ADT signatures and Q = (2

1<i<n J )IS]STH
interface such that £ = (SA, <P, F) and Q5 = ({¢;}, <5, M;, 0;).
The global signature over ¥ and €2 is:

be a set of class

zm:< U st o U {eh <sa U EU | F>

1<i<n 1<5<m 1<i<n 1<5<m

The global interface over € is:

QQ:< U e cd < U v U Oj>'

1<j<m 1<j<m 1<j<m 1<j<m

In order to ensure that the global signature is an order-sorted signature, some conditions
are required on signatures such as monotonicity, regularity and coherence. The following
definitions introduce these notions.

Definition 4.1.9 Many-sorted and order-sorted signature.

A many-sorted signature (upon S and F) ¥ = (S, F') consists of a set of sorts S €S and
a S* x S-sorted family of operation or function names F' = (vas)wes*,ses with ' CF. An
order-sorted signature is a triple (S, <, F') such that (S, F) is a many-sorted signature,
(S, <) is a poset!, and the operation names satisfy the following monotonicity condition,

if f € Fy s NEFy, s, and wy < wy then sy < s,.

4the pair (S, <) is a partially ordered set, or poset for short, if < C S x S is a partial order relation
(reflexive, transitive and antisymmetric).
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Pre-regularity is equivalent to the existence of a least sort for every term. Regularity is a
stronger condition which allows both ad-hoc polymorphism and sub-sort polymorphism.
Regularity implies pre-regularity. Coherence is needed to force an equation to be valid in
all isomorphic models.

Definition 4.1.10 Pre-reqular, reqular, and coherent signature.

An order-sorted signature ¥ = (S, <, F) is pre-regular iff for any f € F,, s and any
wo < wy in S*, there s a least sort s € S such that f € F,, and wy < w for some
w € S*.

Y is regular iff there is a least (w,s) € S* x S such that wo < w and f € F,5. Y is
coherent iff it is regular and each sort s has a mazimum in S.

Lemma 4.1.1 below provides a combinatorial condition that is equivalent to regularity.

Lemma 4.1.1 Let ¥ = (5, <, F) be an order-sorted signature over a finite set of sorts.
Y s regular iff whenever f € F,,
(w,s) such that w < wy,wy and s < s1,82 and f € F, 5 and wy < w.

N Fy,s, and there is some wy < wy, wq, then there is

Proposition 4.1.1 ensures that the global signature is an order-sorted signature.

Proposition 4.1.1 Let X be a set of ADT signatures and §2 be a set of class interfaces.
If the global signature Yx o is complete and satisfies the monotonicity condition, then
Yx.q 15 an order-sorted signature.

In a similar way, a set of class interfaces must satisfy the contra-variance condition that
guarantees, at the syntactic level, the substitutability principle of an object of type ¢’ by
any object of type ¢ when ¢ is a sub-type of ¢'.

Definition 4.1.11 Contra-variance condition.
A set of class interfaces § satisfies the contra-variance condition iff for any class interface

({c}, <%, M, 0) and ({c'}, < M, O") in Q the following property holds. Ifc <pq ¢ then
or each method my : st,...,s in M' there exists a method m. : sy,...,8, in M such
1

M) n
that s; < s; (1 <1< n).

Given a signature and a set of variables, we can construct the set of terms in the following
way:

Definition 4.1.12 Set of all terms.

Let 3 = (S, <, F) be a signature and X be a S-sorted variable subset of V. The set of
all terms over ¥ and X with sort s € S, noted (T x),, is the least set with the following
properties:
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i)z € (Tyx), forallz € Xy,s <s;
ii) fe(Tyx), forall f:—s" € F, such that s' <'s;

ZZZ) f(tl, ... ,tn)
t; € (T&X)s

€ (Tyx), for all f : s1,...,8, = &', such that s' < s and for all
(1 <iv<n).

i

We define Ty x i ((TE7X)S)SES as the S-sorted set of all terms over ¥ and X, and

Ty, ) Ty, o as the set of all ground terms.

Remark 4.1.13 If type s’ is a sub-type of s, i.e., s’ < s, then every term of type s’ is
also a term of type s.

When ¥ is a global signature, and S = S4 U SC, with S? the set of ADT sorts and S°

the set of Class types, then terms of sort s € S# stand for data values, while terms of type
c € SY are object identifiers.

4.1.4 ADT Modules

An ADT module consists of a visible part, which is the ADT signature; and a hidden
part, which is given by a set of variables, and a set of formulae also called axioms.

Definition 4.1.14 Fquation, atomic formula, formula, axiom.
Let ¥ = (S, <, F) be a regular signature and X be a S-disjointly-sorted set of variables.

1. A ¥-equation is a pair (t,t') of terms in Ty x such that the sort of t and that of
t" are related by the reflexive and transitive closure of <. We denote a Y-equation
(t,t) byt ="t

2. An atomic formula is either a X-equation or a definedness formula of a term t in

Ty x noted D t.

3. A formula (or axiom) is either an atomic formula or a family of atomic formulae
{di,0 |1 <i<n}. We note such a family by ¢ A -+ N\ b, = ¢.

Definition 4.1.15 ADT module.

Let 32 be a set of ADT signatures and S be a set of class interfaces such that the global
signature Y g = (S, <, F) is complete. An ADT module is a triple Mdgg = (YA X, ®),
where

o YA is an ADT signature;

o X = (X,),cq 15 a S-disjointly-sorted set of variables of V;
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o O a set of formulae (axioms) over Y¥x o and X.

Remark 4.1.16 [n the context of structured specifications, an ADT module may obvi-
ously use elements not locally defined, i.e., defined in other modules.

Figure 4.3 provides a more complex ADT module. If defines a FIFO (first in, first out)
structure, able to store boxes of type packaging defined by Class module Packaging (see
Figure 4.2). It defines two sorts: fifo-packaging and ne-fifo-packaging (for non-
empty FIFOs). It provides two generators: [] for creating empty FIFOs; and insert
for adding a box of type packaging at the end of a FIFO, the FIFO obtained after this
operation is a non-empty one. The operations defined by this ADT module are: first,
which returns the object identifier of the box at the head of the FIFO; extract, which
removes this object identifier; and size, which returns the size of the FIFO.

The Axioms field gives formulae ®; they formally defied the generators and the operations.
The set of variables used for establishing the formulae is X = {boXpackaging; fne-fifo-packaing } -

Adt Fi f oPackagi ng;
Interface
Use Naturals, Packagi ng;
Sorts ne-fifo-packaging, fifo-packaging;
Subsort ne-fifo-packagi ng < fifo-packagi ng;
Generators
[ : -> fifo-packaging;
insert _ _ : packaging fifo-packaging ->
ne-fif o- packagi ng;
Qper ati ons

first _ : ne-fifo-packagi ng -> packagi ng;
extract _ : ne-fifo-packaging -> fifo-packagi ng;
si ze _ : ne-fifo-packagi ng -> natural
Body
Axi ons

first (insert box [])
first (insert box f)

irst f;
extract (insert box []) [1;
extract (insert box f)
i nsert box (extract f);

box;
f

size [] = 0;
size (insert box f) =1 + (size f);
\Wher e

box : packagi ng;

f : ne-fifo-packagi ng;

End Fi f oPackagi ng;

Figure 4.3: CO-OPN/2 FifoPackaging ADT Module
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4.1.5 Class Module

The purpose of a Class module is to describe a collection of objects having the same
structure by means of an encapsulated algebraic net. Actually, a class module is considered
as a template from which objects are instantiated. A Class module is made of a visible
part, i.e., a Class module interface; and a body part, which actually defines the algebraic
net. It consists of: a set of places, some variables, the initial values of the places, and a
set of behavioural formulae which describe the behaviour of instances of the class, when
events occur.

The CO-OPN/2 formalism provides two different categories of events: the invisible events,
and the observable events. Both of them can involve an optional synchronisation expres-
siton. The invisible events describe the spontaneous reactions of an object to some stimuli.
They correspond to the internal transitions which we will denote by 7. The observable
events correspond to the methods, defined in the Class module interface, and which are
then accessible from the outside. A synchronisation expression offers an object the means
of choosing how to be synchronised with other partners (even itself). In the textual repre-
sentation of a CO-OPN/2 specification, the keyword with introduces the synchronisation
expression. Three synchronisation operators are provided: ¢ //’ for simultaneity, ‘..’ for
sequence, and ‘@’ for alternative. In order to select a particular method of a given object,
the usual dot notation has been adopted.

We write E4 am0,0c for the set of all events over a set of parameter values A, a set of
methods M, a set of object identifiers O, and a set of types of classes C'. Because this set
is used for different purposes, we give here a generic definition.

Definition 4.1.17 Set of all events.

Let (S, <) be a poset, where S = SAUSY is a set of sorts such that S4 € SR and S¢ € S¢.
Let us consider A = (A;), g, a set of terms, M = (Msvw)seso,wes* a set of method names,
O = (Os),cqc a set of terms for object identifiers, and a set of types of classes C' C Se.
The set of all events (over A, M,0,C), noted E4sp0.c, is made of events Fvent, buill
according to the following syntaz:

Fvent — Inv | Inv with Sync | Obs | Obs with Sync

Inv — self.r

Obs —  self.m(ay,...,a,) | Obs [/ Obs | Obs .. Obs | Obs & Obs
Sync — o.m(ai,...,a,) | o.create | o.destroy |

Sync [/ Sync | Sync .. Sync | Syne & Sync

where s € SY, 85,88 € 5 (1 <i<n), a,...,a, € Ag X oo X Ay, m € My, .., 0 € Os,
s € C, and self € Oy and such that (s.,s;) (1 <1 < n) belongs to the transitive and
reflexive closure of <.

Since behavioural formulae handle terms of sort multi-set, we first define the multi-set
extension of signatures. It consists of extending the signature: (1) by adding a sort noted
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[s], for every sort s of the signature, which stands for the sort multi-set of s; (2) by
extending the sub-sort relation to the multi-sets; (3) by adding three functions for every
[s] that respectively generate: an empty multi-set, create a multi-set with a single element
of sort s, and make the union of two multi-sets.

Definition 4.1.18 Syntactic multi-set extension of signatures.

Let ¥ = (S, <, F) be an order-sorted signature. The syntactic multi-set extension of ¥ is
noted [X] and defined by:

051 = [s];
Bl =(SulJAsh <o [ {@L DL FulJ S L]s = I8l )-
sES s,s'<€/5 sES +s: 3]7 [S] — [S]

Behavioural formulae are used to describe the properties of observable and invisible events
(respectively, methods and internal transitions) of a net. A behavioural formula consists
of an event, a condition expressed by means of a set of equations over algebraic values, and
the usual pre/post-conditions of the event. Both pre/post-conditions are sets of terms (of
sort multi-set) indexed by the places of the net. An event can occur (or using the Petri nets
jargon, the method or the internal transition can be fired) if and only if the condition on
the algebraic values is satisfied and enough resources can be consumed/produced from/in
the places of the module.

Definition 4.1.19 Behavioural formula.
Let ¥ = (S,<,F) be an order-sorted signature such that S = S4 U SY (54 ¢ SA and
5S¢ € SC). For a given (SC x S*)-sorted set of methods M, a S-disjointly-sorted set
of places P, a set of types C C S, and a S-disjointly-sorted set of variables X. A
behavioural formula is a 4-tuple (FEvent, Cond, Pre, Post), where:

o Fvent € E(Tz,x),M,(Tz,x)S,C such that s € S°;

o Cond is a set of equations® over ¥ and X ;

o Pre = (Prep)pep is a family of terms over [X], X indexed by P, such that

(Vs € S) (Vpe P,) (Pre, € (T[ELX)[S]%

o Post = (Postp)pep is a family of terms over [X], X indexed by P, such that

(Vs € S) (Vpe Py) (Post, € (T[ELX)[S])'

We also denote a behavioural formula (Fvent, Cond, Pre, Post) by the expression

Fvent :: Cond = Pre — Post.

5gee Definition 4.1.14
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Finally, a Class module consists of: a class interface, a set of places, which corresponds to
the state of the class instances, some variables, the initial values of the places (also called
the initial marking of the module), and a set of behavioural formulae which describe the
properties of the methods and of the internal transitions.

Definition 4.1.20 Class module.
Let X be a set of ADT signatures, §2 be a set of class interfaces such that the global signa-
ture ¥y o = (S, <, F) is complete. A Class module is a 5-tuple ]\4d§;7Q =(Q°, P 1,X,0),

where:

o O¢ = ({c}, < M) is a class interface;

o P =(F), g is a finite S-disjointly-sorted set of place names of P;
o [ = ([p)peP is an initial marking, a family of terms indexed by P such that
(Vs €.5) (Vp € Py) (I, € (Tizy,x)py);
o X = (X,),cq 15 a S-disjointly-sorted set of variable of V;
o U is a set of behavioural formulae over the global signature Y5 o, a set of methods

composed of M and all the methods of 2, the set of places P, the type of the class
{c}, and X.

Class instances are able to store and exchange object identifiers because the sorts of the
places, the variables, and the profile of the methods belong to the set of all sorts S,
therefore, these components can be either of sort SA or S€.

CO-OPN/2 provides a textual representation of ADT modules and Class modules. In
addition, it provides a graphical representation of Class modules. Figure 4.4 defines Class
module PackagingUnit. Left part of the figure shows the graphical representation, while
right part gives the textual representation.

Class module PackagingUnit defines a unique method take which removes a box of type
packaging from a static object called the-conveyor-belt provided by Class module
ConveyorBelt, and stores it into place work-bench. A synchronous request introduced
with keyword with is used for actually obtaining boxes from the-conveyor-belt. Class
module ConveyorBelt simply stores packaging boxes using a fifo-packaging struc-
ture. In addition to method take, Class module PackagingUnit defines two transitions
filling and store. Transition filling takes chocolates from a static object called
the-praline-container, defined in Class module PralineContainer; and sequentially
(using operator “..”) inserts this chocolate into one of the available boxes, currently stored
into place work-bench. Transition store removes a box from place work-bench once it
has been completely filled with chocolates.

Appendix A gives the CO-OPN/2 specification of Class modules PralineContainer and
ConveyorBelt.
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Class PackagingUnit

filling with
the-praline-container.get(choc) ..

box.fill(choc)

\ work-bench:
packaging

store with

I
I

|

|

|

I : T box.full-praline(choc)

|

|

|

|

I

.

box 604*
\H:I
J

I
I
b I take with |
| the—#onveyor—}belt.get(box) .
! | | I

I
‘ I
| 2
| I
v | box.full-praline
| !

I

I

I

I

I

I

! I
box.fill(choc) ! v

| —

! the-conveyor-belt.get(box)
I

¥
L

the-praline-container.get(choc)
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Cl ass Packagi ngUnit;
Interface
Type packagi ng-unit;
Met hod Take;

Body
Use Chocol ate, ConveyorBelt,
Packagi ng, PralineContainer;

Transi tions

filling, store;
Pl ace

wor k- bench _ : packagi ng;
AXi ons

Take Wth the-conveyor-belt.get box ::
-> wor k- bench box;

filling Wth
t he-pral i ne-contai ner. get choc .
box.fill choc ::

wor k- bench box -> work-bench box;
store Wth box.full-praline choc :
wor k- bench box -> ;
Wher e
box: packagi ng;
choc: chocol at €;
End Packagi ngUnit;

Figure 4.4: CO-OPN/2 PackagingUnit Class Module
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4.1.6 CO-OPN/2 Specification

Finally, a CO-OPN/2 specification is a collection of ADT and Class modules.

Definition 4.1.21 CO-OPN/2 specification.
Let X be a set of ADT signatures, § be a set of class interfaces such thal Y5 o s complete
and coherent, and such that Qg satisfies the contra-variance condition. A CO-OPN/2
specification consists of a set of ADT and class modules:

Specs, g = {(Mde)Z | 1§i§n} U {(Mdgg)] | 1§j§m}.
We denote a CO-OPN/2 specification Specs, g by Spec and the global sub-sort/sub-type
relation <s o by < when X and § are, respectively, included in the global signature and
in the global interface of the specification. In this case, the specification is considered
complete.

Two dependency graphs can be constructed from a CO-OPN/2 specification Spec. The
first one consists of the dependencies within the algebraic part of the specification, i.e.,
between the various ADT modules. The second dependency graph corresponds to the
client-ship relationship between the class modules. Both these graphs are composed of the
specification Spec and a binary relation over Spec noted Dépec for the algebraic dependency
graph, and Dgpec for the client-ship dependency graph. The relation Dépec is constructed
as follows: for any module Md, Md' of Spec (Md # Md'), (Md, Md') is in D’lgpec if and
only if the ADT module Md or the ADT signature induced by the class module Md uses
some elements defined in the ADT signature of Md" or in the ADT signature induced
by the class module Md'. As for the relation Dgpec, it is constructed as follows: for

any class module Md, Md' (Md # Md'), (Md, Md') is in D$ . if and only if there is a

Spec
synchronisation expression of a behavioural formula of Md which involves a method of

Md'.

Thus, a well-formed CO-OPN/2 specification is a specification with two constraints con-
cerning the dependencies between the modules which compose the specification. These
hierarchical constraints are necessary for the theory of algebraic specifications and in the
class module dimension of our formalism, as will be shown in the next section.

Definition 4.1.22 Well-formed CO-OPN/2 specification.
A complete CO-OPN/2 specification Spec is well-formed iff:

A

Spec) Pas no cycle;

i) the algebraic dependency graph (Spec, D

C

Spec) has no cycle.

it) the client-ship dependency graph (Spec, D

In the rest of the current chapter, and in the following chapters, we use the notations
below:
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Notation 4.1.23 Let Spec be a well-formed CO-OPN/2 specification, and Yx o be the
global signature of Spec, and Qg be the global interface of Spec, obtained by Defini-
tion 4.1.8. We denote:

st=J st s¢=J {g} S=8%us8°

1<zi<n 1<5<m

A=) F FO= | Fa F=FAUF°
1<i<n 1<5<m ’

M= |J M o= J o,
1<j<m 1<5<m

Example 4.1.24 The following CO-OPN/2 specfication is a complete CO-OPN/2 spec-
ification with Class module PackagingUnit as the root of the two dependencies graphs:

Spec = {(MdéLQ)Chocolatey (MdéLQ)Capacity; (Mdg\LQ)Booleanm

(Mngz )Naturals; (Mdg;@ )Packaging7 (Md;Jz)ConveyorBelt;

(Md;79 )PralineContainer; (Md; Q )PackagingUnit:ll> .

ADT module Capacity is used by ADT module Packaging and PralineContainer. It
uses ADT module Naturals, which uses ADT module Booleans.

4.2 Semantics

This section presents the semantic aspects of the CO-OPN/2 formalism which are based
on two notions, the order-sorted algebras, and the transition systems.

First of all, we concentrate on order-sorted algebras as models of a CO-OPN/2 specifi-
cation, and we introduce an essential element of the CO-OPN/2 formalism, namely the
order-sorted algebra of object identifiers, which is organised in a very specific way. Second,
the management of object identifiers is presented, as well as the definition of state space.
Afterwards we present how the notion of transition system is used in order to describe a
system composed of objects dynamically created. Then, we provide all the inference rules
which allow us to construct the transition system of a CO-OPN/2 specification. Such a
transition system is considered as the semantics of the specification.

4.2.1 Algebraic Models of a CO-OPN/2 Specification

Here, we focus on the semantics of the algebraic dimension of a CO-OPN/2 specification.

Definition 4.1.6 presents the ADT signature induced by each Class module interface of the
specification. Remember that such an ADT signature is composed of a type, of a sub-type
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relation, and of some operations required for the management of the object identifiers.
We now provide the definition of the ADT module induced by each Class module of the
specification. Such an ADT module is composed of the induced ADT signature and of
the formulae which determine the intended semantics of the operations.

The ADT signature mentioned above includes, for syntactic consistency, a constant for
each static object defined in the class interface. At the semantics level, static objects are
created at the very beginning of the transition system, and the role of those constants is
just to abbreviate the object identifiers of the class instances statically created. Clearly,
these abbreviations are not essential. Thus, without loss of generality and for the sake of
simplicity, those constants are omitted in the following definition.

Definition 4.2.1 ADT module induced by a class module.

Let Spec be a well-formed CO-OPN/2 specification and < be its global sub-sort/sub-type
relation. Let Md® = (Q¢, P,1,V, W) in which Q¢ = ({c}, <%, M,0) be a class module
of Spec. The ADT module induced by Md® is noted Mdhe = (X8¢, Ve, Pgc) in which
She = ({c}, <€, Foc), and where:

o Foe = {init.:— ¢, new.:c—c} U

{sub, o :c = ¢, super, . :c =" | <e,e <)
o Voc={oc:¢, 00 : ¢ | < e}y

o ®oc = {sub.. init, = inity, sub.. (new. o.) = newy (sub.. o.),
super, . inity = init., super, . (newy o.) = new. (super, . ou),
D init, | ¢ < ¢}

The variables of Voc are chosen in a way such that they do not interfere with other
identifiers of the module signature. D init. denotes the definedness of the term init..

The formulae @ge formally define sub, ./, and super,, . functions wrt init., and new. func-
tions: sub.. or super, . return an object identifier of sub-type or super-type ¢’ of ¢
respectively, which corresponds to the object identifier given as parameter. By corre-
spond we mean that if o. is the n'* object identifier of type ¢ then sub..(o.) is the n'"

object identifier of type ¢'.

The presentation of a CO-OPN/2 specification consists in collapsing all the ADT modules
of the specification and all the ADT modules which are induced by the class modules.

Definition 4.2.2 Presentation of a CO-OPN/2 specification.

Let us consider a well-formed CO-OPN/2 specification Spec ={Md?|1<i<n} U

{Md5 | 1<j<m} such that Md} = (S, X;, ®;) and MdS = (QS, P, I;,V;, V). Let &
be its global signature and Mdég; = (¥A VQJC,CI)Q§;> (1 < j < m) be the ADT modules

Cs _
QJ
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induced by the class modules of Spec. The presentation of a CO-OPN/2 specification is
noted Pres(Spec) and defined as follows:

Pres(Spec) = <2, Uxuvlvul Vac, Jeu Y <I>Qjc>.

1<i<n 1<j<m 1<j<m  1<i<n 1<j<m

Renaming ts necessary to avoid name clashes between the various modules.

Proposition 4.2.1 Let Spec be a well-formed CO-OPN/2 specification. Pres(Spec) is an
order-sorted presentation with the structure:

Pres(Spec) = (%, X, ®), in which ¥ = (S*U S, <A U < F)

such that the following properties hold:
i) SANSY =g, 4) <ACSA XS4 d) <CCSYxSY ) <An<=0.

In order to define the semantics of the presentation Pres(Spec) we need to define: a X-
algebra; the least sort of a term; the interpretation of terms; the satisfaction of formulae;
and the validity of a presentation.

Definition 4.2.3 Partial order-sorted Y-algebra.
Let ¥ = (S, <, F) be an order-sorted signature. A partial order-sorted Y-algebra consists

of a S-sorted set A = (A;) g and a family of partial functions FA = ( i"'snvs)f:Synsn—)sEF
A

where f. .

is a function from Ag X --- X Ag, into A such that

i) s <s' eS8 implies A, C Al

i) f € Fysns N Fysr o with (51 5,,5) < (s---s,,5) implies

no

A A
fsl~-~sn,s = s'lms;“s' |A51 XX Agp
i.e. :}s"ﬁ(al,.. n) = SS( )fm’allaZEA i=1,...,n, or both
are undefined for all a; € Asz =1,.

The equality in condition ii) is usually called strong equality, which requires that both
sides are defined and equal, or both are undefined. We usually omit the family F4 and
write A for a partial order-sorted Y-algebra (A, F'4). Moreover, we denote the set of all
order-sorted Y-algebras by Alg(Y).

Proposition 4.2.2 Let ¥ = (5, <, F) be a reqular signature. For every term t € Ty x,
there exists a least sort s € S, noted LS(t), such that t € (Tx x),.
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Definition 4.2.4 Assignment, interpretation.

Let ¥ = (S, <, F) be a regular signature, X be a S-sorted set of variables and A in Alg(X).
An assignment from X into A is a S-sorted function® o : X — A. An interpretation of
terms of Ts x in A is a S-sorted partial function” u° : Ts, x — A defined as follows

i) ifv € X, and s < s then p?(x) o os(z),

i) if f: = s€F and s < s then pf(f) def 4

i) if fis1,...,8, > s € F and s < ' then

Fh s, (t0), - i, (1)) if all g, (t:) are defined,

undefined otherwise.

M(sj'(f(tla s 7tn)) dzef{

Definition 4.2.5 Formula satisfaction and validity.
Let ¥ be a regular signature and A be in Alg(Y).

Ao B Dt <= plgu(t) is defined,

AockEt=t < ,u%s(t)(t) and /,LCL’S(t,)(t’) are both undefined, or
both are defined and (g, (1) = g5 (t),

A,J|:< /\ qbZ) = ¢ < Ao ¢ foralli (1 <i<n) implies A,o0 = ¢

1<i<n

We say that a X-formula ¢ is valid in a X-algebra A iff Ao = ¢ for any assignment o.
We note this A = ¢.

Definition 4.2.6 Validity of a Presentation.

Let Pres = (3, X, ®) be a presentation in which ¥ = (S, <, F'). We say that Pres is valid
in a X-algebra A when every Y-formula is valid in A. Alg(Pres) denotes the sub-class of
all Y-algebras in which Pres is valid.

The class of model Alg(Pres) represents all the models that validate presentation Pres.
Amongst all these models, there is a unique (up to isomorphism) model which is initial
in Alg(Pres). The “initial approach” consists in considering the initial model® as the
semantics of the presentation.

Definition 4.2.7 Semantics of a Presentation.

Let Spec be a well-formed CO-OPN/2 specification, and let Pres(Spec) be the presenta-
tion of Spec. The semantics of Pres(Spec), noted Sem(Pres(Spec)), is the initial model
ofAlg( Pres).

5a S-sorted function ¢ : X — A is a family of functions indexed by S written ¢ = (05 : Xs = As)s €S.
“a S-sorted partial function is a family of partial functions indexed by S.
8the initial model is given by the algebra of ground terms.
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The semantics of such a presentation is composed of two distinct parts. The first one
consists of all the carrier sets? defined by the ADT modules of the specification, i.e.,
the model of the algebraic dimension of the specification without considering the ADT
modules induced by the class modules. The second part is called the object identifier
algebra. This “sub-algebra” is constructed in a very specific way and plays an important
role in our approach because it provides all the potential object identifiers as well as the
operations required for their management.

Let Sem(Pres(Spec)) = A, the carriers set defined by the ADT modules of the specification
are usually noted A, Whlle the object identifier algebra defined by the ADT modules
induced by the class modules of the specification is A. Both A and A are disjoint as will
be established by the next proposition.

Proposition 4.2.3 Let Spec be a well-formed CO-OPN/2 specification and Pres(Spec)
its presentation with the structure as above. Let A = Sem(Pres(Spec)) then

A=AuA

such that:

i) A= (AS)SESA is an S4-sorted set (the model of the ADT modules of Spec);
i) A= (A\C)cesc is an SY-sorted set (object identifier algebra);

i) ANA = .

Intuitively, the idea behind the object identifier algebra of a specification is to define a
set of identifiers for each type of the specification and provides some operations which
return a new object identifier whenever a new object has to be created. Moreover, these
sets of object identifiers are arranged according to the sub-type relation over these types.
It means that two sets of identifiers are related by inclusion if their respective types are
related by sub-typing.

Indeed, each class module defines a type and a sub-type relation which are present in the
ADT module induced by each class module (see Definition 4.2.1). On the one hand, each
type (actually a sort) defines a carrier set which contains all the object identifiers of that
type and, on the other hand, the global sub-type relation imposes a specific structure over
the carrier sets (two carrier set are related by inclusion if they are related by sub-typing).
Moreover, four operations are defined in each AD'T modules induced by each class module.
These operations over the object identifiers are divided into two groups: the generators
(the operations which build new values) and the regular operations. For each type ¢ and
¢’ of the specification these operations are as follows:

1. the generator init, corresponds to the first object identifier of type ¢;

9Sem(Pres(Spec)) is a S-sorted set A = (Ay)

ses» As are called carrier sets.
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2. the generator new, returns a new object identifier of type ¢;

3. the operation sub. . maps the object identifiers of types c onto ones of type ¢/, when
d <g¢

4. the operation super. , maps the object identifiers of types ¢’ into the ones of type

¢, when ¢ < ¢;

C

5. as indicated by their names, super, . is the inverse operation of sub. . (cf the next
theorem).

Theorem 4.2.1 Let Spec be a well-formed CO-OPN/2 specification and < be its global
relation. For any types c,c’ such that ¢ < ¢ the following properties hold:

i) super, . (subeo o) = o., where o. : c;

. . /
ii) sub. e (supery . og) = 0w, where og : .

4.2.2 Management of Object Identifiers

Whenever a new class instance is created, a new object identifier must be assigned to
it. This means that the system must know, for each class type and at any time, the last
object identifier used, so as to be able to compute a new object identifier. Consequently,
throughout its evolution, the system retains a partial function, which returns the last
object identifier used for a given class type. Moreover, another information has to be
retained throughout the evolution of the system. This information consists of the objects
that have been created and that are still alive, i.e. the object identifiers assigned to some
class instances involved in the system at a given time. This second information is also
retained by means of a function - the role of which is to return, for every class type, a set
of object identifiers which corresponds to the alive (or active) object identifiers.

For the subsequent development, let us consider a specification Spec, A = Sem ( Pres(Spec)),
and the set of all types of the specification S°.

The partial function which returns, for each class, the last object identifier used is a

member of the set of partial functions!®:

Loidgyec 4 = {1 : SC L A | l(c) € /L or is not defined}

in which A, = A\C \ UC,<%C A\C/ represents the proper object identifiers of the class type
¢ (excluding the ones of_any sub-type of ¢). Such functions either return, for each class
type, the last object identifier that has been used for the creation of the objects, or is
undefined when no object has been created yet.

10The name Loid refers to functions that return the last object identifier used.
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For every class type ¢ in SY, the computation of a new last object identifier function
starting with an old one is performed by the family of functions
{newloid, : Loidspee 4 — Loidspe. 4 | c € SY} (new last object identifier) defined as:

(Ve,d € SO (VI € Loidspe,s) newloid.(l) =1’ such that

init§ if [(¢) is undefined and ¢ = ¢,
') = new‘g(l(c)) if [(c) is defined and ¢ = ¢,
l(c) otherwise.

The second function retained by the system throughout the evolution of the system returns

the set of the alive objects of a given class. It belongs to the set of partial functions!!:

A0idgpee s = {a: ¢ = C'| C C P(A), a(c) € P(A)}.

The creation of an object implies the storage of its identity and the computation of a new
alive object identifiers function based on the old one. This is achieved by the family of
functions {newaoid, : Aoidgye. 4 X A Aoidsye. 4 | c € S} (new alive object identifiers)
defined as:

(Ve, ' € S9) (Vo € AVC)(\V/CL € Aoidspec,a) newaoid.(a,o0) = a' such that

() = {a(c) U{o} ifcd =c,

alce) otherwise.

Both families of functions newloid . and newaotd. are used in the inference rules concerning
the creation of new instances, see Definition 4.2.16 below.

The set of functions {remaoid. : Aoidgpe. 4 X A Aoidgpee,a | ¢ € SC} is the dual version
of the newaoid. family in the sense that, instead of adding an object identifier, they remove
a given object identifier and compute the new alive object identifiers function as follows:

(Ve, ' € S9) (Vo € gc)(‘v’a € Aoidsyec,a) remaoid.(a,0) = a' such that

() = {a(c) \fo} ife=c,

alc) otherwise.

This family of functions is necessary when the destruction of class instances is considered,
see Definition 4.2.16 below.

Here are three operators and a predicate in relation with the last object identifier used
and the alive object identifiers functions. These operators and this predicate are used
in the inference rules of Definition 4.2.18; they have been developped in order to allow
simultaneous creation and destruction of objects. The first two operators are ternary
operators which handle an original last object identifiers function and two other functions.
The third binary operator and the predicate handle alive object identifiers functions.
These operators will be explained in more details later.

YThe name Aoid refers to functions that return the alive (or active) object identifiers. The notation
P(A) represents the power set of a set A.
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Definition 4.2.8 Operators.

A Lotdgpee, p X Lotdgpee 4 X Lotdgpe. 4 — Loid gec 4 such that
I'(c) of l'(c) # l{e) AN"(c) =
(Ve e SO) (I' a, 1")(c) = L 1"(e) if l'(c) = U(c) N1"(c) #

l(c) otherwise.

I(c),
I(c),

2. Lotd gpec,a % Lotdgyec, 4 X Loidgyec 4 such that
(Vee S9) (' 201")(e) = ((l(e) = '(c) = 1"(e) V (I'(c) # I"(c)))

U : Aotdgpec,a X Aotdgpec,a — Aotdgpec s such that
(Ve e SC) (aUa')(c) = alc)Ud(c)

P Aoidgpec p X Aotdgpe. 4 X Aotdgpec,a X Aotd gpec 4 such that
! !
Play,ay,ay,d)) <

(Ve e S9) (((as(e) N ((az(c) \ a3()) U (a5(c) \ az(c)))) = @)A
(@i (e) N ((az(e) \ a5(c)) U (a5(c) \ as(€)))) = D)A
((a2(c) N ((ar(e) \ a1(c)) U (ai(e) \ ar(€)))) = D)A
((a3(c) N ((ar(e) \ @i (e)) U (ai(e) \ as(€)))) = @)

4.2.3 State Space

In the algebraic nets community, the state of a system corresponds to the notion of
marking, that is to say a mapping which returns, for each place of the net, a multi-sets
of algebraic values. However, this current notion of marking is not suitable in the CO-
OPN/2 context. Remember that CO-OPN/2 is a structured formalism which allows the
description of a system by means of a collection of entities. Moreover, this collection
can dynamically increase or decrease in terms of number of entities. This implies that
the system has to retain two additional informations as explained above. In that case,
the state of a system consists of three elements. The first two ones manage the object
identifiers, i.e., a partial function to memorise the last oids used, and a second function
to memorise which oids are created and alive. The third element consists in a partial
function that associates a multi-set of algebraic values to an object identifier and a place.
Such a partial function is undefined when the object identifier is not yet assigned to a
created object. This is a more sophisticated notion of marking than the one presented in
the section related to the algebraic nets. This new notion of marking is necessary in the
CO-OPN/2 context because, here, a net does not describe a single instance but a class of
objects which can be dynamically created.

Definition 4.2.9 Marking, definition domain, state.
Let Spec be a specification and A = Sem(Pres(Spec)). Let S be the set of sorts and types
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of Spec, and let P be the S-sorted set of all places of Spec. A marking is a partial function
m: Ax P — [A]" such that ifo € A and p € P, with s € S then m(o,p) € [As]. We
denote the set of all markings over Spec and A by Markg,e. 4. The definition domain of
a marking m € Marksgye. 4 ts defined as

Domgpe. a(m) = {(0,p) | m(o,p) is defined,p € P,o € [Z[}

Notation 4.2.10 [Initial marking, State space.

A marking m is noted L when Domg,e. a(m) = @. The state of a system over Spec and
A is a triple (I,a,m) € Loidgyec 4 X Aoidgpec a4 X Markgpe. a. We denote the state space,
i.e. the set of all states, by Stategye. 4.

4.2.4 Transition System

The notion of transition system is an essential element of the semantics of a CO-OPN/2
specification. In the context of algebraic nets, a transition system is defined as a graph
in which the arcs are labelled by a multi-set of transition names, in order to allow the
simultaneous firing of transitions. Although CO-OPN/2 is also based on a step seman-
tics, the events of a system described by a CO-OPN/2 specification are not restricted to
transition names, but are much more sophisticated. The introduction of the distinction
between invisible and observable events, the synchronisations between the objects and
then the parameterised transitions (methods), as well as the three operators //7, *..7,
and ‘@', led us to adopt a different notion of transition system. With this new notion of
transition system the state space is defined as above, and each transition is labelled by

an element of E, ,, 7 ¢ (see Definition 4.1.17).

Definition 4.2.11 Transition system.

Let Spec be a specification and A = Sem(Pres(Spec)). Let S¢ and M be respectively the
set of types and the set of methods of Spec. A transition system over Spec and A is a set
of triples

TSSpec,A g Stategpec,A X EA,M,E,SC X StategpegA.

Notation 4.2.12 Set of all transition systems.
The set of all transitions systems over Spec and A is noted TSgpee 4. A triple (st,e, st’)

is called a transition, and is commonly written either st — st' or st == st'.

12the semantic multi-set extension of model A is noted [A]; it consists of adding to A, for all sorts [s]
such that s € S, the free monoid induced by A;, namely [A;], and the 3 multi-set operations.
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4.2.5 Inference Rules

In order to construct the semantics of a CO-OPN/2 specification which consists mainly
of a transition system, we provide here a set of inference rules expressed as Structural
Operational Semantics [53], a well-known formalism used for describing the computational
meaning of systems.

The idea behind the construction of the semantics of a specification composed of several
class modules, is to build the semantics of each individual class modules first, and compose
them subsequently by means of synchronisations. This semantics of an individual class
module is called a partial semantics in the sense that it is not yet composed with other
partial semantics (with synchronisations), and it still contains some invisible events.

The distinction between the observable events (in relation with the methods) and the
ones that are invisible (in relation with the internal transitions 7) implies a stabilisation
process. This process is necessary so that the observable events are performed only when
all invisible events have occurred. A system in which no more invisible event can occur
is said to be in a stable state.

Another operation called the closure operation is necessary to take into account the three
operators (sequence, simultaneity, alternative) as well as the synchronisation requests.
Such a closure operation determines all the sequential, concurrent, and non-deterministic
behaviours of a given semantics and composes the different parts of the semantics by
means of synchronisations.

The successive composition of both the stabilisation process and the closure operation on
all the class modules of the specification will finally provide a transition system in which:

e all the sequential, concurrent, and non-deterministic behaviours will have been in-
ferred;

e all the synchronisation requests will have been solved;

e all the invisible or spontaneous events will have been eliminated; in other words
every state of the transition system is stable.

Such a transition system will be considered as the semantics of a CO-OPN /2 specification.

As we will see, the inference rules introduced further for the construction of the semantics
of a specification, generate two kinds of transitions. The transitions which involve both
invisible and observable events are noted by a single arrow st — st’, while the ones
which involve only observable events are noted by a double arrow st = st’. A transition
system can then include two kinds of transitions which must be distinguished during the
construction of the semantics. Thus, in order to identify these two kinds of transitions, any
transition system is {—, = }-disjointly-sorted. This means that any transition system is
divided into two disjoint sub-transition systems: the sub-transition system which contains
only —transitions and the one which is composed of =-transitions.
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The inference rules are arranged into three categories and realize the following tasks:

o the rules CLASS and MONO build, for a given class, its partial transition system
according to its methods, places, and behavioural formulae; CREATE and DESTROY
take charge of the dynamic creation and destruction of class instances;

e SEQ, SiM, ALT-1, and ALT-2 generate all deductible sequential, concurrent, and
non-deterministic behaviours; SYNC composes the various partial semantics by
means of the synchronisation requests between the transition systems;

e STAB-1 and STAB-2, involved in the stabilisation process, “eliminates” all invisible
or spontaneous events which correspond to internal transitions of the classes.

Before introducing the set of inference rules designed for the construction of the transition
system associated to a given CO-OPN/2 specification, we first define some basic operators
for markings and for the management of object identifiers. These operators are intensively
used in those inference rules.

Informally, the sum of markings ‘4+’ adds the multi-set values of two markings and takes
into account the fact that markings are partial functions. The common markings predicate
‘<’ determines if two markings are equal on their common places. As for the fusion of
markings ‘m; <'my’, it returns a marking whose values are those of m; and those of m,
which do not appear in m;.

Definition 4.2.13 Sum of markings, common markings, fusion of markings.
Let Spec be a specification and A = Sem(Pres(Spec)). Let S and P be respectively the set
of sorts and types and the set of places of Spec.

— The sum of two markings ts + : Markgpe. a4 X Markgpe. 4 — Markgpe. 4

(Vs € S) (Vpe P,) (Vo€ A)
mi (0, p) +4 ma(o,p) if (0,p) € Dom(my) W Dom(m;)
my(o,p) i (0 p) € Dom(my) \ Dom(ms)
ma(o,p) if (0,p) € Dom(msy) \ Dom(m;)

undefined otherwise ;

(m1 + ma)(0,p) =

— The common markings predicate is v : Markgye., a4 X Markgyec 4

mysamy <= Y(o,p) € Ax P
(0,}7) € Dom(ml) N DOm(mQ) = m1(07p) = mQ(Ovp) )
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— The fusion of two markings is < : Markgyee 4 X Markgpe. 4 — Markgyec 4

my < my = mg such that ¥(o,p) € Ax P

ml(ovp) if (O,p) S Dom(ml)
ms(0,p) = < ma(o, p) if (0,p) € Dom(msy) \ Dom(m;)

undefined  otherwise.

Partial Semantics of a Class

We now develop the partial semantics of a given class module of a specification. First of
all, we give some auxiliary definitions used in the subsequent construction of the partial
semantics.

Definition 4.2.14 Fvaluation of terms in places.

Let Spec be a well-formed CO-OPN/2 specification, A = Sem(Pres(Spec))), and a class
module Md® = (QC P 1, X,V) of type c. Let S, S¢, M be respectively the set of sorts,
types and methods of Spec, and let X2 be the global signature of Spec.

The evaluation of terms of Tisy x indexed™ by P, for a given assignment of the variables
o: X — A, and a given class instance o, into the sel of markings Markgpe. 4 ts noted
[[(tp)pep]]g, and defined in the following way:

[(tp),epl? = m such that (Vp € P)(Vo' € //1\)
/ [t,]7 if o' = 0 and p € P,
m(o',p) =

undefined otherwise.

[.17: Tisy,x — [A] is the usual interpretation of terms of Ty x, given an assignment o of
the variables.

Such terms form, for example, a pre/post condition of a behavioural formula or an initial
marking. This kind of evaluation is used in the inference rules, as shown in the next
definition.

Another kind of evaluation required by the inference rules is the evaluation of an event
which consists in the evaluation of all the arguments of the methods, but also the evalu-
ation of the objects identifiers terms.

Definition 4.2.15 Fvent evaluation.
Let Spec be a well-formed CO-OPN/2 specification, Y. be the global signature of Spec, X

13

remember that a term indexed by a place p € P is of type [s].
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be the set of variables of Spec, A = Sem(Pres(Spec))), o : X — A be an assignment of
the variables, u° : Ts x — A be the interpretation of terms, and s,c € S©.

The event evaluation [ |7 : E(re x)M,(15 x), {c} = EA,M,E,{C} with s € S¢ naturally follows
from Definition 4.1.17 and is inductively defined as:

[t.7]° = u(t)”.7
[t.mas, ... an)]7 = p()".m(p(ar), ... p(an)?)
[t.create]” = u(t)?.create
[t.destroy]” = p(t).destroy

[Fvent’ with Event"]” = [Event']” with [ Event”]”
[Event’ op Event"]” = [Event']” op [[Event"]”

for all Event, Fvent', Event” € E (75 x),M,(Ts x), {c} With s € 5S¢, forallt € (Ts x), and for
all methods m € M, g,

oped/, 0}

with s € S© and s; € S, and for all synchronisation operators

..... Sn

Note that the evaluation of any term ¢ of (7%, x), with s € S¢ belongs to A and thus rep-
resents an object identifier. The evaluation of such terms is essential when data structures
of object identifiers are considered.

Finally, the satisfaction of a condition of a behavioural formula is defined as:

Ao = Cond < (Cond =2)V (V(t=1t') € Cond, Ao = (t=1")).

Definition 4.2.16 Partial semantics of a class module.

Let Spec be a specification and A = Sem(Pres(Spec)). Let Md© = (Q°, P,1,X, W) be a
class module of Spec, where Q¢ = ({c}, <% M,0). The partial semantics of Md is
the transition system noted PSemSPec’A(MdC) which is the least fized point resulting from
the application of the inference rules: CLASS, MONO, CREATE, and DESTROY given in
Table 4.1.

The inference rules introduced in Table 4.1 can be informally formulated as follows:

e The CLASS rule generates the basic observable — as well as invisible — transitions
that follow from the behavioural formulae of a class. For all the object identifiers
of the class, for all last object identifier function [, and for all alive object identifier
function a, a firable (or enabled) transition is produced provided:

1. there is a behavioural formula Fvent :: Cond = Pre — Post in the class;

2. there exists an assignment o : X — A;
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Fvent :: Cond = Pre — Post € ¥, Jo: X — A,
Ao |= Cond, o € a(c)

CLASS 5
(1, a, [Pre]7) -L22md”,

(l,a,[Post]’)

do: X — A,

I' = newloid (1), a' = newaoid.(a,o0), o =1(c), o & a(c)

CREATE o.create
(la, L) — (', a', [1]7)

0 € a(c), a' = remaoid.(a,o)

(l,a, L) (l,a', L)

DESTROY

o.destroy

(Lya,m) —(I' a',m')

MonNo P
Lam+m" —{U.da,m +m"
< M) M) ) M)

for all [,{" in Lotdgye 4, for all a,a’ in Aoid gy a, for all m,m',m" in Mark g, 4, for

all o in /Nlc, and for all e in EA,M,E,{C}'

Table 4.1: Inference Rules for the Partial Semantics Construction.
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3. all the equations of the global condition are satisfied (A, o0 = Cond);

4. the object o has already been created and is still alive, i.e. it belongs to the
set of alive objects of the class (0 € a(c)).

The transition generated by the rule guarantees that there are enough values in the
respective places of the object. The firing of the transition consumes and produces
the values as established in the pre-set and post-set of the behavioural formula.

e The CREATE rule generates the transitions aimed at the dynamic creation of new
objects provided:

1. for any last object identifier function / and any alive object identifier function
a;

2. a new last object identifier function is computed (I’ = newloid.(1));
3. a new object identifier o is determined for the class (o = '(¢));

4. this new object identifier must not correspond to any active object (o & a(c)).

The new state of the transition generated by the rule is composed of the new last
object identifier function !’ and of an updated function @’ in which the new object
identifier has been added to the set of created objects of the class.

e The DESTROY rule, aimed at the destruction of objects, is similar to the CREATE
rule. The DESTROY rule merely takes an object identifier out of the set of created
objects, provided the object is alive.

e The MONO rule (for monotonicity) generates all the firable transitions from the
transitions already generated.

Proposition 4.2.4 Well-definedness of the partial semantics.
Let Spec be specification and A = Sem(Pres(Spec)). The partial semantics of a class
module PSemgp%’A(Mdc) is well-defined.

The construction of the whole semantics of a CO-OPN /2 specification composed of several
class modules consists in considering each partial semantics and combine them by means
of the successive composition of a stabilisation process and a closure operation. This
cannot be done in random order because observable events (methods) can be performed
only when invisible events have occurred.

In order to build the whole semantics of a specification Spec, we introduce a total order
over the class modules of Spec which depends on the partial order induced by the client-

ship relation Dgpec. This total order is used to construct the semantics; it is noted C and
defined such that D¢ C L.

Spec

Given MdS the least module of the total order and the fact that Md+ C Mdf-:_H (0 <i<n),

we introduce the partial semantics of all the modules MdZ-C (0 <7 < n) of a specification
from the bottom to the top.
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Stabilisation Process

The purpose of the stabilisation process is to provide a transition system in which all the
invisible events (internal transitions) have been taken into account. More precisely, the
stabilisation process consists in merging all the observable events and the invisible ones
into one step.

Thus, the stabilisation process proceeds in two stages. The first stage is the application
of two inference rules on a given transition system to produce the merged transitions.
This step is called the pre-stabilisation. The second step produces the intended transition
system which contains only the relevant transitions, i.e. all the transitions except the
transitions which do not lead to a stable state.

We observe that the STAB-1 and STAB-2 involve a new kind of transitions noted with a
double arrow (=-transitions). This kind of transitions is introduced in order to distinguish
between a transition system composed of stable states and another in which some invisible
events have to be taken into account.

Definition 4.2.17 Stabilisation process.
Let Spec be a specification and A = Sem(Pres(Spec)). The stabilisation process consists
of the function Stab : TSgyee 4 — TSgpec 4 defined as follows:

Stab(TS) ={m —m' € TS} U
{m = m' € PreStab(TS) | Fm’ —m" € PreStab(TS)}

in which PreStab : TSspec.a — TSspec,a s a function such that PreStab(TS) is the least
fized point which results from the application on TS of the inference rules'* STAB-1 and
STAB-2 gwen in Table 4.2.

The inference rules introduced in Table 4.2 can be informally formulated as follows:

e Rule STAB-1 generates all the observable events which can be merged with invisible
events if they lead to an unstable state; note that neither the pure internal transi-
tions nor the internal transitions asking to be synchronised with some partners are
considered by this rule;

e Rule STAB-2 merges an event leading to a non-stable state and the invisible event
which can occur “in sequence”. This rule is very similar the SEQ introduced later
when the closure operation is presented. Thus, the same comments regarding its
functioning and the meaning of the operators involved in the rule hold.

It is worthwhile to note that:

14The result of the application of the inference rules on T'S obviously includes TS itself.
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e # 0.1, e # o.r with ¢, (I,a,m) — (I' a',m’)

(la,m) = (I';a’,m’)

STAB-1

STAB-2 mll P M2, <l’a’m1> = <l/,a/7m/1>, <l/7a/7m2> — <l”76l”7m/2>

(l,a,m; <my) — (I" a",mly Imi)

for all m, m', mqy, m{, ma, mb in Markg,e. a, for all ;1" in Loidgy. 4, for all a,a’,a”

: . ) , .
in Aotdgpec, 4, for all o in A, and for all e, €’ in EA,M,E,SC'

Table 4.2: Inference Rules of the Stabilisation Process.

1. Generally, the states, in particular the marking domains, are not identical, and both
the operators ‘>’ and ‘<’ play an important role as commented and illustrated below
when the SEQ inference rule involved in the closure operation is presented.

2. When infinite sequences of transitions are encountered, the stabilisation process
does not retain any collapsed transition. From an operational point of view, such
infinite sequence of internal transitions can be considered as a program that loops.
However, in a distributed software setting, when an object (or a group of objects)
loops, it does not mean that the whole system loops; it simply means that such an
object is not able to give any more services and, therefore, it can be ignored.

3. The stabilisation process has to retain the —-transitions for the inductive construc-
tion of the whole semantics presented further.

Closure Operation

The closure operation consists of adding to a given transition system all the sequential,
simultaneous, alternative behaviours, and to perform the synchronisation requests. A set
of inference rules are provided for these aims.

Definition 4.2.18 Closure operation.

Let Spec be a specification and A = Sem(Pres(Spec)). The closure operation Closure :
TSspec.s — TSspee,a is such that Closure(TS) is the least fized point which results from
the application on TS of the inference rules SEQ, SIM, ALT-1, ALT-2, and SYNC given
in Table 4.3.

The inference rules of Table 4.3 can be informally formulated as follows:
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m samg, (L ay,my) == (I',a\,m!), (I',a}, my) —> (1", aly, mb)

SEQ €1 ..€2
(l,a,my; <my) ——— (", al, my < m))
Iy él ll/a A(alv allv a27a/2)7
SIM <l’ art, m1> U <l/7 allv m/1>7 <lv az, m2> — <l”7 a/27 m’2>
(I,a1 U ay,my + my) _elle, (I" A 17 ah U aly, mi + mb)
ALT-1 <laa7m>f&;e’ <l’,a’,m/> ALT-2 <l>avm>e§; <l/7alam/>
(l,a,m) U, (I'.a’',m') (l,a,m) =, (I' a’,m')
r él ll/v A(ala a/17a27 a/2)7
es with e e

SYNC <l,a1,m1> - : <l’,a’1,m’1>, <l7a27m2> == <l”7a/27m/2>

(l,a1 Uag,my + my) =2, (I" 6176y U aly,my + mb)

for all my,mf{,mg,m} in Markge a, for all [,I',l" in Loidgp. 4, and for all

a,ayar, ay, az,al in Aoidgpec,a, for all €1, ez in B, 3/ 72 oo which are not equal to o.7
) ; )

or to o.7 with €’ and for all e3 in EA,M,A,SC'

Table 4.3: Inference Rules of the Closure Operation.

e Rule SEQ infers the sequence of two transitions provided the markings shared be-
tween m/ and my are equal. Note that the creation of object requires that the usual
[ and a functions are different for each transition. The double arrow under the e;
event forces that e; leads to a stable state. This guarantees that all the invisible
events are taken into account before inferring the sequential behaviours.

e Rule SiM infers the simultaneity of two transitions, provided some constraints on
functions [ and a are satisfied. The purposes of these constraints are:

1. to prevent an event from using an object being created by the other event (i.e.
which does not already exist);

2. to prevent an event from using an object being destroyed by the other event
(i.e. which does not exit any more).

The operators of Definition 4.2.8 are used to:

1. a £ a” eliminates (for e;) the objects which are created by ey; their use in the
upper left derivation tree is therefore not allowed;
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2. a = d eliminates (for e;) the objects which are created by e;; their use in the
upper right derivation tree is therefore not allowed;

3. a' U a"” makes simply the union of the a’ and a” for each type;

4. predicate A(ay,dl, az,al) guarantees that the objects created or destroyed by
the events e¢; do not appear in the upper tree related to the event e; and vice-
versa; more precisely, for each type ¢ the active objects of a1(c¢) (and a@(c))
and the “difference” between ay(c) and a)(c) have to be disjoint, as well as
the active objects of az(c¢) (and af(c)) and the “difference” between a1(c¢) and

a’(c).

e Rules ALT-1 and ALT-2 provide all the alternative behaviours. Two rules are nec-
essary for the commutativity of the alternative operator &.

e Rule SYNC “solves” the synchronisation requests. It generates the event which
behaves in the same way as the event ‘e; with ey’ asking to be synchronised with the
event e;. The double arrow under the event e; guarantees that the synchronisations
are performed with events leading to stable states. Note that e; can be an invisible
event because internal transitions may ask for a synchronisation; and that event ¢,
can occur only if event e; can occur simultaneously.

The similarities between the SIM and SYNC are not surprising because of the syn-

chronous nature of CO-OPN/2.

The following results ensure that several intuitive but important intended events can never
occur in a system which is built by means of such formal system.

Proposition 4.2.5 The following events can never occur:

1. the use of an object followed by the creation of this object;
the destruction of an object followed by the use of this object;

the creation (or destruction) of an object and the simultaneous use of this object;

o

the creation (or destruction) of an object and the simultaneous creation (or destruc-
tion) of another object of the same type;

5. the synchronisation of the use of an object with the creation (or destruction) of this
object;

Corollary 4.2.2 The following events can never occur:

1. the multiple creation of the same object;

2. the multiple destruction of the same object;



112 CHAPTER 4. CO-OPN/2

3. the destruction followed by the creation of the same object;

Before defining how the stabilisation process and the closure operation are combined in
order to obtain the whole semantics of a CO-OPN/2 specification, we provide here a
proposition which states that both these operations are well-defined.

Proposition 4.2.6 Stab and Closure are well-defined.
Let Spec be specification and A = Sem(Pres(Spec)). Stab and Closure are well-defined
functions for any transition system TS € TSgpec 4.

4.2.6 Semantics of a CO-OPN/2 Specification

The whole semantics, expressed by the following definition, is calculated starting from
the partial semantics of the least object (for a given total order), and repeatedly adding
the partial semantics of a new object. For each new object added to the system, we
observe that the stabilisation process is obviously performed before the closure operation.
Moreover, let us note that the limit tending towards infinity is required to cover the special
case of recursive synchronisations.

Definition 4.2.19 Semantics of a specification for a given total order.

Let Spec be a specification composed of a set of class modules {Mdjc |0<j<m} and
A = Sem(Pres(Spec)). Let C be a total order over the class modules such that Dgpec crC.
The semantics of Spec for T is noted Sem5(Spec) and inductively defined as:

Sem%(@) =0

SemG({MdS§}) = lim (Closure o Stab)™(PSem(MdS))
n— 00
Sem5(Uogj<i{ Md5}) =
lim ( Closure o Stab)”(Sem%(Uongk_l{Mdjc}) U PSem 4(MdS))

n—00

for1l <k <m.

The above definition of the semantics is not independent of the total order. Thus, we
define the semantics of a CO-OPN/2 specification when it does not depend of such a
total order.

Definition 4.2.20 Semantics of a specification.
Let Spec be a specification and A = Sem(Pres(Spec)). The semantics of Spec noted
Sem a(Spec) is defined as the Sem 4(Spec) = Sem'5(Spec) such that it is independent of
the total order T over the class modules of Spec.
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Finally, we define the step semantics of a CO-OPN/2 specification from the above seman-
tics in which we only retain the =--transitions whose events are atomic or simultaneous.
Moreover, we only consider the transitions from states which are reachable from the initial
state.

Definition 4.2.21 Step Semantics of a specification.

Let Spec be a specification and A = Sem(Pres(Spec)). The step semantics of Spec,
noted SSem 4(Spec), is defined as the greatest set in TSgpec,a such that SSem 4(Spec) C
Sem 4(Spec) and for any transition st == st' in SSem 4(Spec) the following properties
holds'®:

i)e=e [/ e[| -+ /] en, where e; = 0;.mi(ar;, ... ak;) (1 <i<n);

i) (L, @, L) IF* st ;
where e,e; € E, 1 560 (1 <1< n).

For a given CO-OPN/2 specification Spec, the transition system defined by the step
semantics is the semantics of Spec.

Example 4.2.22 Let Spec be the CO-OPN/2 specification of Ezample /.1.2/, a total
order for the Class modules of Spec is the following:

PackagingUnit C PralineContainer C ConveyorBelt C Packaging .

The semantics of Spec ts defined since any other order with PackagingUnit at the root
produces the same transition system. Indeed, Class module PackagingUnit is the unique
Class module of Spec which requires synchronisations with other Class modules.

Transitions of the step semantics of Spec contain events made with the various method
names appearing in the Class modules of Spec. It is worth mentioning that, due to the
stabilisation process, transitions filling and store of Class module PackagingUnit must
be fired as many times as necessary in order to reach a stable state. Therefore, once
method take has been fired (once, twice, or more times), the stored box(es) are filled with
chocolates (stabilisation of transition filling) and stored (stabilisation of transition store)
before method take is newly firable.

15The symbol IF* corresponds to the reflexive transitive closure of the reachability relation defined for
the =--transitions. The initial state is noted (L, @, 1).
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Chapter 5

CO-OPN/2 Refinement

Chapter 3 defines a general theory of refinement of model-oriented formal specifications
that is based on the preservation of essential properties collected in a contract. The scope
of the current chapter is to apply this theory to the CO-OPN/2 formal specifications
language presented in Chapter 4.

The refinement theory can be applied to a model-oriented formal specifications language,
in so far as a logic is provided for expressing formulae on specifications, as well as a
satisfaction relation on models of specifications and formulae. The logic used to express
formulae on CO-OPN/2 specifications is the Hennessy-Milner temporal logic (HML). This
logic is particularly well-suited for CO-OPN/2 since, first, it enables to distinguish models
of CO-OPN/2 specifications as finely as the bisimulation equivalence; and second, it
facilitates the practical verification of refinement steps.

This chapter first defines HML formulae on CO-OPN/2 specifications, as well as the satis-
faction relation on CO-OPN/2 models and HML formulae. Second, it defines contractual
CO-OPN/2 specifications, a refine relation, a formula refinement, and a refinement re-
lation on contractual CO-OPN/2 specifications. Finally, it presents some compositional
results on contractual CO-OPN/2 specifications and their refinement.

5.1 Hennessy-Milner Logic

In the framework of the CO-OPN/2 language, the Hennessy-Milner logic [41] (HML) is
currently used in the formal testing activity. Since this thesis aims at defining a refinement
and an implementation of CO-OPN/2 specifications based on contracts, it is natural to
use HML for expressing formulae of contracts. Thus, the implementation phase and the
test phase are linked by the use of HML formulae. In addition, the same languages, i.e.,
CO-OPN/2 and HML, are used during the development phase, the implementation phase
and the test phase. A supplementary argument in favour of HML is provided by its power
of discriminating CO-OPN/2 specifications as finely as the bisimulation equivalence - as
shown by Hennessy and Milner in [41].
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A HML formula is a sequence of observable events. An observable event is either the
firing of a method of a CO-OPN/2 object, or the parallel firing of several methods of CO-
OPN/2 objects. We call these events observable, because their evaluation corresponds to
an event of the step semantics of the specification. Indeed, the step semantics provides
all the events that a user of the specification may observe; events that are not in the step
semantics cannot be observed.

A HML formula is satisfied by the step semantics of a CO-OPN/2 specification, if every
event constituting the formula can be evaluated as an event of the step semantics, and if
the sequence of the evaluated events corresponds to the beginning of an execution path
(a sequence of events) of the step semantics.

Throughout this chapter, we use the following notation:

Notation 5.1.1 Let Spec = {(Md%g). | 1 <i<n}U {(Mdgg)j | 1< j<m} bea

7

well-formed CO-OPN/2 specification, and
s=(Usto U ter s Uru U he)
1<i<n 1<5<m 1<i<n 1<5<m !
be the global signature of Spec, and
o= U e (U = U . U o).
1<5<m 1<5<m 1<5<m 1<5<m

be the global interface of Spec.
We denote:

sh=J st s¢= 1 {gt S=8%us°

1<i<n 1<5<m

A= |J F FO= | Fa F=FAUF°¢
1<i<n 1<5<m ’

M= |J M, o= []J o,
1<j<m 1<j<m

This section defines a running example, the syntax of HML formulae, and their semantics.

5.1.1 Running Example

Examples of this section use the CO-OPN/2 Class module of Figure 5.1.
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G ass Heap;
Interface
Class Heap Use Packagi ng;
Type heap;
bj ect the-heap;
Met hods put _, get _ : packaging;
Body
Pl ace storage _ : packagi ng;
storage:packaging AX| ons
put box :: -> storage box;
get box :: storage box -> ;
\Wher e
box : packagi ng;
End Heap;

put(box) get(box)

the-heap: heap

Figure 5.1: CO-OPN/2 Heap Class Module

The right of part of Figure 5.1 shows the textual representation of the CO-OPN/2 Class
module Heap. Its graphical representation is on the left part of the figure. This Class
module defines a type heap, and a static object the-heap. Every instance of this type
stores boxes of type packaging, and removes boxes when requested to do so. Boxes are
not necessarily removed in the order of their storage. Method put (box) stores box into
place storage, method get (box) removes box from that place. Class module Packaging
defines type packaging, i.e., chocolate boxes, and a method £i11 for filling the box with
pralines.

Example 5.1.2 below will be used as a running example throughout this section. It de-
fines the minimal well-formed CO-OPN/2 specification that enables to define CO-OPN/2
Class module Heap. According to the examples of Chapter 4, the minimal CO-OPN/2
specification that enables to define the Heap class is made of the following modules: ADT
modules Chocolate, Capacity, Booleans, Naturals; and Class modules Packaging, and
Heap. Given ADT and Class modules textual representations, their respective abstract
modules are easily retrieved following Definitions 4.1.15 and 4.1.20.

Example 5.1.2 Running Example.
We define the following CO-OPN/2 specification:

SPGCO = {(MdéLQ)Chocolatea (MdéLQ)Capacity; (Mdg7Q)Booleansy
(Mdg7Q)Naturalsa (Md%J))Packaginga (MdgLQ)Heap}-

Appendix A gives the complete textual CO-OPN/2 specifications of Specy as well as
its CO-OPN/2 abstract specification, global signature and global interface (see Defini-
tion 4.1.8).
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5.1.2 HML Formulae

HML formulae are made of sequences of observable events. Observable events are syntac-
tical terms corresponding to: the creation of a new object, the destruction of an object,
the firing of a method (with of without parameters) of a given object, the parallel firing
of one or more events.

Definition 5.1.3 Observable Events with Variables.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, T, x be the set of terms built over ¥ and X . The set of observable events
of Spec with variables in X, noted Eventg,e.x, ts the least sel recursively defined as

follows:

t.m € Eventgpe: x iffte (Tsx)., mceM
t.m(ty, ... tx) € Fventspe. x iffte(Tsx)e, me:S1,...,8, €M,
ti€ (Isx)s, (1 <1< k)
t.create € Eventgpe.x iffte(Isx)., c€ Sc
t.destroy € Eventgpe. x iffte (Ivx)., c€ Sc
er /| ... /] en € Eventspec x iff e; € Eventgpec x-

Remark 5.1.4 The set Eventgye. x of observable events of Spec with variables in X s
actually a subset of U.escB(ry 1) a (15 x5 (S€€ Definition §.1.17).

Due to the CO-OPN/2 semantics, static objects are implicitly created at the beginning
of the transition system of Spec, using new, and init.. Thus, if a class ¢ defines a unique
static object, o, then the term o. and the term init, refers to the same object, i.e., the
interpretation function - which maps terms to values in the semantics - affects the same
value to o, and to new.. More generally, if a class ¢ defines n static objects, the n terms:
init., new.(init.), ..., new.(new.(...(init.))) (n — 1 times new.) refers to the n static
objects. In order to simplify the notation of static object identifiers in observable events
and because they are non-deterministically created, the use of o. names is allowed in
observable events.

The creation of dynamic objects occurs either in an observable way, if the dynamic object
is created by the user of the specification (context); or in an unobservable way, if the
dynamic object is created as part of a synchronous request. Thus, it is impossible for the
specifier to know exactly how many objects have been created, and thus which term to
use to refer to an existing object, or to create a new object. For this reason, we allow
the use of variables for the object identifiers and parameter terms, these variables are not
variables defined in the specification, they are extra variables used exclusively to build
observable events. Therefore, the set of variables X is meant to be different from the set
of variables of the specification.
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Some observable events of the CO-OPN /2 specification Specq are given by the following
example:

Example 5.1.5 Observable Fvents of Specy.
Let Specy be the CO-OPN/2 specification of Example 5.1.2, and

XO = ({pGCkl ’ paCkQ})packaging

be a set of variables. The following events are observable events of Specy with variables
in Xy, t.e., events of Eventgpee, x, -

o the-heap .create, the-heap . put(pack; ), the-heap . get(pack;)

the-heap . get(new(packy )), new(the-heap). put(pack;)

the-heap . put(packy) // pack,. fill(P)

e pack;.create, packy.create, pack, . fill(P).

A HML formula can be the true formula, T; a sequence of observable events, embedded in
the <.> (next) operator, ending with T; the conjunction A of two HML formulae, or the
negation = of a HML formula. The T formula is an empty formula used as a terminator
for every HML formula.

Definition 5.1.6 HML Formulae.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, Eventg,e. x be the set of observable events of Spec with variables in X .
The set of HML formulae that can be expressed on Spec and X, noted PROP g, x, is the
least set such that:

T € PROPge. x
¢ € PROPspec x  if ¢ € PROPspec x
¢ AN € PROPspec x  if ¢,10 € PROPspec x
<e> ¢ € PROPgpecx  if @ € PROPgpec x, € € Eventspe x.

Remark 5.1.7 The choice of HML as the logic for expressing formulae on CO-OPN/2
specifications enables to express formulae on services that the CO-OPN/2 specification is
able to furnish, however it is not possible to express properties about the internal behaviour

or the state of a CO-OPN/2 specification.

Remark 5.1.8 Variables appearing in the formulae are not quantified; they are implicitly
existentially quantified, as we will see later in the semantics of HML formulae.
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Notation 5.1.9 We denote by SPEC the set of all CO-OPN/2 specifications, and X the

class of all sets of variables.

We denote by PROP the set of all HML formulae that can be expressed on CO-OPN/2
specifications and sets of variables: PROP = UspecesquXex PROPg,cc x -

Example below gives some HML formulae on Specy and Xo. We will see in the sequel
in which cases some of these formulae are actually satisfied by the transition system of
Specy, and which of them can be part of a contract.

Example 5.1.10 HML Formulae of PROPg,cc, x, -
Let Specg be the CO-OPN/2 specification of Fxample 5.1.2, and Xq be the set of variables
of Example 5.1.5. The following formulae are HML formulae on Specy and Xy.

o1 = <packy.create>

<the-heap . put(pack;)><the-heap . get(pack,)> T
¢o =—(<pack;.create>

<the-heap . get(pack;)> T)
¢3 = <packy.create><pack,. fill(P)> T
¢y = <pack;.create><pack;.create>

<the-heap . put(pack;)><the-heap . put(packq)>

> A

<the-heap . get(packy)><the-heap . get(pack;)>)T

¢5 = <the-heap .create><pack;.create><pack;.fill(P)> T

(<the-heap . get(pack;)><the-heap . get(pack,

o = <packy.create>
<the-heap . put(packs) // packy.fill(P)> T.

Formula ¢; means that a chocolate packaging can be created, and that it can first be
inserted into the heap and then removed. Formula ¢, states that it is not possible to
remove a packaging from the heap, if it has not been previously inserted into the heap.
Formula ¢3 states that after having created a packaging, it is possible to fill it with a
praline. Formula ¢4 gives the essential feature of a heap: two packagings can be removed
from the heap in the same order as they have been inserted, but also in the reverse order.
Formula ¢5 is the same as ¢3 except that it requires to observe the creation of the static
object the-heap. Formula ¢g states that a packaging can be created and that it is possible
to simultaneously insert the packaging into the heap, and fill the packaging with a praline.

Remark 5.1.11 A formula like <the-heap .create><pack;.fill(P)> T could be a HML
formula, satisfied by the transition system of a CO-OPN/2 specification, even though
the event < pack;. fill(P)> is observed without the event < pack,.create> is previously
observed. Indeed, due to the CO-OPN/2 semantics, it is possible (1) to create instances
in an unobserved way, i.e., their creation is not visible in the transition system, and (2)
to call methods of these instances in an observed way.
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The set of events of a HML formula is simply given by the set of all observable events
appearing in the formula.

Definition 5.1.12 FEvents of a HML Formula.
Let ¢ € PROP be a HML formula. The set of events of ¢, noted Eventy is the least set
recursively defined as follows:

¢=T = bventy, =&

¢ = = FEventy = Fventy,

¢ =1 N\ ¢y = Eventy = Eventy, U Fventy,
¢ =<e>1 = FEvent, = {e} U Fventy.

The following example shows the events of HML formulae of Example 5.1.10.

Example 5.1.13 The sets of events of ¢; (1 < i < 6) of Ezample 5.1.10 are the following:

FEventy, ={pack,.create, the-heap . put(packy ), the-heap . get(pack )}

Eventy, ={pack,.create, the-heap . get(pack;)}

FEventy, ={pack,.create, pack;.fill(P)}

FEventy, ={pack,.create, pack,.create,
the-heap . put(packy ), the-heap . put(packs ), the-heap . get(packy ),
the-heap . get(packsy), the-heap . get(packs), the-heap . get(pack,)}

FEventy, ={ the-heap .create, pack;.create, pack; . fill(P)}

FEventy, ={pack;.create, the-heap . put(packy) // packs. fill(P)}.

5.1.3 Satisfaction Relation

HML formulae are built with observable events of a given CO-OPN /2 specification, which
are made of syntactical terms. In order to be able to state if a model satisfies or not a HML
formula, it is necessary to evaluate the observable events, i.e., to map every observable
event to an event that appears in the model.

As observable events contain terms with variables, it is necessary to first give an assign-
ment that maps every variable to a value in the algebra A = Sem(Pres(Spec)) (see
Proposition 4.2.3). Then, every term can be interpreted and finally, the observable events
themselves can be evaluated as semantical events.

Remark 5.1.14 Assignment, Interpretation of Terms.
Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
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set of variables, and A = Sem(Pres(Spec)) be the semantics of the presentation of Spec'.
An assignment from X to A, noted o, is a S-sorted function o : X — A.

Given o an assignment from X to A, the terms of Tx, x can be interpreted by the S-sorted
function p? : Ty, x — A according to Definition 4.2.4.

Remark 5.1.15 An assignment is not necessarily injective: two different variables (of
the same sort) may be mapped to the same value.

Notation 5.1.16 We denote by ASSIGN the set of all assignments.
Example 5.1.17 below gives an assignment for the variables Xy of example 5.1.5.

Example 5.1.17 Assignment for Specg.

Let Specy be the CO-OPN/2 specification of Fxample 5.1.2, and Xq be the set of variables
of Fxample 5.1.5. Let Ag = Sem(Pres(Specy)) be the semantics of the presentation of
Specyg. The following assignment o : Xo — Ag is an assignment from Xq to Ag:

oo(packy) = initAo

packaging
oo(packy) = new™ (init° )
o\P 2) — packaging packaging/*

In the case of our running example, the example below gives the interpretation of some
of its terms.

Example 5.1.18 Interpretation of Terms of Specy and X.
Let oy be the assignment of variables of Example 5.1.17, some terms of Specy with vari-
ables in Xg are interpreted in the following way:

P ) . - Ag
K (lnltPaCkaglng) - lnltpackaging

)= initsgckaging
(packs) = newégckaging(initﬁgckaging)
117° (NeW packaging(pack: ) = newégckaging(init;lzgckaging)
)
)

_ 1ado
= 1nltheap

_ iAo
= 1nltheap .

It is worth noting that the interpretation of pack, and newpackaging(pack;) are the same,

and that the interpretation of inithea, and the-heap,,,, are the same. In the sequel we
Ao
heap-*

0

will note indifferently initﬁe , or the-heap

a

The evaluation of an observable event of Spec is an event of the CO-OPN /2 step semantics
SSem 4(Spec). Given o an assignment from X to A, the evaluation of observable events
FEventgy.. x follows from Definition 4.2.15.

1 A is the initial model, see Definition 4.2.7
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Definition 5.1.19 FEvaluation of Fvents.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, A = Sem(Pres(Spec)) be the semantics of the presentation of Spec,
FEventgye. x be the set of observable events of Spec with variables in X, o be an assignment
from X to A, and p° be the interpretation of Ty, x in A according to 0. The evaluation of
Eventsyee,x according to o is a function, noted [[.]|7 : Eventspecx — E, 1; 1 50, defined
as follows: S

t.m € Bvenlgpee,x =

[t = 4 ().
t.m(ty,...  tx) € Bventspe.x = [[t.m(t1, ... ,te)]]7 = p(t).m(p(t1),. .. , 17 (1))
t.create € Fventsye. x = [[t.create]]” = p’(t).create
[
I

t.destroy € Eventgpe. x = [[t.destroy]]” = u?().destroy

er /[ - ] en € Bventspeex = [ler /o /] eall” = [leall” /) - /] Tlenl]”

Remark 5.1.20 The set [[Eventgpe. x]]° is actually a strict subset of E, \, 5 sc, since
[[Eventspe. x]|” contains only events that appear in the transition system SSem 4(Spec)
given by the step semantics of Spec.

Example 5.1.21 below gives the evolution of some observable events of Specy.

Example 5.1.21 Fuvaluation of Fvents of Specy and Xy.
Let o be the assignment of variables of Fxample 5.1.17, the events of Example 5.1.5 are
evaluated in the following way:

g0

[[the-heap .create]|”° = the—heapﬁe‘)ap .create

g0

[[the-heap . put(pack, :the—heapfeoap.put(mlt 0 )

Il
)]l packaging
[[the-heap . get(pack;)]]?° = the- heapheap get(lnltﬁgckagmg)
[[the-heap . get(new(pack;))]]’® = the- heapheap get(newpackaging(1n1tp§ckagmg))
[[new(the-heap). put(pack;)]]”° =newfeap(the—heapﬁ§ap) put(lnltpsckagmg)
[[the-heap . put(packy) // packy.fill(P)]]7 :the—heapﬁe‘)ap.put(lmtpgckagmg) //
1nltpackaglng fill(P#)
[[pack; .create]]”° _lnltpaockaglng create
[[pack;.create]]”® = newéackagmg(1n1tp§ckagmg) create
[[packs. ll(P)]]7° =init/) 2 . fill(PAe).

Notation 5.1.22 We denote by TS the set of all transition systems of CO-OPN/2 spec-
ifications obtained by the step semantics: TS = g, .cspne SS€ma(Spec).

We denote by St the set of all states of transition systems of CO-OPN/2 specifications:
St = USpecESPEC StateSPEQA'
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SSem 4(Spec) is given by Definition 4.2.21, and State gpe. 4 by Definition 4.2.9.

The following definition states in which cases a HML formula built on Spec, a CO-OPN/2
specification, and X a set of variables, is satisfied by a state st of SSem 4(Spec), the step
semantics of Spec.

Definition 5.1.23 HML satisfaction relation of HML formulae on Spec and X.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, PROPg,.. x be the set of HML formulae that can be expressed on Spec
and X, A = Sem(Pres(Spec)) be the semantics of the presentation of Spec, and o be an
assignment from X to A. Let SSem 4(Spec) be the transition system of Spec according
to the step semantics, st € Stateg,e. 4 be a reachable state of SSem 4(Spec), and ¢, ¢ €
PROPg e x be HML formulae on Spec and X. The HML satisfaction relation of HML
formulae on Spec and X given the assignment o, noted Fpp s x © TS x St x PROP,
is the least set such that:

(1) SSem 4(Spec), st IZIU;IMLSPSC’X T

(2) SSem a(Spec), st ':;IML,Spec,X —¢ iff  SSema(Spec), st #;IML,Spec,X ¢

(3) SSem 4(Spec), st FoamL speex @AY iff SSem a(Spec), st FlmL.speex @ and
SSem 4(Spec), st Eiar speex ¥

(4) SSem 4 (Spec), st g speex <€> ¢ iff 3 (st,[[€]]7, st') € SSema(Spec) and
SSema(Spec), st' Efur speex ¢-

Given a reachable state st, i.e., a state such that there exists a sequence of transitions
from state (L, @, 1) to state st, the HML satisfaction relation is such that: (1) the HML
formula T is a formula true for every reachable state st of SSem 4(Spec); (2) the negation
of a formula is true in a state st, if there is no path, starting from st in SSem 4(Spec),
where the formula is true; (3) the conjunction of two HML formulae ¢ A ¢ is true in a
state st, if there is a path starting from st where ¢ is true, and there is a path (the same
or another path) starting from st where ¢ is true; (4) if a formula begins with an event
<e>, the formula is true in state st if among all the paths starting from st there is one
path starting with the event [[¢]], and such that the new state reached, st', is a state
where the end of the HML formula is true.

It is worth noting that:

e a HML formula is satisfied by the step semantics of Spec, provided its variables are
existentially quantified;

o if SSem 4(Spec), st Fiarr spee x <€1><e2> ¢ then there exists a path, starting from
st, that corresponds exactly to ¢; i.e., [[€1]]7 is observed and is followed immediately
by [[e2]]7, which is observed too).

However, there may be non observable events occurring between [[e1]]” and [[e3]];



5.1. HENNESSY-MILNER LOGIC 125

e even though SSem 4(Spec), st Ffyp spec x <€1><e€2> ¢ holds, there may be other
paths, starting from st such that e; does not follow e; (e.g.,
SSem 4(Spec), st Efarp spee x <€1><€3><ey> ¢ can hold too).

Remark 5.1.24 We denote SSem 4(Spec), st Fiar speex ¢ instead of
(SSema(Spec),st,d) € Fyarr speex -

The definition of Efprr speex 18 given generally for any transition system, however it is
actually FGarr speex © {9Sema(Spec)} x Statespee, 4 X PROPspec x .

Inference rules 4.2.5 allow to compute all valid transitions that the system can perform.
Vachon in [59] gives inference rules for computing all invalid transitions.

We extend Ffy 1y, 5,00 x to sets of formulae:

Notation 5.1.25 Let ® C PROPg,..x a set of HML formulae on Spec and X, and
o: X — A an assignment of variables X. We denote SSem 4(Spec), st Fyrp speex @ if
SSema(Spec), st Eiarr speex @5 for all g € @.

Example 5.1.26 below applies the above definition to our running example.

Example 5.1.26 Satisfaction of HML formulae on Specy and Xy.
Let o¢ be the assignment of variables of Frxample 5.1.17, the HML formulae of Exam-

ple 5.1.10 are satisfied in the following way by SSem 4,(Specy) in the initial state and
state sty of Figure 5.2:

SSGmAO (Speco), <J" 9, J‘> ':]Ui?ML,Speco,Xo {962’ 995}

SSem 4, (Speco), (L, D, L) #]Ui?ML,Speco,Xo {01, ¢3, b4, b6}
(Speco), stt FRmL speco X0 1P15 P25 Pas Pat
(

SSem a,(Speco), sti Biiarr speco xo 1955 D6 -

Indeed, according to Figure 5.2 below, which depicts a small view of the sequence of events
of the transition system SSem 4,(Speco), the following holds:

o Formulae ¢y, ¢3, ¢4 and ¢e cannot be satisfied in the initial state, since in that state
the static object the-heap is created.

However, ¢1, ¢3, ¢4 are satisfied in the state sty, since there is for each of these
formulae a path starting from state st; and whose beginning s made of events cor-
responding to the events of the formula evaluated using og.

Formula ¢g cannot be satisfied in state sty. Indeed, formula ¢g begins with event

. A « i Ag
packsy. create, and oq assigns the value newpackaging(1nltpackaging
Ao

packaging;

) to packy. In state

sty, it is only possible to create init



126 CHAPTER 5. CO-OPN/2 REFINEMENT

o Formula ¢ is satisfied in both the initial state and state sty. Indeed, in the initial
state it is only possible to create static objects; in state sty, the static object has been
created, but it is not possible to remove a packaging from the heap if it has not been
previously inserted;

o Formula ¢5 can be satisfied only in the initial state since it requires the creation of
the static object the-heap, and this creation is performed only once at the beginning
of the transition system.

the-heap”© . get(p2)

A
the-heap40 . put(p2) the-heap”¢ . get(p1)

A
the-heap“0 . put(p1) the-heap™0 . get(p2)

h1.create p2.create

the-heap© . get(p;)
the-heap40 .create P fill(P)

<J_’ z7 J‘) he

p1.create

the-heap0 . put(p;)

sty the-heap© . get(p1)

- Ao
the—heapAO .create // the-heap® . put(p1) // p1.fill(P)

p1.create

), p1= init Ao

_ Ao (303140
Where hy = newy o (init e

— Ao it Ao
heap kaging’ p2 = new (lnlt

packaging packaging) '

Figure 5.2: Sequence of Events of SSem 4,(Speco)

The HML satisfaction relation is given by the union of all the HML satisfaction relations
of HML formulae on Spec and X.

Definition 5.1.27 HML Satisfaction Relation.
The HML satisfaction relation, noted Egpr, € TS x St x PROP, is such that:

Fumr= U ( U ':?—IML,Spec,X)'

Spec€SPEC,X€X o:X —Sem(Pres(Spec))EASSIGN

Remark 5.1.28 According to this definition, a transition system T'S € TS and a state
s € St satisfy a HML formula ¢, T'S,st FEpmr ¢, iff there is a CO-OPN/2 speci-
fication Spec, a set of variables X, and an assignment o of the variables X to A =
Sem(Pres(Spec)), such that: (1) ¢ is a HML formula on Spec and X, i.e.,

¢ € Eventspee x; (2) T'S = SSem a(Spec); (3) s is a reachable state of SSem 4(Spec); and
(4) TS, s ':%ML,Spec,X ¢.

Notation 5.1.29 Models.
Let Spec be a well-formed CO-OPN/2 specification, according to Definition 4.2.21, it has
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only one model: the transition system SSem 4(Spec) (where A = Sem(Pres(Spec))). We
denote by MODg,e. = {SSem 4(Spec)} the set made of this model.

We denote MOD the set of all models of CO-OPN/2 specifications:
Mob = USpecESPEC MODSPEC'

Let Spec be a well-formed CO-OPN/2 specification, we denote Initg,.. the first state of
SSem 4(Spec) where all the static objects of Spec have been created.

It is worth noting that Initg,.. = (L, @, L) when Spec defines no static object.

The satisfaction relation is a relation on models of CO-OPN/2 specifications and HML
formulae. A model satisfies a HML formula, if the model and the state Initg,.. satisfy the
formula, i.e., if there is a path starting from Initg,.., and an assignment of the variables
such that the formula can be seen as the beginning of the path.

Definition 5.1.30 Satisfaction Relation.
Let Mod € MoD be a model of a CO-OPN/2 specification Spec, ¢ € PROP be a HML
formula. The satisfaction relation, noted F C MOD x PROP, is such that:

Mod E qb -~ ]\406[7 Initgpec FEumr QD

Due to the definition of Fyar, a formula is satisfied by a model, provided there exists
an assignment of the variables that let the formula be satisfied in the state Initg,.. of the
model.

Example 5.1.26 shows that some HML formulae are not satisfied for the assignment og of
example 5.1.17. Example 5.1.31 below shows how the HML formulae of example 5.1.10
are satisfied by SSem 4(Speco).

Example 5.1.31 Satisfaction of HML Formulae of Specy.
HML formulae of Example 5.1.10 are satisfied by SSem 4(Specy) in the following way:

SSem a,(Speco) E ¢y SSem a,(Speco) E ¢4
SSem a,(Speco) E ¢o SSem a,(Speco) E o5
SSem 4,(Speco) E ¢3 SSem 4,(Speco) E .

FExample 5.1.26 shows that formulae ¢ to ¢4 are satisfied by SSem 4,(Specy) and state sty
(which is exactly Initsye., ), using assignment oo of Fxample 5.1.17. Formula ¢5 can be
satisfied on the initial state only, thus it cannot be satisfied on state Initg,..,. Formula ¢g
cannot be satisfied using assignment og, however it can be satisfied using an assignment

, hos T . A
oy such that of(packy) = It L ging
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5.2 CO-OPN/2 Refinement

The refinement of CO-OPN/2 specifications is based on contracts as defined in Chapter 3.
Given a CO-OPN/2 specifications, a contract is a set of HML formulae, that are satisfied
by the transition system of the specification for the same assignment of the variables. A
contractual specification is simply a pair given by a specification and a contract. The
refine relation is an injective, partial function that is total on elements of the contract,
i.e., 1t is essentially a renaming that maintains the part of the structure of the high-level
specification concerned by the contract. The formula refinement is a simple rewriting of
the formulae based on the renaming given by the refine relation as well. Finally, two
contractual CO-OPN/2 specifications are in a refinement relation if the translated high-
level contract is part of the lower-level contract.

This section defines contractual CO-OPN/2 specifications, the refine relation on elements
of contractual CO-OPN/2 specifications, the formula refinement univocally defined from
the refine relation, and finally the refinement relation on CO-OPN/2 specifications.

5.2.1 Contractual CO-OPN/2 Specifications

A contractual CO-OPN/2 specification is a pair made of a CO-OPN/2 specification and a
contract, that is a set of HML properties, i.e., HML formulae satisfied by the model of the
specification for the same assignment of the variables. We define first HML properties,
then contracts, and finally contractual CO-OPN/2 specifications.

A HML property of a CO-OPN/2 specification Spec is a HML formula, on Spec and a set
X of variables, satisfied by the state Initg,.. of the step semantics of Spec, and for some
assignment of the variables.

Definition 5.2.1 HML Properties.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, PROPg,.. x be the set of HML formulae that can be expressed on Spec
and X. A HML property ¢ on Spec with variables in X is a HML formula on Spec and
X satisfied by the model of Spec, i.e.,

MOD g F ¢.

The set of all HML properties of Spec with variables in X, noted ®g,ec x, ts such that:
Pspeex = {¢ € PROPgpec x | MODgpee E 0}

Remark 5.2.2 Since a well-formed CO-OPN/2 specification Spec has only one model,

SSem a(Spec), a HML formula ¢ on Spec is a HML property of Spec iff

SSem 4(Spec), Initspe. Funmr @.
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A contract is a set of properties such that the same assignment o is used for the satisfaction
relation Fgar.

Definition 5.2.3 Contract of a CO-OPN/2 specification.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, and A = Sem(Pres(Spec)). A contract on Spec and X, noted ®, is a
set of properties of Spec with vartables in X :

¢ g (I)Spec,X 9
such that there is 0 : X — A, an assignment of the vartables, and

SSem 4(Spec), Init gpe. Favr speex @

Remark 5.2.4 Variables of the contract are existentially quantified, but the same assign-
ment of the variables is used for every property of the contract.

Due to this definition and to the semantics of HML formulae, the set of HML formulae
constituting a contract could be replaced by a single HML formula made of the conjunction
of all the HML formulae of the contract, without the semantics of the contract being
altered. We prefer to keep a set of HML formulae in the contract, in order to stick with
the notation of Chapter 3, i.e., a concrete specification refines correctly a more abstract
specification if all the translated properties of the abstract contract are part of the concrete
contract.

A contract ® is not necessarily the biggest set of properties satisfied by the initial state of
the step semantics of Spec and for the same assignment of variables o.

A contractual CO-OPN/2 specification is a pair made of a CO-OPN/2 specification and
a contract on the specification.

Definition 5.2.5 Contractual CO-OPN/2 Specifications.

Let Spec be a well-formed CO-OPN/2 specification, X = (X;)ses be a S-disjointly-sorted
set of variables, and ® C ®Pg,.. x be a contract on Spec. A contractual CO-OPN/2
spectfication, noted C'Spec, is a pair:

C Spec = (Spec, ).
The models of (Spee, @) are simply given by the models of Spec.

Definition 5.2.6 Models of a Contractual CO-OPN/2 Specification.
Let CSpec = (Spec, @) be a contractual CO-OPN/2 specification, and MODg,e. be the
models of Spec. The set of models of CSpec, noted MODc gy, ts given by:

MOD¢spee = MODgpe. (= {S5Sem 4(Spec)}).
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Notation 5.2.7 Contractual CO-OPN/2 Specifications.
We denote CSPEC the set of all contractual CO-OPN/2 specifications.

Example 5.2.8 A Contract for Specy.
Given Specy of example 5.1.2, formulae ¢1, ¢ and ¢3 below form a contract &y =

{01, G2, b3} -
¢1 = <pack;.create><the-heap . put(pack;)><the-heap . get(packs)> T
¢2 =—(<pack;.create><the-heap . get(pack;)> T)
¢3 = <pack;.create><packs.fill(P)> T.

As shown in Fxample 5.1.26, these formulae are actually properties of Specy for the same
assignment, og, of variables:

SSem a(Speco), Init gy, #;}’ML’SPEC()’XO Dg.
Thus, we define the following contractual CO-OPN/2 specification:
CSPGCQ = <Sp€CQ, (I)0>

5.2.2 Refine Relation

There are several ways of defining a refine relation on CO-OPN/2, all related of them
related to the preservation or not of the structure: (1) ADT and Class modules of a
higher-level specification are maintained in their entirety, and the lower-level specification
may add some ADT and Class modules; (2) ADT and Class modules of a higher-level
specification are partially maintained, i.e., the lower-level specification may add new func-
tions, methods and static objects to existing ADT and Class modules, and may remove
existing elements. In addition, new ADT and Class modules can be added. In this case
the structure is partially maintained; (3) the ADT and Class modules of a higher-level
specification are not maintained, the lower-level specification may split a high-level ADT
or Class module over several lower-level ADT of Class modules respectively, provided the
functions, methods and static objects of the higher-level specification are related to some
function, method or static object of the lower-level specification. In this last case the
structure is no longer preserved.

In the framework of CO-OPN/2; we have chosen the second case, i.e., with the help of a
renaming, the following holds:

e high-level ADT sorts and Class types whose elements appear in the contract are
maintained;

e ADT and Class module interfaces whose elements appear in the contract are par-
tially maintained, i.e., operators and methods appearing in the contract are pre-
served with the same arity as well as static objects needed in the contract, while
operators, methods and static objects that do not appear in the contract may be
removed;
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e the sub-typing and sub-sorting relations of the higher-level CO-OPN/2 contractual
specification are maintained on types and sorts that are maintained;

e the lower-level CO-OPN/2 contractual specification can add new functions to an
ADT module, and new methods and static objects to a Class module;

e the lower-level CO-OPN/2 contractual specification can add new ADT and Class
modules.

This solution offers a simple translation of the high-level formulae into lower-level ones,
since no ambiguity is authorised. In addition, from a theoretical point of view, if the
specifier needs to split or fusion ADT and Class modules, this means that the higher-level
contractual specification is not correct, since he should have already foreseen this case
from the higher-level contractual specification. In addition, this solution does not allow a
method to be refined by two methods in parallel (or in sequence, as a non-deterministic
choice between two methods or a combination of these cases). The internal behaviour of
the more concrete method will specify that particular case. However, this solution offers
some disadvantages as well, since from a practical point of view, the specifier does not
always want to redesign a high-level contractual specification, or, if he uses pre-defined
modules, he has not all the necessary modules at his disposal.

Since the purpose of the refine relation is to map syntactical elements of an abstract
contractual specification to those of a more concrete contractual specification, we will
first define elements of a CO-OPN/2 specification and then give the refine relation on
these elements.

An element of a contractual CO-OPN/2 specification is a variable name, an element of
the global signature, or an element of the global interface of the CO-OPN /2 specification.

Definition 5.2.9 FElements of a Contractual CO-OPN/2 Specification.

Let CSpec = (Spec, ®) be a contractual CO-OPN/2 specification, X = (X;)ses be a S-
disjointly-sorted set of variables, ® C ®g,.. x a conlract on Spec and X. The set of
elements of C'Spec, noted ELEM¢ gy, ts such that

ELEMcspee = SPUSCUFAUFCUMUOUX.

An element of ELEM¢ gy 1s an element of the contract if it is a variable, a function name,
a method name or a static object name that appears in a property of the contract.

Definition 5.2.10 FElements of a Contract.
Let CSpec = (Spec, @) be a contractual CO-OPN/2 specification, and | € ELEM¢spec, an
element of CSpec. The element | belongs to the contract ®, noted [ € ®, if 3¢ € ® and

an event e € Fventy such that | belongs to e. An element [ belongs to an event e, noted
[ € e, if one of the following holds:



132 CHAPTER 5. CO-OPN/2 REFINEMENT

e c=tmandl et

e c=tmandl=m

e e=t.m(ty,... ,ty) and [ €t

e e=1t.m(ty,... tx) and | € t; for some 1 € {1,...  k}
e e=t.m(ty,... tx) andl=m

o ¢ =t.create and [ € t

o ¢ =t.destroy and [ €t

e c=c [/ .../ €, andl € ¢; for somei € {1,... ,n} .

An element [ belongs to a term ¢ if it appears in that term, i.e., [ € t if t = [, or
t=f(ti,...,ty) and [ = f,or [ € t; for some i € {1,... ,n}.

Example 5.2.11 FElements of C Specy.
The elements of the contractual CO-OPN/2 specification CSpecy of Example 5.2.8 are

given by:

ELEM¢spec, =1 chocolate, praline, truffle, boolean, natural } U
{ heap, packaging } U
{ P, T, praline-capacity, truffle-capacity,
Operations of ADT Naturals, Operations of ADT Booleans} U
{ initheap; N€Wheap, iNitpackaging, NEW packaging | U
{ pUtheap,packaging7 getheap,packaging7
fillpackaging chocolate, full-praline ...} U
{the-heapy,, } U
{b, n, packy, pack,}.

The elements belonging to the contract are:

{P} U {pUtheap,packaging7 getheap,packaging7 ﬁupackaging,chocolate} U
{the-heapy,.,,} U {pack:, pack}.

Indeed, only these elements appear in the contract ®¢ of Example 5.2.8.
The following definition presents the refine relation on elements of CO-OPN/2 contractual

specifications. It is an injective, partial function that maintains the part of the structure
of the high-level contractual specification that takes part in the contract.
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Definition 5.2.12 CO-OPN/2 Refine Relation.

Let CSpec = (Spec, @), CSpec = (Spec,®’) be two contractual CO-OPN/2 specifica-
tions. A CO-OPN/2 refine relation on CSpec and CSpec, noted X, is a relation on
elements of C Spec and elements of CSpec:

A € ELEM(spec X ELEMggpee
such that : X = Aga U Agc U Apa U Ape U Ay U dp U Ax, where:

Aga C S4 x G4 A C M x M
Age € 8¢ x §¢ Ao CO X0
Apa C FA x FA Ay € X x X',
Ao C FC x FY

and

(FLf)YEAMpa = (fis1,o.. 8= s, f s, s, — s or
fi=s,f = s and
(s,8"),(si,8:) € Aga U Age (1 <1< n)

(f, f") € Ape = (f = init,, f’ = inits or

f =new,, f' = new. or

f= subc,cl,f’ = subcw1 or

f =super,_, [ = superc,7cll) and

(¢, ), (c1,¢)) € Age

Mgt S1yenv s Sky My i 8y, ..., 5, and

(e, ') € Ago, (si,81) € Aga Udge (1 < i< k)

0:¢, 0 :c and (¢,c) € Age

v € X2 € X, and (s,8") € Aga U Ago

<" s

=1

[=10"

3" € ELEMcspee .t (1,17) € A

(m7 m/) € )‘M

U

(0e,0L) € Xo

(z,2") € Ax

(s,8),(s1,87) € Aga Udge A s < s
(0,0, (L,1")y e X

(1,0, (1",1") € A

led

A

The CO-OPN/2 refine relation relates sorts, types, functions, methods, static objects,
and variables of (' Spec and sorts, types, functions, methods, static objects and variables
of CSpec respectively. A type (in S¢) cannot be related to a sort (in S#) and vice-versa a
sort cannot be related to a type; a function cannot be related to a method and vice-versa.

The refine relation respects the types and sorts of the methods and functions, i.e., a
function f or a method m of C'Spec is related to a function f or a method m’ of CSpec
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respectively, such that the size of the arity of f or m is the same as that of f’ or m/'
respectively, and each type or sort of the arity of f or m is related to the corresponding
type or sort of the arity of f' or m' respectively. The refine relation imposes that functions
of FC are related to corresponding functions of F©'. For instance, it is not allowed to
relate an init, function with a new. function, it can only be related to a init. function.

A static object o is related to a static object o provided the type of o is related to the
type of o/. Similarly for the variables, a variable x of type or sort s is related to a variable
2’ of type or sort s' provided s is related to s'.

The subtyping and the sub-sorting relations of C'Spec are preserved, i.e., two sorts of
CSpec, that are in a sub-sorting or subtyping relationship, are related to two sorts of
C'Sped, that are also in a sub-sorting relationship.

The refine relation is functional, i.e., an element [ of C'Spec cannot be related to two
different elements of C'Spec’; and it is injective, i.e., two different elements of CSpec
cannot be related to the same element of C' Spec'.

Finally, the refine relation may be partial, but must be total on elements belonging to
the contract. If an element of C'Spec appears in the contract @, then this element must
be related to some element of C'Spec'.

Remark 5.2.13 CO-OPN/2 Refine Relation is a Refine Relation.
A CO-OPN/2 refine relation, A, given in Definition 5.2.12 is actually a refine relation as
stated by Definition 3.1.8, since X ts total on elements of the contract.

5.2.3 Running Example

The contractual CO-OPN/2 specification C Specy, defined in Example 5.2.8, is refined by
the contractual CO-OPN/2 specification C'Spec; = (Specy, ®1) defined in Example 5.2.14
below. Spec is based on the CO-OPN/2 Class module of Figure 5.3:
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Cl ass ConveyorBelt;
Interface
Use Packagi ng;
Type conveyor - bel t;

Class ConveyorBelt nj ect the-conveyor-belt;

Met hods put _, get _ : packaging;
((size f)> conveyor-capacity = BOdy
true) => put(box) get(first ') Use Fi f OPaCkagl ng;
£ 0 Place belt _ : fifo-packaging;
ert Do £ extract £ | n? tial belt [];
Axi ons

belt:fifo-packaging pUt bOX ‘e
(size f)>conveyor-capacity = true =>
belt f -> belt (insert box f);

get (first ')
belt f' -> belt (extract f');

the-conveyor-belt: conveyor-belt

Wher e
f . fifo-packaging;
f' . ne-fifo-packaging;

box : packagi ng;
End ConveyorBel t;

Figure 5.3: CO-OPN/2 ConveyorBelt Class Module

The CO-OPN/2 ConveyorBelt Class module is very similar to the CO-OPN/2 Heap Class
module. They both store and remove packaging boxes. The major difference between
them is that the getconveyor-belt,packaging method extracts boxes, from the belt place, in the
same order as their order of insertion into the place, while method getheap packaging has
no policy to extract boxes from the storage place. The second difference comes from
the fact that the ConveyorBelt Class module limits the number of the stored boxes to
conveyor-capacity, while the Heap Class module does not limit this number.

Spee; is defined as the minimal complete CO-OPN/2 specification such that it allows
Class module ConveyorBelt to be defined, and it allows boxes to be of type packaging
and of type deluxe-packaging. This type is a subtype of packaging, defined in the
DeluxePackaging ADT module. It allows boxes to contain square holes for storing pra-
lines and round holes for storing truffles. Example 5.2.14 below defines Spec; and C Spec;.

Example 5.2.14 Specy, Xy, CSpec;.
We define the following CO-OPN/2 specification:
Specl = {(Mdg7Q)Chocolate7 (Mdg7Q)Capacity7 (MdéLQ)Booleansy
(Mdg7Q)Naturalsy (Md;J))Packagin@ (Mdg7Q)DeluxePackaging7
(Mdg79 )FifoPackaging; (Mdg Q ) ConveyorBelt}> .
We define the following set of variables:

Xl = {pGCkla e 7paCk51}packaging U {dpaCk}deluxe—packagingy
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the following contract ®; = {¢1, b3, 3, &, bk, b} below:

¢ = <pack,.create>
<the-conveyor-belt . put(pack; )><the-conveyor-belt . get(pack;)> T

¢ =—(<pack,.create><the-conveyor-belt . get(pack; )> T)

by = <pack;.create><pack;. fill packaging(P)> T

¢y = <pack,.create><pack,.create>
<the-conveyor-belt . put(pack; )><the-conveyor-belt . put(packs)>
(<the-conveyor-belt . get(pack; )><the-conveyor-belt . get(packs)> A
—(<the-conveyor-belt . get(packy )><the-conveyor-belt . get(pack;)>))T

¢s = <pack;.create> ... <packsg.create><packs;.create>
<the-conveyor-belt . put(pack;)> ... <the-conveyor-belt . put(packso)>
—(<the-conveyor-belt . put(packs; )>)T

¢ = <dpack.create><dpack. fill geluxe-packaging( T )> <dpack. filljeluxe-packaging( P )> T

The contract ®, of C'Specy ts actually a contract. Figure 5.4 below gives a restricted view
of the sequence of events of the transition system SSem 4, (Specy) (A1 = Sem(Pres(Specy))).

dp. fill(P) dp. fill(T)

dp. create tcbA1 . put(ps) tcbA1 . get(p2)

tcbA1 . put(p:) tcbA1 . get(p1)
ci.creat pa.create

1. Aill(P)

(L,2,1)
sty tebA1 . put(py) tcbA1 . get(p1)
tcbA1 create // (b - put(p) // p1. S(P)
p1.create
_ ~ ~ Aq _ Ay s oir Ay s Ag _
Where tcb = the-conveyor-belt®t, ¢; = newconveyor_belt(1n1tc0nveyor_belt), pr= 00t ey P2 =
Aq s Aq e Ay

neWpackaging(lnltpackaging)7 dp - 1nltdeluxe—pa.cka.ging'

Figure 5.4: Sequence of Events of SSem 4, (Spec;)

Formulae ¢1, ¢, ¢3 are similar to formulae ¢1, ¢, and ¢3 discussed for Specy. Formula
@) describes the essential feature of the conveyor-belt lype: boxes are removed in the
same order as their insertion order. It is not possible to remove first packy and then
packy if packy has been inserted before packy. Formulae ¢i describes the second feature
of the conveyor-belt type: the number of boxes that can be stored is limited to the
conveyor-capactity, which is 50. Formula ¢} is similar to ¢, except that it requires
that a praline P and a truffle T can be inserted in a deluze-packaging boz.
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Finally, we define CSpecy as
CSpeCl = (Specl, (I)1>

Appendix A gives the complete textual CO-OPN/2 specification of Spec; as well as its
CO-OPN/2 abstract specification, global signature, and global interface.

Example 5.2.15 below gives a CO-OPN/2 refine relation on C'Specy and C Spec;.

Example 5.2.15 CO-OPN/2 Refine Relation.
Given C Specy, CSpecy of Examples 5.2.8 and 5.2.14 respectively, we define a CO-OPN/2
refine relation A C ELEM¢gpec, X ELEMgpee, on C'Specy and CSpecy in the following way:
={(chocolate, chocolate), (praline, praline) }

={(packaging, packaging), (heap, conveyor-belt)}
)\OFA {

)\OFC { NE€Wheap, N€Wconveyor- belt) (lnltheapa lnltconveyor—belt);

pralines praline):ll>
NE€Wpackaging, newpackaglng) (1n1tpackaging7 lnltpackaging)}

getheap,packaglng7 g conveyor- belt,packaglng)

ﬁupackaglng,chocolatey ﬁupackaglng,choColate):ll>
={(the-heap, the-conveyor-belt) }

Moy ={(packy, packy)}.

Since the ConveyorBelt Class module is meant to replace the Heap Class module, the

(
(P
(
(
A0y {(pUtheap packaging’ pUtconveyor belt,packagmg)
(
(
(

refine relation relates the heap type and the conveyor-belt type, put, get of heap
to put, get of conveyor-belt respectively, and static object the-heap to static object
the-conveyor-belt. It is the identity for the other elements. Ay given here is minimal,
it is not defined for elements which are not in the contract, e.q., operator T or method
full-praline.

5.2.4 Formula Refinement

The refine relation enables to map elements of a high-level CO-OPN /2 contractual specifi-
cation with elements of a lower-level one. Based on this mapping it is possible to transform
every property of the high-level contract into a HML formula of the lower-level specifi-
cation. In order to transform high-level HML formulae into lower-level HML formulae,
it is necessary to transform first the high-level terms, constituting the observable events,
into lower-level terms, second the high-level observable events into lower-level ones, and
finally the HML formulae themselves.

The term refinement consists of replacing the term name by the corresponding term name
given by A, the refine relation.
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Definition 5.2.16 Term Refinement.

Let CSpec = (Spec, ®) and CSpec’ = (Spec’, ®') be two contractual CO-OPN/2 specifi-
cations. Let T, x be the set of terms of Spec with variables in X, and Txs x+ be the set of
terms of Spec’ with variables in X'. Let A C ELEM¢spec X ELEMspee be a CO-OPN/2 re-
fine relation on elements of C'Spec and elements of C'Spec’. The term refinement induced
by A, noted Ay : Ty, x — T x/, s a partial function, such that:

Ar(e) = {x’ if (z,2") € A,

undefined otherwise

f! if fi=sand (f, f) €A,

undefined otherwise
f/(AT(tl)"" 7AT(tn))7 Zf (f7 f/) € )‘; and
Ar(f(te, ... t,)) = Ar(t;) is defined (1 <1 <n),

undefined otherwise.

AT(f):{

Remark 5.2.17 Ap is defined on terms belonging to the contract ® of Spec, since A is
total on elements of the contract, thus X is total on terms of the contract.

The following example illustrates the term refinement for our running example:

Example 5.2.18 Refinement of Terms of CSpecy.

Let CSpecy, CSpecy be the contractual CO-OPN/2 specifications of Examples 5.2.8 and
5.2.14 respectively. Let Ao be the CO-OPN/2 refine relation of Fxample 5.2.15. Some of
the terms of Fxample 5.1.5 are refined in the following way:

AT (initpackaging = initpackaging
AT (initheap
Ar(the-heap

Ar(packy

lnltConveyor—belt

= the-conveyor-belt

N e’ e’ e

acky.

The event refinement consists of replacing every term appearing in a high-level observable
event by its refinement, and of replacing every high-level method appearing in the high-
level event by the low-level method related to the high-level method through the CO-
OPN/2 refine relation. Default constructor create and default destructor destroy are
related to the default constructor and the default destructor respectively.

Definition 5.2.19 Fvent Refinement.

Let CSpec = (Spec, @), CSpec = (Spec,®') be two contractual CO-OPN/2 specifica-
tions, Fventg,.. x be the set of observable events of Spec and X, Eventlg,.. x' the set
of observable events of Spec’ and X' respectively, and A C ELEM¢spee X ELEMcgper @
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CO-OPN/2 refine relation on CSpec and CSpec’. The event refinement induced by A,
noted Agyent @ Eventspe. x — Eventgyes x, 15 a partial function such that:

Ar(t).m’ if Ap(t) is defined and (m,m’) € A,

undefined otherwise

AT(t).m/(AT(tl), e ,AT(tk)) Z'fAT(t),AT(ti) (1 S ) S n) 18
Agpent(t.m(te, ... 1)) = defined and (m,m') € X,
undefined otherwise

Ar(t).create if Ap(t) is defined,

undefined otherwise

Ar(t).destroy if Arp(t) is defined,

undefined otherwise

AEUent(el) // e // AEuent(en) ifAEvent(ei) is deﬁned
Agvent(er /] ... /] en) = (1 << n),

undefined otherwise.

AEUem(t.m) = {

Agyent(t.create) = {

Agyent(t.destroy) = {

Remark 5.2.20 Ag,.,: ts defined on events belonging to the contract ® of Spec, since A
is total on elements belonging to the contract, thus on terms, and events.

The following example illustrates the event refinement for our running example:

Example 5.2.21 Refinement of Events of C Specy.

Let CSpecy, CSpecy be the contractual CO-OPN/2 specifications of Examples 5.2.8 and
5.2.14 respectively. Let Ao be the CO-OPN/2 refine relation of Fxample 5.2.15. Some of
the events of Example 5.1.5 are refined in the following way:

Agyent(packy .create) = pack;.create

Agyent(the-heap . put(pack,)) = the-conveyor-belt . put(pack; )
Aguent(the-heap . get(pack;)

Agent(pack; Aill(P)

= the-conveyor-belt . get(pack;)
= pack; . fill(P).

e N N

The formula refinement is based on the event refinement: the refinement of a high-level
HML formula consists of replacing every event appearing in the formula by its refinement.

Definition 5.2.22 CO-OPN/2 Formula Refinement.
Let CSpec = (Spec, @), CSpec = (Spec,®') be two contractual CO-OPN/2 specifica-
tions, and A € ELEM¢gpe. X ELEMcgpeer be @ CO-OPN/2 refine relation on elements of
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C Spec and elements of CSpec’. The CO-OPN/2 formula refinement induced by X\, noted
A : PROPgpec, x — PROPg,cr x/, 15 a partial function such that:

A(@) if A(¢@) is defined,

undeﬁned otherwise

A(Y) if A and A are defined
¢A¢{ )A f A(9) and A() are defined,

undefined otheﬂuzse

<Agent(€)> A(@)  if Agvent(€) and A(¢) are defined,

<€>
¢)= undefined otherwise.

Proposition 5.2.1 A is a total function on formulae of the contract.

Let CSpec = (Spec, @), CSpec = (Spec,®') be two contractual CO-OPN/2 specifica-
tions, and A C ELEM¢spee X ELEMgg,er be @ CO-OPN/2 refine relation on elements
of CSpec and elements of CSpec’. The CO-OPN/2 formula refinement induced by A,
A : PROPg . x — PROPg,eer x7, 15 a total function on the formulae of the contract ® of
C' Spec.

Proof.

The CO-OPN/2 refine relation A is total on elements of the contract, thus Az is total on
terms of the contract, and consequently Agye,: 1s total on Uyeq Eventy, the events of the
properties of the contract of C'Spec. This induces A to be total on the formulae of the
contract. |

Proposition 5.2.2 CO-OPN/2 Formula Refinement is actually a Formula Refinement.
A as given by Definition 5.2.22 s a formula refinement as stated in Definition 3.1.12.

Proof.

We must show the three following points:

e A is total on formulae of the contract.
Indeed, Proposition 5.2.1 above shows this fact;

o if A\ = Idgisucs,,., i-€., the refine relation is the identity, then A must be the identity
on formulae.
Indeed, if A = [dELEMCSpeC, then the term refinement At is the identity on terms,
and the event refinement Ag,c,; is the identity on events. Thus, A is the identity
on formulae.

o if \' = A; X is a refine relation, then A” = A’ o A.
Indeed, the term refinement and the event refinement are simply functional renam-
ings, thus A7 = A oAp, and A%, = Agyent © ABvent, and consequently A” = A’oA.
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Notation 5.2.23 We use the same notation as the one defined in Chapter 3, A(®) =
{Al¢) [ ¢ € @}

Example 5.2.24 Formula Refinement of the Contract of C Specy.
Let CSpecy, CSpecy be the contractual CO-OPN/2 specifications of Examples 5.2.8 and
5.2.14 respectively. Let Ao be the CO-OPN/2 refine relation of Ezxample 5.2.15. The
contract ®g = {p1, da, ¢3} is refined in the following way:

Ao(¢1) =  <pack.create><the-conveyor-belt . put(pack;)>

<the-conveyor-belt . get(pack; )> T
Ao(¢2) =—(<pack;.create><the-conveyor-belt . get(pack;)> T)
Ao(d3) =  <pack;.create><pack;.fill(P)> T.

5.2.5 Refinement Relation

A lower-level CO-OPN/2 contractual specification correctly refines a higher-level CO-
OPN/2 contractual specification via a CO-OPN/2 refine relation A, if the refinement of
the high-level contract, obtained with the CO-OPN/2 formula refinement A induced by
A, is a subset of the lower-level contract.

Definition 5.2.25 Refinement of Contractual CO-OPN/2 Specifications via .

Let CSpec = (Spec, @), CSpec = (Spec,®') be two contractual CO-OPN/2 specifica-
tions, A C ELEM¢gpec X ELEMespeer be a CO-OPN/2 refine relation on C Spec and C Sped,
and A be the CO-OPN/2 formula refinement induced by X. (Spec’,®') is a refinement of
(Spec, ®) via A, noted (Spec, ®) C* (Spec’, '), iff:

A(®) C @'

More generally, two contractual CO-OPN/2 specifications are in a refinement relation if
there exists a CO-OPN/2 refine relation A on them, such that one of them is correctly
refined by the other via .

Definition 5.2.26 Refinement Relation.
The refinement relation, noted C, is a relation on contractual CO-OPN/2 specifications:

C C CSpEC x CSPEC ,
such that for every CSpec = (Spec,®), CSpec’ = (Spec’,®") € CSPEC, (Spec,®) C
(Spec, ") iff
IX € ELEM¢spee X ELEMgspeer @ CO-OPN/2 refine relation on CSpec and CSpec, s.t.
(Spee, ®) C* (Spec, d').
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Proposition 5.2.3 The refinement relation T C CSPEC x CSPEC is a pre-order.

Proof.
Follows from proposition 3.1.1. |

Example 5.2.27 CSpec; refines CSpecy.

Let CSpecy, CSpecy be the contractual CO-OPN/2 specifications of Examples 5.2.8 and
5.2.1/ respectively. Let Ao be the CO-OPN/2 refine relation of Example 5.2.15. The
following holds:

AO((I)O) g (I)l.

Indeed, Example 5.2.2/ shows that Ao(¢y1) = 1, Ao(de) = 3, and Ao(¢s) = ¢5. Formulae
oL, bk, bt are additional formulae required by CSpecy for further refinement steps. In
addition, these formulae have no equivalent in Specy, they are specific to Specy.

If we consider now another contract ®[ = ®g U {44} instead of @y, we obtain a new
contractual CO-OPN/2 specification, C'Spec), = (Specy, ). Given this new contract,
C'Specy above does not refine C'Specy, as shown in the following example.

Example 5.2.28 (' Specy does not refine C Specy,.

Let &) = &g U {4}, CSpecyy = (Speco, ®y), and CSpeey be the contractual CO-OPN/2
specification of Example 5.2.14. Let Ao be the CO-OPN/2 refine relation of Fxample 5.2.15,
Ay = Ao U{(packs, packs)}, and A} be the formula refinement univocally defined from Xj.
The following holds:

Ao(®5) £ @1
Indeed,

Ay(¢4) = <pack;.create><pack;.create>
<the-conveyor-belt . put(pack; )><the-conveyor-belt . put(packsy)>
(<the-conveyor-belt . get(pack )><the-conveyor-belt . get(packs)> A
<the-conveyor-belt . get(pack, )><the-conveyor-belt . get(pack,)>)T.

We can easily see that A)(¢pq) # ¢4, and consequently N)(pq) € @1, thus CSpec, does not
refine C Specg.

The particularity of the behaviour of every instance of the conveyor-belt type is that
it acts as a FIFO buffer. For this reason, it ts not able to extract packy before packy,
if packy has been stored before packs. Thus Aj(ps) is not a HML property of Specy and

cannot be part of any contract on Specy.

Remark 5.2.29 Biberstein [1/] shows that the heap type and the conveyor-belt type
are not subtypes, since they are not bisimular. Formulae ¢4 and ¢} show this fact.

It is interesting to note that, although these types are not bisimular, their corresponding
Class modules can refine each other; it all depends on the contracts.
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5.3 Compositional CO-OPN/2 Refinement

As discussed in Section 3.4, there are two ways of defining compositional specifications:
hierarchical specifications and parameterised specifications. The refinement of hierarchical
specifications needs only the refinement of complete specifications? to be defined. The
refinement of parameterised specifications needs as well the refinement of incomplete
specifications to be defined. Since, the refinement of incomplete CO-OPN /2 specifications
is not defined, and since CO-OPN/2 specifications are naturally hierarchic (no cycles),
we define hierarchical compositional operators on contractual CO-OPN/2 specifications.
The CO-OPN/2 compositional refinement is then defined as the replacement of every
high-level component by a lower-level component that refines it.

This section defines compositional contractual CO-OPN/2 specifications, the refinement
of compositional contractual CO-OPN/2 specifications, and shows that this refinement is
actually compositional.

5.3.1 Compositional Contractual CO-OPN/2 Specifications

A hierarchical compositional operator adds to a set of complete specifications, some CO-
OPN/2 ADT and Class modules. The added part considered by itself is an incomplete CO-
OPN/2 specification; the set of complete specifications together with the added modules
form a complete specification.

We define first incomplete contractual specifications, and second the CO-OPN/2 hierar-
chical operator.

An incomplete CO-OPN/2 specification is, like a CO-OPN/2 complete specification, a
set of ADT modules and a set of Class modules. The only difference is that the ADT or
Class modules forming the incomplete specification may use elements that are not defined
in these modules.

Definition 5.3.1 Incomplete CO-OPN/2 Specification.
An incomplete CO-OPN/2 specification denoted, ASpec, is a set of ADT modules and a

set of Class modules, 1.e.,

ASpec = {(MdA)i | 1§i§n} U {(Mdc)j | 1§j§m}.

Definition 4.1.8 (global signature, global interface) can be applied to complete as well as
to incomplete CO-OPN/2 specifications. Thus, an incomplete CO-OPN/2 specification
has a global signature and a global interface. It is worth noting that the global signature,
and the global interface of an incomplete CO-OPN/2 specification, are incomplete too,
i.e., they contain only elements of the incomplete CO-OPN /2 specification. Notation 5.1.1

2a specification is complete when it uses elements locally defined.
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is extended to incomplete CO-OPN/2 specifications, as well as Definition 4.1.12 (terms),
Definition 5.1.3 (observable events) and Definition 5.1.6 (HML formulae). Again, it is
worth noting that a HML formula on an incomplete CO-OPN/2 specification contains
only terms or events that are terms or events of the incomplete CO-OPN /2 specification.

An incomplete contractual CO-OPN/2 specification is a pair made of an incomplete CO-
OPN/2 specification and a set of HML formulae.

Definition 5.3.2 Incomplete Contractual CO-OPN/2 Specification.

Let ASpec be an incomplete CO-OPN/2 specification, X = (X;)ses be a S-disjointly-
sorted set of variables, and A® C PROPagpec,x be a set of HML formulae on ASpec. An
incomplete contractual CO-OPN/2 specification, noted AC Spec, is a pair:

AC Spec = (ASpec, AD).

The contracts of contractual CO-OPN/2 specifications are satisfied by the model of the
specification part. It is different for incomplete contractual CO-OPN/2 specifications, the
contract part is only a set of HML formulae and not a set of HML properties, since there
is no model attached to an incomplete specification. In addition, these HML formulae are
expressed exclusively on the incomplete specification.

A k-ary hierarchical compositional operator on contractual CO-OPN/2 specifications is a
partial function that builds, from a set of complete contractual CO-OPN/2 specifications
and an incomplete contractual CO-OPN/2 specification, a new complete contractual CO-
OPN/2 specification. This new complete contractual CO-OPN/2 specification is obtained
by the union of the complete and the incomplete contractual CO-OPN/2 specifications.

Definition 5.3.3 CO-OPN/2 Hierarchical Operator.

Let AC Spec = (ASpec, A®) be an incomplete contractual CO-OPN/2 specification. Let
CSpec; = (Spec;, ®;) (1 <1 < k) be k well-formed CO-OPN/2 contractual specifications.
A k-ary CO-OPN/2 hierarchical operator based on AC Spec is a partial function, noted
facspee : CSPEC® — CSPEC, such that:

C Spec = (Spec, @), such that:
Spec = Uie{l,...,k} Spec; |J ASpec and
¢ = Uie{l,...,k} ¢ U A®  and
(Spec, @) is a complete contractual
CO-OPN/2 specification,

undefined otherwise.

facspee(CSpecy, ... ,CSpecy) =

There are several cases where facgpe. can be undefined:

e Spec is incomplete, i.e., the modules of ASpec need elements that are not defined
in Uie{l,...,k} Spec;
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e Spec is complete but not well-formed, i.e., the modules of Spec have cycles;

o Spec is well-formed but the model of Spec does not satisfy ®. Two cases occur:
(1) the contract A® on the incomplete contractual CO-OPN/2 specification is not
satisfied by the model of the complete specification Spec; this is the case when one
or more formulae of A® depend, in an unobservable way, on the underlying Spec;,
that are such that they do not ensure A®; (2) there is some 7, such that the contract
®; of the contractual CO-OPN/2 specification C Spec; that is satisfied by the model
of Spec;, is not satisfied by the model of Spec. This last case is due to the fact that
instances of modules of ASpec make use of instances of modules of Spec; in a way
that some properties of ®; are violated.

Example 5.3.4 below shows three cases of compositional contractual CO-OPN /2 specifica-
tion. A first case where the compositional contractual CO-OPN /2 specification is defined,
and two cases where it is not. These two cases correspond to (1) and (2) above.

Example 5.3.4 Compositional Contractual CO-OPN/2 Specifications.

We consider an incomplete contractual specification AC Spec = ({(Md)s}, A®), with
Ad = {<a.m> T}. We consider as well a complete contractual CO-OPN/2 specification
CSpec, = ({(MdA)BlackTockenS, (MdC)B},CI)1>, where ®; = {<b.put><b.get> T}. ADT
module BlackTockens define the blacktocken type and generator @,

Figure 5.5 shows three possible cases for Class A, defining static object a and type ta,
and Class B, defining static object b and type tb. In all these cases, if it is defined,
facspec(CSpecy) should be equal to (Spec, @) where:

SPGC :<{(MdA>BlackTockensa (MdC)A; (MdC>B}
¢ = { <b.put><b.get> T, <a.m> T}.

Class A m with b.get Class A m with b.get Class A

Q

: : at with b.get
enable:blacktocken ﬁ

|
|
|
|
|
|
|
|
|
l
|
a: ta | a: ta
L get put

|
|
I
I
I
I
I
I
I
1
a: ta
|
y

put get put get

|
|
|
|
|
2

storage:blacktocken storage :blacktocken storage:blacktocken

J J J
Class B b: tb Class B b: tb Class B b: tb

(a) Defined (b) Undefined (c) Undefined

Figure 5.5: Compositional Contractual CO-OPN/2 Specifications
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Spec is a well-formed CO-OPN/2 specification in the three cases, however (Spec, @) is a
contractual CO-OPN/2 specification in the first case only, i.e., facsye.(CSpecr) is defined
in the first case only. Indeed:

o Case (a): the two HML formulae of ® are actually satisfied by the model of Spec.

o Case (b): the HML formula <a.m> T is not satisfied by the model of Spec. Indeed,
method get of static object b cannot fire without method put having fired previously
(place storage being empty). Thus, method m cannot fire on state Initg,.. (i.e.,
immediately after static objects a and b have been created).

o Case (c): the HML formula <b.put><b.get> T is not a HML property of Spec.
Indeed, transition t of static object a fires as soon as method get is firable. For
this reason, the firing of method get always occurs in an unobservable way, and
consequently the event b.get cannot be an event of the transition system of Spec.

In the rest of this chapter, we use as synonyms the terms complete CO-OPN/2 specifica-
tion and CO-OPN/2 specification, as well as the terms complete contractual CO-OPN/2
specification and contractual CO-OPN/2 specification.

5.3.2 Compositional Refinement

The CO-OPN/2 compositional refinement consists of replacing every complete compo-
nent of a high-level compositional contractual CO-OPN/2 specification by a complete
component that refines it; and by replacing the incomplete component by an incomplete
component that syntactically refines it, i.e., the translated high-level incomplete contract
is part of the lower-level incomplete contract.

First we define the syntactic refinement of incomplete CO-OPN/2 contractual specifica-
tions, and show then that replacing every (complete and incomplete) component of a
high-level compositional contractual CO-OPN/2 specification, by a component that re-
fines it, leads to a lower-level compositional contractual CO-OPN/2 specification that
refines the high-level one.

We extend trivially Definition 5.2.9 (element of a contractual specification), Definition 5.2.12
(CO-OPN/2 refine relation), and Definition 5.2.22 (CO-OPN/2 formula refinement) to
incomplete specifications. Thus, we can define the refinement of incomplete contractual
CO-OPN/2 specifications in a similar way to that of complete contractual CO-OPN/2

specification.

Definition 5.3.5 Syntactic Refinement of Incomplete Contractual CO-OPN/2 Specifica-
tion.

Let AC Spec = (ASpec, A®), and ACSpec’ = (ASpec’, A®') be two incomplete contrac-
tual CO-OPN/2 specifications. Let \* be a refine relation on elements of AC Spec and
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AC Spec, and A® the corresponding formula refinement. AC Spec’ syntactically refines
AC Spec, noted AC Spec T2 AC Spec iff:

AR (AD) C A

Remark 5.3.6 It is important to note that even though we note in a similar way the
refinement of complete contractual CO-OPN/2 specifications and the refinement of in-
complete contractual CO-OPN/2 specifications, the former is semantically correct, while
the latter is only a syntactical verification, but does not infer anything about the satisfac-
tion / non-satisfaction of the formulae of the contract.

Theorem 5.3.1 CO-OPN/2 Compositional Refinement.

Let ACSpec = (ASpec, A®), and ACSpec = (ASpec’, A®') be two incomplete con-
tractual CO-OPN/2 specifications. Let facspec, facspee be k-ary CO-OPN/2 hierarchi-
cal operators based on ACSpec and ACSpec respectively. Let CSpec; = (Spec;, @),
(1 <@ < k) be k disjoint contractual CO-OPN/2 specifications and C Spec; = (Spec, %),
(1 <i <k) be k disjoint contractual CO-OPN/2 specifications such that:

CSpec = (Spee, ®) = facspec((Specy, 1), ..., (Speck, Pr)) and

CSpec = (Spec, ') = facspee ((Specy, @), ..., (Spec,, @) are defined. The following
holds:

AC Spec C* ACSpec’ and (Spec;, ®;) C (Spect, @), (1 <i <k) =
fACSpec((Specla (I)1>a LRI <SP€Cka (I)k>) E fACSpec’(<Spec,17 (I)/1>a LI <Spec;c, (I);c>)

Proof.
We must prove that there exists A : ELEM¢gpec — ELEMegpee, a refine relation, such that
A(®) C 9.

We have that:

ELEMcspe: = U ELEM¢gpec; U ELEMac spec and
te{l,...,k}

ELEMggpesr = U ELEMCSM U ELEMAcSpect -
te{l,...,k}

In addition, we have that:

ACSpec C* ACSped = IN* : ELEMaAgSpee — ELEMagspee 8.t. A2 (A®) C AP
(Spec;, ®;) C (Spec;, @) = I\ s.t. Ay(9;) C @, (1 <7< k).

Thus, we construct the CO-OPN/2 refine relation A : ELEM¢cspee — ELEMeg,ee in the
following way:

Ai(e), if e € ELEMgspe, ,
Ae) = < A2 (e), if e € ELEMacspec,

undefined otherwise.



148 CHAPTER 5. CO-OPN/2 REFINEMENT

) is actually a CO-OPN/2 refine relation. Indeed, first, A*, \; (1 < i < k) are CO-OPN/2
refine relations, thus A is total on the contract; second, CSpec; (1 <@ < k) are all disjoint,
and CSpec, (1 <1 < k) are all disjoint, thus A is functional and injective.

The formula refinement is given by:

Az(¢)7 1f¢€ (I)za
M) = § A% (9), if ¢ € AD,

undefined otherwise.

Thus, A(®;) C @, (1 <7< k), and A(A®) C Ad’. Finally, we have trivially A(®) C @'
|

Remark 5.3.7 The condition ”facspes ((Speci, @), ... ,(Spec,, ®,)) is defined” is es-
sential in the Theorem above. Indeed, replacing every CSpec; by any CSpec., such
that C Spec; T CSpec. is not sufficient to ensure facspec((Speci, ®1), ..., {(Speck, Pr)) C
facspee ((Specy, @), ..., (Spec,, ®))), because it is not sufficient to ensure that

facspee ((Specy, @), ..., (Spec,, ®))) is defined. As shown in Fxample 5.3.4, it may hap-
pen that HML formulae of A®' are not satisfied by C Spec’, because the underlying Spec,
are such that A®' cannot be satisfied. Similarly, HML formulae of ®. may be not satisfied
by CSpec because of ASpec’. Thus, even though the contract A® is syntactically pre-
served and the contracts ®; (1 <1 < n) are semantically preserved when we consider the
separate refinements C Spec; C CSpec,, it may happen that these contracts are no longer
preserved when we consider the whole composition.

The following example illustrates the case, where, even though every complete contrac-
tual CO-OPN/2 specification CSpec; is replaced by a complete contractual CO-OPN/2
specification C Spec. that correctly refines it, and an incomplete contractual CO-OPN/2
specification AC Spec is replaced by an incomplete contractual CO-OPN/2 specification
that syntactically preserves its contract, the compositional refinement is incorrect.

Example 5.3.8 Incorrect Compositional CO-OPN/2 Refinements.

We consider example 5.3.4 and Figure 5.5. We note the incomplete contractual specifica-
tion of each case: ACSpec® = ({(Md®)3}, A®), with A® = {<a.m> T} (a € {a,b,c}).
As well we note the complete underlying specification

CSpect = ({(Md™)81 atockens (Md)3Y, 1), where &, = {<b.put><b.get> T}. Fi-
nally, we note CSpec® = facspees (CSpect) (o € {a,b,c}).

The following holds:

o CSpect C CSpect and AC Spec® C2 AC Spec® but C Spect Z C Spec®.
The refine relation is the identity. HML formula <b.put><b.get> T is satisfied
by the model of CSpec? and that of C Spect. In addition, HML formula <a.m> T
is a HML formula on ACSpec®. However, this last formula is not satisfied by the
model of C Spec®.
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o (USpect C CSpect and AC Spec® 2 AC Spect but C Spec® IZ C Spece.
Formula <b . put><b.get> T is not satisfied by the model C Spec®.

Example 5.3.9 shows a case where the compositional refinement is correct.

Example 5.3.9 Correct Compositional CO-OPN/2 Refinement.

We consider two incomplete contractual specifications AC Spec = ({(Md)s}, A®), and
ACSped = ({(Md®)x}, A®), with A® = {<a.m> T}; and two complete contractual
CO-OPN/2 specifications CSpec; = <{(MdA)BlaCkTockenS,(MdC)B},CI)1>, and CSpec; =
<{(MdA)BlackTocken57 (MdC)Bv}, (I)1>, with ¢, = {<b . put><b . get> T}

Left part of Figure 5.6 shows CSpec = facspec(CSpecy). The right part shows CSpec’ =
fACSpec’(CSpecll)'

Class A Class A’

m with b.get

m with b.get

I
I

I

I

I

I

I

I

I

I

I

I

I

put i get put

consult

storage:blacktocken storage:blacktocken

Class B b: tb Class B’ b: tb’

(a) Abstract (b) Concrete

Figure 5.6: Correct Compositional Refinement of CO-OPN/2 Specifications

We have ACSpec C» AC Spec, and CSpec; T CSpec;, and since CSpec is defined
(formulae of contract @, U AP are satisfied by CSpec’ ), thus we have CSpec T C Spec'.
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Chapter 6

CO-OPN/2 Implementation

Chapter 5 applies the theory of refinement, defined in Chapter 3, to the CO-OPN/2
formal specifications language. In a similar way, the current chapter applies the theory of
implementation, defined in Chapter 3, to the CO-OPN/2 language and to object-oriented
programming languages.

A program is abstractly defined with ADT and Class modules of program, that are very
similar to ADT and Class modules of CO-OPN/2 specifications. The HML logic is used
for expressing formulae on programs; and the implementation relation differs only slightly
from the refinement relation.

First this chapter defines contractual programs. Second, an implement relation, a formula
implementation, and an implementation relation on contractual CO-OPN/2 specifications
and contractual programs. Third, it presents some compositional results on the imple-
mentation of contractual CO-OPN/2 specifications. Examples of this chapter are all
related to Java, since implementations using this programming language have been more
particularly studied.

6.1 Contractual Programs

Even though non object-oriented programming languages can be used to implement CO-
OPN/2 specifications, we present the implementation of CO-OPN/2 specifications by
object-oriented programs.

An object-oriented program can be viewed as a CO-OPN/2 specification, except for the
body part of Class modules, which is not given by Petri nets elements but by program
instructions. Therefore, most definitions related to CO-OPN/2 specifications can be ex-
tended to object-oriented programs. Among others, observable events of programs are
similar to observable events of CO-OPN/2 specifications. Consequently, HML formulae
on programs are defined like HML formulae on CO-OPN/2 specifications, i.e., they are
sequences of observable events of programs. A contract on a program is a set of HML
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formulae on the program, that is satisfied by the execution of the program.

This section defines a running example, i.e., a Java program intended to implement run-
ning example of Chapter 5; programs; HML formulae on programs; contracts; and con-
tractual programs.

6.1.1 Running Example

Examples of this chapter use Java classes of Figures 6.1 and 6.2.

1 class JavaHeap extends Vector{

2 // Public Static Variables

3 public static JavaHeap theheap = new JavaHeap();

4

5 // Inserts a Packaging box at the end of theheap

6 public static void insertElement(JavaPackaging box){
7 theheap.insertElementAt (box,theheap.size());

8 }

9

10 // Removes a Packaging box at a Random Position

11 public static JavaPackaging removeElement (){

12 JavaPackaging elem;

13 int 1i;

14 i = (int) (Math.random() * theheap.size()) % theheap.size();
15 elem = (JavaPackaging) theheap.elementAt(i);

16 theheap.removeElementAt(i);

17 return elem;

18 }

19 %

1 class JavaPackaging extends Object {

2 // Simulates the Insertion of a Praline into a Packaging box
3 public void fill(boolean P){

4 if (P == true) {
5

6

7

System.out.println("One more Praline");}

Figure 6.1: Java Classes for C Progg

Figure 6.1 shows two Java classes: JavaHeap and JavaPackaging. The JavaHeap class
defines a static object called theheap. It is used to store and remove objects of type
JavaPackaging into and from the static object theheap. FElements are removed in a
random order. Class JavaHeap is a sub-class of Class Vector which enables to store
objects in an ordered structure. It is worth noting that in Java every Class is a sub-class
of Class Object.
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1 class JavaConveyorBelt extends Vector{

2 // Public Static Variables

3 public static JavaConveyorBelt theconveyorbelt = new JavaConveyorBelt();
4

5 // Inserts Packaging box at the end of theconveyorbelt

6 public static void insertElement(JavaPackaging box){

7 // Limited size

8 if (theconveyorbelt.size() < 51) {

9 theconveyorbelt.insertElementAt (box,theconveyorbelt.size());}
10 }

11

12 // Removes Packaging box at the beginning of theconveyorbelt

13 public static JavaPackaging removeElement (){

14 JavaPackaging elem;

15 elem = (JavaPackaging) theconveyorbelt.elementAt(0);

16 theconveyorbelt.removeElementAt (0);

17 return elem;

18 }

19 3

1 class JavaDeluxePackaging extends JavaPackaging {

2 // Simulates the insertion of a Praline and a Truffle

3 // into DeluxePackaging box

4 public void fill(boolean P){

5 if (P == true) { // Praline

6 super.fill(P);}

7 else // Truffle

8 System.out.println("One more Truffle");

9 }

10 3

Figure 6.2: Java Classes for C' Prog,

Figure 6.2 shows two Java classes: JavaConveyorBelt and JavaDeluxePackaging. The
former is similar to the JavaHeap class, except that the static object is called
theconveyorbelt and that objects of type JavaPackaging are removed in a FIFO man-
ner. Since the class JavaDeluxePackaging is also defined, objects of type JavaPackaging
but also of type JavaDeluxePackaging can be stored and removed into and from
theconveyorbelt.

On the basis of these classes, we will show the following:

o the JavaHeap and the JavaPackaging classes can be used to form a contractual
program C Progg that implements contractual CO-OPN/2 specification C Specg of
Example 5.2.8. They cannot be used to implement C' Spec; of Example 5.2.14;

e the JavaConveyorBelt, the JavaPackaging, and the JavaDeluxePackaging classes
can be used to form a contractual program C Prog; that implements both CSpecg

and C Spec;.
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Appendix A.3 shows a Java Class ChocFactory defining a main method using Java classes
defined above; and Appendix A.5 shows an example of execution of C Progy and C Prog, .

6.1.2 Programs

Usually, object-oriented programming languages enable to define classes and sub-classes.
Instances of sub-classes can be used instead of instances of super-classes. However, sub-
classes are not sub-types of the type of their super-class as defined in the framework
of CO-OPN/2. Indeed, object-oriented programming languages allow methods defined
in a super-class to be newly defined in sub-classes. Thus, the behaviour of instances
of the sub-classes can be completely different from that of instances of the super-class,
and consequently types defined by sub-classes cannot be sub-types of the type of the
super-class.

Object-oriented programming languages allow to define classes, static objects, and public
methods, and usually have primitive types. Classes correspond to CO-OPN/2 Class
modules, and primitive types correspond to CO-OPN/2 ADT modules. A program is
described by a set of classes and a set of primitive types. The exported part of the
classes and of the primitive types is very similar to the exported parts of CO-OPN/2
Class modules and CO-OPN/2 ADT modules respectively, and thus can be abstractly
described in a similar way.

Moreover, object-oriented programming languages allow instances of classes to be created
dynamically. Even though it is hidden for the programmer, a mechanism similar to the
one defined in CO-OPN/2 for defining object identifiers (with init., new.(init.), etc.),
must be used in order to correctly identify instances dynamically created.

Thus, without loss of generality, we assume the following:

e we have an object-oriented programming language without sub-typing (with sub-
classing only).

e every program is complete, i.e., every class or primitive type necessary for the pro-
gram is defined in the program;

e the name of a class type is the same as the name of the class; this is different from
CO-OPN/2 class types which have usually a different name than the Class module
where they are defined;

e primitive types are defined with ADT modules defined in a similar way as CO-
OPN/2 ADT modules (with an empty sub-sorting relation);

e class interfaces of the program are described with interfaces defined in a similar way

as CO-OPN/2 class interfaces;
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e Class modules of the programs are different from CO-OPN/2 Class modules, how-
ever they contain the class interface;

e a program is a set of ADT modules (for the primitive types) and Class modules of

programs (different from CO-OPN/2 Class modules);

e every program has a global signature and a global interface defined in a similar way
as global signatures and interfaces of CO-OPN/2 specifications (with the sub-typing
relationship used for representing the sub-classing relationship).

Given the assumptions above, a program is very similar to a CO-OPN/2 specification,
except for the body part of the Class modules, i.e., the Class module without the class
interface, which are defined differently from the body part of CO-OPN/2 Class modules.

Notation 6.1.1 Class Body of Program.
We denote Bodylcgmg the body part of a Class of program Prog.

ADT modules of programs are defined as ADT modules of CO-OPN/2 specifications, see
Definition 4.1.15.

Notation 6.1.2 ADT module of Program.
We denote Mdf;mg an ADT module of a program Prog.

A Class module of a program is made of two parts: a class interface (see Definition 4.1.5),
and a class body.

Definition 6.1.3 Class module of Program.
A Class module of a program, noted Mdlcjmg, s a pair

MdS

Prog

= (0%

Prog>

BOdy]CD:T’Og) bl

where Qp,,, = ({c}, <, M) is a class interface, and Bodysp,,, is the body part of the class.

A program is a set of ADT modules of program and a set of Class modules of program
such that the program is complete, i.e., every element used in the program is defined in
a ADT or Class module of the program.

Definition 6.1.4 Program.
A program, noted Prog, is a set of ADT modules and Class modules of program, i.e.,

Prog = {(MdA

Prog

), | 1<i<n}U{(Md5

Prog)]‘ | 1§J§m}a

such that Prog is complete.
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Definitions 4.2.1 (ADT module induced by a Class module), 4.1.8 (global signature and

global interface) are extended to programs.

We use the following notations:

Notation 6.1.5 Programs, Signature, Interface.
We denote PROG the set of all programs.

Let Prog = {(MdA

ng) |1§i§n}U{ (MdS ) |1<]<m} be a program, and

Prog
zpmg:< UJstuv J e UJEU Y FQJC>.
1<i<n 1<5<m 1<i<n 1<5<m
be the global signature of Prog, and
ey = U e (U < U me U o)),
1<5<m 1<5<m 1<5<m 1<5<m

be the global interface of Prog.
We denote:

S]érog = U SZA S]grog = U {C]} SPTOQ S]érog U S]grog

1<i<n 1<5<m
A _ ) C _ _ A C
FProg_ U F; FProg_ U FQ]C FPTOQ_FPT‘OQUF
1<i<n 1<5<m
MPr’og = U M] OProg = U O]
1<j<m 1<j<m

From the global signature of the program and its modules, it is possible to define the

presentation of the program Pres(Prog) in a way similar to the presentation of CO-
OPN/2 specifications.

Definition 6.1.6 Presentation of a Program.

Let us consider a program Prog = {( Mdémg) | 1<i<n}uU{( Mdpmg) | 1<j<m}
such that (Mdémg) (XA X, ®,) and (Mdpmg) (Q5, (Bodyg,,,);). Let Sppog be ils
global signature and MdQc = (EQC,VQE,CI)QJQ (1 <5< m) be the ADT modules induced
by the Class modules of Prog The presentation of Prog, noted Pres(Prog), is defined as
follows:

Pres(Prog) = <Epmg, U X; U U Vﬂc U o, U U (I)Qc>

1<i<n 1<5<m 1<i<n 1<5<m
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Given the presentation, the semantics of Pres(Prog) is given by an algebra B which
depends on the target machine where the program is executed. Thus, B may be different
from the initial semantics of Pres(Prog). This is different from CO-OPN/2 specifications,
where the semantics of a the presentation of Spee, noted Sem(Pres(Spec)), is the initial
semantics of Pres(Spec).

The transitions of the transition system of Prog are made of states and events. States are
built on B, a semantics of the presentation of Prog. States depend on the program and
the machine where the program is executed. They have a different structure than states
of a CO-OPN/2 specification. Events are method calls constructed over the algebra B,
and the methods of the global interface of Prog. Thus, we can assume that the set of

events of the transition system is a subset of EB,Mpmg,B 5500, (see Definition 4.1.17) made

of the method calls without the synchronisations.

Notation 6.1.7 States and Transition System of a Program.
We denote Statep,., 5 the set of possible states of the execulion of the program Prog with
algebra B as the semantics of the presentation of Prog.

We denote TSprog5 C Statep,oqp X EB,Mpmg,B %00y X Stateprog p the transition system

of Prog with algebra B as the semantics of the presentation of Prog.

Example 6.1.8 Running Fxample: Progy and Prog,.
We define the following Java programs:

PTOgO = {(MdProg)bOOIeaIU (MdProg)lnt7 (MdProg)ObJeCt7 (MdProg)VeCtoﬁ
MdProg Random (MdProg)JavaPackagingy (MdProg)JavaHeap}

( )
PTOgl = {( Prog)bOOIeaIU (MdProg)lnt7 (Md%rog)ObjeCU (Md%rog)veCtOH
(Mdg,,,)

C
Prog/JavaPackaging; (Mdprog ) JavaDeluxePackaging; (Mdprog ) JavaConveyorBelt:ll> .

In order to be complete, a program using Classes JavaPackaging, and JavaHeap, or
JavaDeluxePackaging and JavaConveyorBelt, must as well use Classes Object and
Vector. Indeed, every Java Class is a sub-class of Class Object, and Classes JavaHeap

and JavaConveyorBelt are sub-classes of Class Vector. In addition, Progy has to use
Class Math since it needs some of its methods.

Appendix A.3 gives the complete Java sources together with an extra class ChocFactory
using them. Appendix A.4 gives the global signature and the global interface of Progg
and Prog,.

6.1.3 HML Formulae on Programs

HML formulae on CO-OPN /2 specifications are defined on the basis of the global interface,
the global signature of CO-OPN/2 specifications, and a set of variables. HML formulae
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on programs are defined as well on the basis of the global interface, the global signature
of programs, and a set of variables. Thus, HML formulae on programs are very similar to

HML formulae on CO-OPN/2 specifications. The differences between HML formulae on
programs and those on CO-OPN/2 specifications are the following:

e since the global signature of CO-OPN/2 specifications define sub-sorting and sub-
typing relationships, terms of object identifiers of the form sub. . or super, . are
allowed to appear in HML formulae on CO-OPN/2 specifications. Object-oriented
programming languages do not define sub-sorting and sub-typing relationships.
Therefore, HML formulae on programs do not contain terms built with sub, . or
super, ., functions;

o every CO-OPN/2 Class module has a default constructor, called create, and a de-
fault destructor, called destroy. Programming languages usually have default con-
structors and destructors for every class, however the default constructor is not
called create. We assume that the programming language defines for every class a
default constructor with no parameters, whose name is the name of the class, and
a default destructor called destroy. In the case of CO-OPN/2 specifications, create
and destroy are not part of Mp,,,. Similarly, for programs, we assume that the
default constructor and the destroy method are not part of Mp,,,.

Terms are defined with the global signature and a set of variables only, Definition 4.1.12
is extended trivially to terms of Prog with variables.

Notation 6.1.9 Terms of Program with Variables.

Let Prog be a program, YXp,o, be the global signature of Prog and Y = (Y;)sesp,,, @ SProg-
disjointly-sorted set of variables, we denote Ty, .y = ((Tsp,., v )s)sesp,., the set of terms
of Prog with variables in'Y .

Observable events of programs differ slightly from observable events of CO-OPN/2 speci-
fications since create method is not available by default in a program, a method with the
name of the class is available instead.

Definition 6.1.10 Observable Events of Program with Variables.
Let Prog be a program, Y = (Y;)sesp,,, be a Sprog-disjointly-sorted set of variables,
T, 0¥ be the set of terms buill over Yp,,, and Y. The sel of observable events of Prog
with variables in 'Y, noted Eventp,.qy, ts the least set recursively defined as follows:
t.m € Eventp,oyy ifft € (Isp,,v)e, me €M
t.m(ty, ... tx) € Fventproyy ifft € (Tsp,yy)e, Me:81,... ,8: €M,
tZ E (TEProgvy)si (1 S L S k)
t. c() € Eventprogy ifft € (TE,X)C , CE S¢
t.destroy € Eventp o5y ifft e (Tux)., c€ S¢
er /| ... /] en € Eventpoyy iff e; € Eventprogy.
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HML formulae on programs are defined exactly as HML formulae on CO-OPN/2 specifi-
cations except that they are based on observable events of programs, instead of observable
events of CO-OPN/2 specifications.

Definition 6.1.11 HML Formulae of Programs.
Let Prog be a program, Y = (Yi)sesp,,, be a Sproy-disjointly-sorted set of variables,
Eventp,.,y be the set of observable events of Prog with variables in' Y. The set of HML

formulae that can be expressed on Prog and Y, noted PROPp,.,y, ts the least sel such
that:

T € PROPp,o4y
—¢ € PROPp,oyy  if ¢ € PROPp,oy
¢ N1p € PROPp,ogy  if ¢,10 € PROPP,ogy
<e> ¢ € PROPp,oyy if ¢ € PROPp,yyy,€ € Evenlpyy.

Given ¢ : Y — B an assignment of the variables to B, a semantics of the presentation of
Prog, the interpretation of terms of the program, u”, is given by Definition 4.2.4.

The evaluation of observable events of a program is the same as that of observable events
of a CO-OPN/2 specification, except for the default constructor method.

Definition 6.1.12 FEvaluation of Events
Let Prog be a well-formed CO-OPN/2 specification, Y = (Y;)sesp,., be @ Sprog-disjointly-
sorted sel of variables, B be a semantics of the presentation of Prog, Eventp.,,y be
the set of observable events of Prog with variables in Y, o be an assignment from Y
to B, and p° be the interpretation of Ts, v in B accmding to 0. The evaluation of
Eventprogy according to o is a function, noted [[.]|” : Eventp,ogy — Eg Miprog B,SS

defined as follows:

Prog

t.m € Eventp,,yy = [[t.m]]” = p’(t).m
t.m(ty, ... tx) € Bventprogy = [[t.m(ty, ..., t)]]” = p7(t).m(p’(t1), ... , 1" (tk))
t.c() € Eventp,ogy = [[t.c()]]” = 7 (¢). c()
t.destroy € Eventp,.,y = [[t.destroy]]” = p(t).destroy
[

er /[ - ] en € Boentprogy = (e [/ - [ el ={lell” [/ - /] [[en]]”

We extend below Notations 5.1.9 (HML formulae), 5.1.22 (transition systems, states),
and 5.1.29 (models, Init state), in order to let them take programs into account.

Notation 6.1.13 We denote PROP the set of all HML formulae that can be expressed
on CO-OPN/?2 specifications and sets of variables, and on programs and sets of variables:

Prop = UspeceslsEc,Xex PROPgpec,x UngePRoe,Yex PROPprog,y -
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We denote TS the set of all transition systems of CO-OPN/2 specifications and of pro-
grams: TS = USpecESPEC SSem 4(Spec) UPTOQGPROG T Sprog.B-

We denote MOD the set of all models of CO-OPN/2 specifications and programs:
Mop = USpeceSPEc MODSPEC UProgePROG TSPT‘O%B'

We denote St the set of all states of transition systems of CO-OPN/2 specifications and
programs: St = USpecESPEC StateSﬁBC,A UProgEPROG Stateprog,B .

Let Prog be a program, we denote Initp,., the first state of T'Sp,.q,5 where all the static
objects of Prog have been created.

Given the evaluation of events of Definition 6.1.12, the satisfaction of HML formulae
on programs is similar to that of HML formulae on CO-OPN/2 specifications: a HML
formula is satisfied in a given state st, provided there is path in the transition system of
the program such that the formula is the beginning of this path.

Definition 6.1.14 HML satisfaction relation of HML formulae on Prog and Y .

Let Prog be a program, Y = (Y;)sesp,,, be a Sprog-disjointly-sorted set of variables,
PROPp, o5y be the set of HML formulae that can be expressed on Prog and Y, B be a
semantics of the presentation of Prog, and o be an assignment fromY to B. Let T'Sp,.4 B
be the transition system of Prog, st € Statep,,,p be a reachable state of T'Sp,..8, and
¢,% € PROPp,.,y be HML formulae on Prog and Y. The HML salisfaction relation of
HML formulae on Prog and Y given the assignment o, noted Fyprp pro,y © TS X St %
PRroP, s the least set such that:

T'Sprog,Bs 8t Fiaar progy T

T'Sprog,Bs St Fharp progy —9 U T'Sprog,B: St FEnL Progy @

T'SProg.By St EGML Progy @AY Wl TSProg.By SUEGML Progy ¢ and
T'Sprog,B; st ':]U'—IML,Prog,Y ¥

T'Sprog.Bs St FypML Progy <€> ¢ iff 3 (st,[[e]]7, st') € TSprogs and

T'Sprog.B, st! ':;IML,Prog,Y .
We extend below Definition 5.1.27 to the satisfaction of HML formulae on programs.

Definition 6.1.15 HML Satisfaction Relation.
The HML satisfaction relation, noted Egpr, € TS x St x PROP, is such that:

':HML: U ( U ]UiTML,Spec,X)

SpeceSPEC,XEX o:X —Sem(Pres(Spec))EASSIGN

U ( U ':%ML,Prog,Y)‘

ProgeProGg,YEX o:Y—BEASSIGN
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Definition 5.1.30 is extended below to the satisfaction relation on models of programs and

HMUL formulae.

Definition 6.1.16 Satisfaction Relation.

Let Mod € MoD be a model of a CO-OPN/2 specification or a program with Init the
first state after the creation of all static objects. Let ¢ € PROP be a HML formula. The
satisfaction relation, noted E C MoOD x PROP, is such that:

Mod E qb A= ]\406[7 Init Egag qb

If Mod is the step semantics of a CO-OPN/2 specification Spee, then Init = Initg,.; if
Mod is the transition system associated to a program Prog, then Init = Initp,,,.

6.1.4 Contractual Programs

A HML property of a program Prog is a HML formula such that there exists an assignment
of the variables that let the formula be satisfied by the model of Prog.

Definition 6.1.17 HML Properties of Program.

Let Prog be a program, B be a semantics of Pres(Prog), Y = (Y;)sesp,,, b€ @ Sprog-
disjointly-sorted sel of variables, PROPp,,,y be the set of HML formulae that can be
expressed on Prog and Y. A HML property b on Prog with variables in 'Y is a HML
formula on Prog and Y satisfied by the transition system of Prog, i.c.,

TSProg,B = 1/)

The set of all HML properties of Prog with variables in'Y, noted Wp,,qy, s such that:

Uprogy = {0 € PROPp,oyy | T Sprog.B E ¥}

Remark 6.1.18 A HML formula v on Prog is a HML property of Prog iff

TSProg,B7 InitProg ':HML 77Z)

As for contractual CO-OPN /2 specifications, a contract on a program is a set of properties
of the program such that the same assignment o is used for the satisfaction relation Fga;y.

Definition 6.1.19 Contract of a Program.

Let Prog be a program, Y = (Y;)sesp,,, b€ a Sprog-disjointly-sorted set of variables, and
B a semantics of Pres(Prog) the presentation of Prog. A contract on Prog andY, noted
W, is a set of properties of Prog with variables in Y :

v g q}Prog,Y 9
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such that there s 0 :' Y — B, an assignment of the variables, and

M (2
T'Sprog,B; Initprog Firarr, progy V-

We can now define a contractual program as a pair: program and contract.

Definition 6.1.20 Contractual Program.
Let Prog be a program, Y = (Y;)sesp,,, b€ a Sprog-disjointly-sorted set of variables, and
U C Up,.,y be a contract on Prog. A contractual program, noted C Prog, ts a pair:

C Prog = (Prog, V).
The model of a contractual program is the same as the model of its program part.

Definition 6.1.21 Model of a Contractual Program.

Let CProg = (Prog,¥) be a contractual program, B be the semantics of Pres(Prog),
and T'Spyo4 5 be the model of Prog. The set of models of C'Prog, noted MODcproq, 15
given by:

MODCProg = {TSProg,B}-

Notation 6.1.22 Contractual Programs.
We denote CPROG the set of all contractual programs.

Example 6.1.23 A Contract for Progg.
Given Progg of Fxample 6.1.8, and the set of variables

1/0 = {ja'vapaCk}JavaPackaging 5
formulae ¥?, to ¥ below form a contract Wy = {9 49,03, ¥} -

V) = <javapack.create><theheap . insertElement(javapack)>
<theheap . removeElement(javapack)> T

¥y ==(<javapack.create><theheap . removeElement(javapack)> T)

vy = <javapack.create><javapack. fill(true)> T

¥y = <theheap . notify> T.

Formula Y states that a dynamically created instance of JavaPackaging class can be
inserted into and then removed from static object theheap. Formula o9 states that it is
not possible to remove an instance of JavaPackaging class from static object theheap
without having previously inserted it. Formula psi3 states that it is possible to call method
Fill with input parameter true of an instance of JavaPackaging class. Finally, formula
VY states that it is possible to call method notify of static object theheap.
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According to the performed executions, these formulae are actually properties of Progg

for the assignment 8y such that, §o(javapack) = init™ (Bo is a semantics of the

JavaPackaging
presentation of Progo), and state Initp,qy,. Thus,

. 5
T'SProgy,Bo» INitprog, ':B(;ML,Progo,Yo Wy.
Thus, we define the following contractual program:

C Progy = (Progo, Vo).

Example 6.1.24 A Contract for Prog, .
Given Prog; of Fxample 6.1.8, and

}/1 = {javapaCkl; s 7ja'UapaCkSI}JavaPackaging U {javadeluxepaCk}JavaDeluxePackaging 5
formulae 7 to L below form a contract Wy = {1], 1, b3, i, bl s, bi}:

Y] = <javapack,.create><theconveyorbelt . insertElement(javapack; )>
<theconveyorbelt . removeElement(javapack; )> T

¥y = —(<javapack,.create>
<theconveyorbelt . removeElement(javapack;)> T)

' 31) = <javapack;.create><javapack.filljayapackaging(true)> T

1= <javapack,.create><javapack,.create>
<theconveyorbelt . insertElement(javapack,)>
<theconveyorbelt . insertElement(javapacks;)>
(<theconveyorbelt . removeElement(javapack; )>
<theconveyorbelt . removeElement(javapacks)> A
—( <theconveyorbelt . removeElement(javapacks)>
<theconveyorbelt . removeElement(javapack; )>))T
Yi =  <javapack,.create> ... <javapacksy.create><javapacks,.create>
<theconveyorbelt . insertElement(javapack,)> ...
<theconveyorbelt . insert Element(javapackso)>
—(<theconveyorbelt . insert Element(javapacks, )>)T
¢é = <javadeluzepack.create><javadeluzepack. filljaapeluxePackaging(false)>
<javadeluzepack. filljavapeluxePackaging(true)> T

Y3 =  <theconveyorbelt . notify> T.

Formulae 1 to 3 are similar to formulae ¢y to 3. Formula 1} is similar to formula
Yy, Formula v} states that static object theconveyorbelt behaves like a FIFO buffer.
Formula 3 limits the size of the theconveyorbelt object to 50. Formula v states that
an instance of the JavaDeluzePackaging class may be filled with both true and false
value.
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These formulae are actually properties if we consider the assignment ¢, such that,

51 (javapackl) = initJBalvaPackagingf 51 (javapackg) = neWJBalvaPackaging(initJBalvaPackaging)’ GtC.,
and

d1(javadeluxepack) = init?;vaDeluxePaCkaging (By is a semantics of the presentation of Prog; ),
and state Initp,,,, . Thus,

: 5
T'Sprogi,B > Initprog, ':ft}z\/fL,ngl,Y1 (Progy, V).
Thus, we define the following contractual program:

C Prog, = (Prog, Vy).

6.2 CO-OPN/2 Implementation

Contractual CO-OPN/2 specifications and contractual programs are very similar. How-
ever, we distinguish the three following differences: (1) the body part of the Class modules
of programs are different from the body part of the Class modules of CO-OPN/2 spec-
ifications; (2) the create method is not available by default in programming languages,
it is replaced by a method having the name of the class without parameters; (3) the
sub-typing, sub-sorting relationships are not defined for programs.

Therefore, the implement relation and the formula implementation are very close to the
refine relation (Definition 5.2.12) and the formula refinement (Definition 5.2.22) respec-
tively. However, due to the three differences above, subtle changes arise. This section
defines the implement relation, the formula implementation, the implementation rela-
tion, and shows the compatibility of the refinement relation defined in Chapter 5 and the
implementation relation.

6.2.1 Implement Relation

An implement relation is similar to a refine relation: it is a relation on elements of a con-
tractual CO-OPN/2 specification and elements of a contractual program. Two differences
arise with the refine relation:

e since a program defines no sub-typing and sub-sorting relationships, we do not
constrain pairs of CO-OPN/2 types or sorts s,s’, such that s is a sub-type or a
sub-sort of s’ (s < &), to be related to program types or sorts that are in a sub-type
or sub-sort relationship. Consequently, we do not constrain terms of the form sub
or super to be related with similar terms;

e the implement relation allows two or more ADT sorts or two or more ADT operations
of the specification to be related with the same ADT sort or the same ADT operation
of the program respectively. The reason for this is that programming languages
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usually have a very restricted set of ADT sorts, and there is no possibility, in
programming languages, to create new ADT sorts. On the contrary, we do not
allow two CO-OPN/2 Class modules to be related to the same Class module of
program, because programming languages allow easily to create as many classes as
necessary.

We define first elements of contractual programs, and then the implement relation.

Elements of a contractual program are defined in a way similar to elements of a contractual
CO-OPN/2 specification; they are given by the global signature, the global interface and
the variables used to express HML formulae.

Definition 6.2.1 Elements of a Contractual Program.

Let CProg = (Prog, V) be a contractual program, Y = (Y;)sesp,,, b€ @ Sprog-disjointly-
sorted set of variables, U C Up, .,y a contract on Prog and Y. The set of elements of
C'Prog, noted ELEM¢p,oq, 15 such that

ELEMCProg = Sprog U Shrog U Finag U Fipog U Mprog U Oprog U'Y.

The implement relation is a relation on elements of a contractual CO-OPN /2 specification
and a contractual program, that is: functional, injective on element of Class modules, and
total on elements of contracts.

Definition 6.2.2 Implement Relation.

Let CSpec = (Spec, ®), CProg = (Prog, V) be a contractual CO-OPN/2 specification,
and a contractual program respectively. An implement relation on CSpec and C Prog,
noted ', is a relation on elements of C Spec and elements of C Prog:

A" C ELEMgspec X BLEMCprog |
such that : M = )\éA U )\éc U )\IIM U )\gc U )\]Iw U )\é U )\gf, where:

Noa ©S4 % Sh,, Ay C©M X Mpyg,
)\éc g SC X S]C;rog )‘é g O X OProg
Apa CFA X Fh o, M C X xY,

I C C
)\FC gF ><FWPr‘og
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and
(fvf/) € )‘é‘A = (f:sla"' 75n—>57f/:8/17"' 75;—>8/ or
fi=s, fi—= ) and
(5,5"), (si,87) € Aoa UAe (1 <i <m)
(f, f) € Mo = (f = inite, f' = inite or
f =new,, f' = new.)and
(¢,¢) € N§e
Me @ 81,y... 86, M

C

(e,¢) € Mac, (s5,80) € Moo UL (1 <0 < k)

(m,m’) € A,

U

! !
)18y, ..., 8, and

(0e,0) EXy = 0:¢, 0 ¢ and (¢, ) € e
(z,y) €Ny = € X,,2" € Yy and (5,8') € Aoa U XL
L0, (LM e = 1'=1"
(L), (") e M\ UML) = 1=1"
l€® = ' € ELEMop,o, s.t (1,1') € M.

Since we want to show that C' Progg and C Prog; are respectively correct implementations
of CSpecy and C'Spec; defined in Chapter 5, examples below give the corresponding
implement relations.

Example 6.2.3 Implement Relation on C'Specy and C Progy.
Given C Specy, C'Progy of Examples 5.2.8 and 6.1.23 respectively, we define an implement
relation )\é C ELEM¢$pec, X ELEMcprog, on CSpecy and C' Progy in the following way:

)\(I)SA ={(chocolate, boolean), (praline, boolean)}

)\(I)Sc ={(packaging, JavaPackaging), (heap, JavaHeap) }

)\(I)FA = { (Ppraline7 trueboolean)}>

)\(IJFC = { (HeWheam neVVJavaHeap) s (initheap, initjavaHeap) ,
(newpackaginga newJavaPackaging) s (initpackaging, initJavaPackaging)}

Moy =1 (PUbcap packaging: Insert Element ayateap JavaPackaging)
(getheap,packaging7 rel’noveEleHlentJavaHeap,JavaPackaging) ;
(ﬁupaCkagin&Chocolatea ﬁllJavaPackaging,boolean) }

)\(IJO ={(the-heap, theheap)}

)\éx ={(packi, javapack)}.

Basically, elements of the CO-OPN/2 Heap and Packaging Class modules are related
to corresponding elements of the Java JavaHeap and JavaPackaging classes. The CO-
OPN/2 chocolate and praline sorts are related to the Java boolean primitive type.
The Ppraline generator is related to truepoolean- )\é given here is minimal, it is not defined
for elements which are not in the contract, e.g., Tirume or method full-praline.
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Example 6.2.4 Implement Relation on C'Specy and C Prog; .

Given CSpecy, CProg, of Fxramples 5.2.14 and 6.1.24 respectively, we define an imple-
ment relation )\{ C ELEMc¢spee, X ELEM@prog, on CSpecy and CProg, in the following
way:

)\{S ={(chocolate, boolean), (praline, boolean), (truffle, boolean)}

M - ={(packaging, JavaPackaging), (deluxe-packaging, JavaDeluxePackaging),
(conveyor-belt, JavaConveyorBelt) }

)\{FA :{( praline; trueboolean)v (Ttrufﬂea falseboolean)}>

)\{Fc :{(newconveyor belt nevVJavaConveyorBelt) (lnitconveyor—belta initJavaConveyorBelt)7
(newpackaglng7 newJavaPackaglng) (1n1tpackaging7 initJava.Packaging)7
(newdeluxe packaging> newJavaDeluxePackaglng) (lnitdeluxe—packaging7 initJavaDeluxePackaging):ll>

)\{M { (pUtconveyor—belt,packaging7 insert ElementJavaConveyorBelt,JavaPackaging) 5
(getConveyor—belt,packaging? ren’loveEllen’lentJavaConveyorBelt,JavaPackaging)7
(ﬁupackaging,chocolatea ﬁHJavaPackaging,boolean)
(ﬁudeluxe packaging,chocolate; ﬁHJavaDeluxePackaglng,boolean):ll>

)\{ ={(the-conveyor-belt, theconveyorbelt) }

)\IX ={(pack;, javapack;) (1 < i < 51), (dpack, javadeluzepack)}.

Similarly to L, the implement relation ! relates elements of the CO-OPN/2 ConveyorBelt,
Packaging and DeluzePackaging Class modules to corresponding elements of the Java
JavaHeap, JavaPackaging and JavaDeluzePackaging classes. CO-OPN/2 chocolate,
praline and truffle sorts are related to the Java boolean primitive type. The Pyrafine
generator is related to truepoolean, and Tirume generator is related to falseyoorean-

Remark 6.2.5 A CO-OPN/2 implement relation, N, given by Definition 6.2.2, is actu-
ally an implement relation as stated by Definition 3.2.8, since M\ is total on elements of
the contract.

6.2.2 Formula Implementation

The implement relation is functional. Therefore, the implementation of a CO-OPN/2
term, of a CO-OPN/2 observable event, and of a HML formula on a CO-OPN/2 specifi-
cation consists in replacing every CO-OPN/2 element by the element of the program to
which it is related by the implement relation.

We present first the term implementation, second the event implementation, and third
the HML formula implementation.

Definition 6.2.6 Term Implementation.
Let CSpec = (Spec, @) and C Prog = (Prog, V) be a contractual CO-OPN/2 specification
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and a contractual program respectively. Let T, x be the set of terms of Spec with variables
in X, and Ty, 0¥ be the set of terms of Prog with variables in'Y . Let X1 C ELEMcgpec X
ELEM¢p,o, be an implement relation on elements of C'Spec and elements of C Prog. The
term implementation induced by M, noted A} : Ts x — Tsy,,,y, 18 a partial function,

such that:
. ; ) )\I

undefined otherwise

! if f:— s and Ne M
Amz{f [ s and (£, 1) €N,

undefined otherwise

(AL, Ar(t), if (F. ") € M, and
A%“(f(tla cee atn)) = A%(tz) s defined (1 <1< n)7

undefined otherwise.

Since implement relations are weaker than refine relations for the sub-typing and sub-
sorting relationships, it may happen that a contractual program defines no sub-typing,
while the contractual CO-OPN/2 specification defines a sub-typing. CO-OPN/2 terms
containing sub.., and super, . can be rewritten with terms containing exclusively new,,
and init., (see Definition 4.2.1). Consequently, even though the contractual program
defines no sub-typing, these CO-OPN/2 terms can be transformed into terms of the
program.

Example 6.2.7 Implementation of Terms with sub and super.

Let CSpec = (Spec, @) and C Prog = (Prog, V) be a contractual CO-OPN/2 specification
and a contracual program respectively. Let N C ELEM¢spec X ELEMcprog be an implement
relation on elements of C'Spec and elements of C Prog. The following object identifiers
terms are implemented in the following way:

AL (init.) = init. if (c,d) € M
A%(newc(initc)) = new (inity) if (e,d) € M
A%(subw1 (new,(init.))) = /\%(newCl (sub,, (init.)))
= AL (new., (init, ))
= new (init) if (c1,¢)) € M
AL (0s) = o, if (0c,0.) € .

The event implementation is similar to the event refinement, except for events containing
the create method. In that case, the event is implemented by an event of the program
containing the default constructor of the class (whose name is the name of the class).

Definition 6.2.8 FEvent Implementation.
Let CSpec = (Spec,®), CProg = (Prog,¥) be a contractual CO-OPN/2 specifica-

tion, and a contractual program respectively. Let Evenlg,..x be the set of observable
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events of Spec and X, Eventlp,.,y be the set of observable events of Prog and Y, and

M C ELEMcspec X ELEMep,o, be a refine relation on CSpec and C'Prog. The event

implementation induced by N, noted Afgvem Eventspe. x — FEventp,o,y, ts a partial
function such that:

AL(#).m'  if AL(t) is defined and (m,m') € AL,
undeﬁned otherwise
(), Ab(H) i AR, A (L) (1< 1 < n) s
defined and (m,m') € M|

Aévent(t'm) = {

AEvent(t m(th s 7

undefined otherwise

{ ).()  if AL(t) is defined, AL(t) € (Tsp,0,v)e

AL _ (t.create)
undeﬁned otherwise
t).destroy if AL(t) is defined,

AL (t.destroy) =
undeﬁned otherwise

Apvent(€1) /] - /] Mpuema(en)  if Apyeni(€i) is defined
Abwencler [ . [] €n) = (1 <i<n),

undefined otherwise.

Definition 6.2.9 CO-OPN/2 Formula Implementation.

Let CSpec = (Spec, ®), CProg = (Prog,¥) be a contractual CO-OPN/2 specification,
and a contractual program respectively, and \! C ELEM¢spec X ELEMcprog be an implement
relation on elements of CSpec and elements of C'Prog. The formula implementation
induced by M, noted A : PROPg .. x — PROPp,oyy, is a partial function such that:

A(T)=T
A(og) = {ﬁAI(qﬁ) if A(¢) is defined,

undefined otherwise

A A ) = {A%ﬁ) AA(Y) if () and AL(p) are defined,

undefined otherwise

AM(<e> ¢) = {<AEvent( e)> A(¢) if AL,...(e) and A'(p) are defined,

undefined otherwise.

Proposition 6.2.1 CO-OPN/2 Formula Implementation is a total function on formulae
of the contract.

Let CSpec = (Spee, @), CProg = (Prog,¥) be a contractual CO-OPN/2 specification
and a contractual program respectively. Let M C ELEM¢spec X ELEMcpro, be a CO-
OPN/2 implement relation on elements of CSpec and elements of C Prog. The CO-
OPN/2 formula implementation induced by MOAT: PROPg e, x — PROPp,oy, 5 a tolal
function on the formulae of the contract ® of CSpec.
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Proof.
The CO-OPN/2 implement relation A! is total on elements of the contract, thus AZ is
total on terms of the contract, and consequently AL _ . is total on Ugeq Eventy, the events

of the properties of the contract of C'Spec. This induces A’ to be total on the formulae
of the contract. [ |

Proposition 6.2.2 CO-OPN/2 Formula Implementation is a Formula Implementation.
AL, as given by Definition 6.2.9, is a formula implementation as stated in Definition 3.2.11.

Proof.

We must show the two following points:

o Al is total on formulae of the contract.
Indeed, Proposition 6.2.1 above shows this fact;

o if X is a CO-OPN/2 refine relation, and A! is a CO-OPN/2 implement relation, and
if A7 = X\; M is an implement relation, then A7 = AZ o A.
Indeed, term refinement and implementation, and event refinement and implemen-
tation are functional renamings. Thus, A = AL oAr, AL, = AL . 0Apyen, and
consequently A = Al o A,

We apply now the formula implementation to our runnning example.

Example 6.2.10 Formula Implementation of the Contract of C Specy.
Let CSpecy be the contractual CO-OPN/2 specification of Example 5.2.8, and C Progy be
the contractual program of Ezample 6.1.23. Let AL be the implement relation of Eram-

ple 6.2.3. The contract ®g = {p1, d2, P3} is implemented in the following way:

Af(¢1) =}
Af(¢2) = 3
Af(d3) = 3.

Example 6.2.11 Formula Implementation of the Contract of C Spec;.

Let CSpecy be the contractual CO-OPN/2 specification of Example 5.2.14, and C Prog,
be the contractual program of Erxample 6.1.24. Let A\l be the implement relation of Ez-
ample 6.2.4. The contract ®; = {é1, b3, o3, O, di, b8} is implemented in the following
way:

Ai(g) =1 Ai(é) = ¥
Ai(da) =1 Ailes) = ¥
Ai(ga) =13 Ailds) = ¥,
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6.2.3 Implementation Relation

A contractual program correctly implements a contractual CO-OPN/2 specification via
an implement relation A, if the implementation of the contract of the contractual speci-
fication, obtained with the formula implementation A’ induced by A, is a subset of the
contract of the contractual program.

Definition 6.2.12 Implementation of Contractual CO-OPN/2 Specifications via M.
Let CSpec = (Spec,®), and CProg = (Prog,¥) be a contractual CO-OPN/2 speci-
fication and a contractual program respectively. Let M C ELEM¢gpec X ELEMeop,o, be
an implement relation on CSpec and CProg, and A be the formula implementation
univocally defined from . (Prog, W) is an implementation of (Spec, ®) via A\, noted
(Spec, @) A (Prog, V), iff

A(®) C .

A contractual program implements a contractual CO-OPN/2 specification if there exists
an implement relation such that the contractual program implements the contractual
specification via the implement relation.

Definition 6.2.13 Implementation Relation.
The implementation relation, noted ~~, is a relation on contractual CO-OPN/2 specifica-
tions and contractual programs:

~» C CSPEC x CPROG ,

such that for every CSpec = (Spec,®) € CSPEC, and every CProg = (Prog,¥) €
CPROG, then (Spec, ®) ~» (Prog, V) iff

N C ELEM¢spec X ELEMcpro, an itmplement relation on C'Spec and C'Prog, s.t.
(Spec, D) e (Prog, V).

The implementation phase occurs after a series of refinement steps. We must be sure that
the contractual program, reached during the implementation phase, is an implementation
of every contractual specification obtained during the refinement process. For this rea-
son, we have to prove the compatibility between the refinement and the implementation
relations (see Definition 3.3.4).

Proposition 6.2.3 Compatibility of the Refinement and the Implementation Relations.
The CO-OPN/2 refinement relation on contractual CO-OPN/2 specifications, T, and the
CO-OPN/2 implementation relation on contractual CO-OPN/2 specifications and con-
tractual programs, ~», are compatible.
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Proof.
Follows from Proposition 3.3.1. |

We will now show, first that Java contractual program C Progg is a correct implementation
of contractual CO-OPN/2 specification C'Specy, but not a correct implementation of
contractual CO-OPN/2 specification C'Spec;; and second, that Java contractual program
C Prog, is a correct implementation of contractual CO-OPN/2 specifications C'Specy and
C Spec;.

Example 6.2.14 C Progy tmplements C Specy.

Let CSpecy, CProgg be the CO-OPN/2 contractual specification and the contractual pro-
gram of Examples 5.2.8 and 6.1.23 respectively. Let N} be the implement relation of
Ezxample 6.2.3.

Example 6.2.10 show that:
A(I)((I)()) - LI}O.
Consequently, we have CSpecg Ao C Progg, and thus:

C'Specy ~ C Progg.

Example 6.2.15 C Progy does not implement C Spec .

Let CSpecy, and C Progg be the CO-OPN/2 contractual specification and the contractual
program of Evamples 5.2.14, and 6.1.23 respectively. C Progy cannot implement C Specy
because there is no implement relation on CSpec; and C' Progy. Indeed,

o ('Specy defines the types packaging and deluze-packaging and elements of this
type are part of the contract ®,. CProgy defines the Java type JavaPackaging,
which is meant to implement packaging, but does not define a Java type that can
implement deluze-packaging;

o formula ¢; € ®, requires that the the-conveyor-belt lype behaves like a FIFO
buffer. It has no equivalent formula on Progg, and henceforth in Vg, since Progg

behaves like a heap and not like a FIFO buffer.

Example 6.2.16 C Prog; tmplements CSpec; and C Specy.

Let CSpecy, CSpecy, and CProg, be the CO-OPN/2 contractual specifications and the
contractual program of Eramples 5.2.8, 5.2.14, and 6.1.2/ respectively. Let ! be the
implement relation of Example 6.2./.

Example 6.2.11 shows that:
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Consequently, we have CSpec, M C Progy, and thus:
CSpecy ~ CProg;.

Since the implementation relation and the refinement relation are compatible, the following

holds:
A1(Ao(®0)) C Wy,
i.e., CSpecy ~mRoiM CProg,, and thus:

C'Specy ~ C'Prog,.

6.3 Compositional CO-OPN/2 Implementation

Section 5.3 defines a hierarchical operator on contractual CO-OPN /2 specifications, that
adds an incomplete contractual CO-OPN/2 specification to some complete contractual
CO-OPN/2 specifications. The compositional CO-OPN/2 refinement is then defined as
the replacement of every component by a component that refines it. Since the CO-
OPN/2 implementation is very similar to CO-OPN/2 refinement, we define as well in
a similar way a hierarchical operator for building compositional contractual programs,
and a compositional implementation, that replaces every component of a compositional
contractual CO-OPN/2 specification by a component that implement it.

6.3.1 Compositional Contractual Programs

A compositional contractual program is a set of complete contractual programs extended,
by the means of a hierarchical operator, with an incomplete contractual program.

An incomplete program is a set of ADT modules and Class modules of program, such
that the incomplete program may use elements not defined in these modules.

Definition 6.3.1 Incomplete Program.
An incomplete program denoted, AProg, is a set of ADT modules of programs and a set
of Class modules of programs, i.e.,

AProg = {(MdA)i | 1§i§n} U {(Mdjcjmg)j | 1§j§m}.

Notation 6.1.5, and Definition 6.1.9 (terms of program), Definition 6.1.10 (observable
events of program), and Definition 6.1.11 (HML formulae on programs) are extended to
incomplete programs.
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An incomplete contractual program is a pair made of an incomplete program and a set of
HML formulae expressed on the incomplete program. As for incomplete contractual CO-
OPN/2 specifications, the HML formulae, constituting the contract part of an incomplete
contractual program, are not necessarily HML properties.

Definition 6.3.2 Incomplete Contractual Program.

Let AProg be an incomplete program, Y = (Y)sesp,,, be a Spyog-disjointly-sorted set of
vartables, and AV C Wap,,,x be a set of HML formulae on AProg. An incomplete
contractual program, noted AC Prog, is a pair:

ACProg = (AProg, AV).

We will say indifferently complete (contractual) program and (contractual) program.

Hierarchical operators on contractual programs are similar to hierarchical operators on
contractual CO-OPN /2 specifications: a set of complete contractual programs is extended
with an incomplete contractual program. The result is a complete contractual program,
otherwise it is not defined.

Definition 6.3.3 Hierarchical Operator on Contractual Programs.

Let ACProg = (AProg, AV) be an incomplete contractual program. Let CProg; =
(Prog;,V;) (1 < i < k) be k contractual programs. A k-ary hierarchical operator on
programs based on AC Prog is a partial function, noted facp,., : CPROG* — CPROG,
such that:

C Prog = (Prog, V), such that:
Prog = Uie{17...7k} Prog; |J AProg and
U= Uie{l,...,k} v, J AV and
(Prog, V) is a complete contractual

facprog(CProgy, ... ,CProgy) =

program,

undefined otherwise.

Remark 6.3.4 There are cases where the composition of CO-OPN/2 specifications is
undefined. The same cases apply for programs, and let their composition be not defined.

6.3.2 Compositional Implementation

The CO-OPN/2 compositional implementation replaces every complete component of a
compositional contractual CO-OPN/2 specification by a complete contractual program
that implements it. In addition, it replaces the incomplete contractual CO-OPN/2 spec-
ification by an incomplete contractual program that syntactically implements it.
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First we define incomplete programs, and then we show that the implementation compo-
nent by component is actually compositional.

We extend Definition 6.2.1 (elements of a contractual program), Definition 6.2.2 (imple-
ment relation), and Definition 6.2.9 (formula implementation) to incomplete specifications
and incomplete programs. Thus, we can define the syntactical implementation of incom-
plete contractual CO-OPN/2 specification by incomplete contractual programs.

Definition 6.3.5 Syntactic Implementation of Incomplete Contractual CO-OPN/2 Spec-
ification.

Let ACSpec = (ASpec, A®) be an incomplete contractual CO-OPN/2 specification and
AC Prog = (AProg, AU) be an incomplete contractual program. Let \> be an imple-
ment relation on elements of AC Spec and AC Prog and A® the corresponding formula
implementation. AC Prog syntactically refines AC Spec, noted AC Spec ~> AC Prog iff:

A2 (A®) C AV,

Theorem 6.3.1 CO-OPN/2 Compositional Implementation.

Let AC Spec = (ASpec, A®) be an incomplete contractual CO-OPN/2 specification, and
AC Prog = (AProg, AV) be an incomplete contractual program. Let facspe. : CSPECY —
CSPEC be a k-ary compositional operator on contractual CO-OPN/2 specifications based
on ACSpec, and facproy, : CPROG* — CPROG be a k-ary compositional operator on
contractual programs based on AC Prog. Let CSpec; = (Spec;,,®;) (1 <1 < k) be k
disjoint contractual CO-OPN/2 specifications, and C Prog; = (Prog;,¥;), (1 <1 <k) be
k contractual programs with disjoint classes, such that

CSpec = (Spee, ®) = facspec((Specy, @1), ..., (Speck, Pr)) and

CProg = (Prog, V) = facprog({(Progi,V1),... ,(Progy,Vs)) are defined. The following
holds:

AC Spec ~* AC Prog and (Spec;, ®;) ~» (Prog;, ¥;),1 <i<k =
fACSpeC(<Specl7 (I)1>7 SRR <Sp€cka (I)k>) 2 fACPT’OQ«PTOgl: \I;1>7 cee <Progk, \I}k>)

Proof.
We must prove that there exists A : ELEM¢spec — ELEMgp,o,, an implement relation,
such that AZ(®) C V.

We have:
ELEMcspe. = U ELEMcspec; U ELEMaAcspe. and
te{l,...,k}
ELEMCProg = U ELEMCProgi U ELEMACProg-
te{l,...,k}

In addition, we have:

AC Spec ~* AC Prog = 3N\ : ELEMAcspee = ELEMacP,oq S-t. AA(ACI)) C AV
(Speci, ®;) ~ (Prog;, ¥;) = I\ s.t. AL (@) C U, (1 <0 <E).
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Thus, we construct the implement relation A’ : ELEM¢gpec = ELEM¢p,,, in the following
way:

Me), if € € ELEMcspee
M(e) = M (e) if e € ELEMacspec

undefined otherwise.

M is actually a refine relation. Indeed, first, A*, Al (1 <i < k) are implement relations,
thus Al is total on the contract; second, C'Spec; (1 <1 < k) are all disjoint, and C Prog;
(1 <7 < k) have disjoint classes, thus A is functional on every elements and injective on
Class elements.

The formula implementation is given by:

A{(qb), if o € O,
A(g) = A2(9), if o€ A®

undefined otherwise.

Thus, AL(®;) C U;, (1 <7 <k),and A(A®) = AU. Finally, we have trivially A(®) C W.
|

Remark 5.3.7 applies as well on the compositional implementation. Indeed, it is essential
that facprog((Progi,Vi),...,(Progg, Vi) be defined, otherwise the theorem cannot be
guaranteed.

Remark 6.3.6 In the case of CO-OPN/2 compositional refinement, it is necessary that
the components of the high-level compositional contractual CO-OPN/2 specification be
made of disjoint ADT and Class modules, and as well the components of the lower-level
compositional contractual CO-OPN/2 specification. Otherwise, it is not gquaranteed that
the refine relation is actually a refine relation.

In the case of CO-OPN/2 compositional implementation, the same condition applies.
However, since the implement relation allows two different CO-OPN/2 (ADT) sorts to be
refined by the same program sort, the components of the compositional contractual program
may share ADT modules of programs, but must have disjoint sets of Class modules of
program.



Chapter 7

Implementing CO-OPN /2

Specifications in Java

Chapter 6 defines a theory of implementation for the CO-OPN/2 specifications language,
and object-oriented languages. This chapter is devoted to the special case of implemen-
tations using the Java programming language.

We think that every refinement process should end with a CO-OPN/2 specification that
is as close as possible to the Java program, so that the implementation phase is trivially
performed. By close, we mean two things: first, every instruction of the Java program is
specified, and second, the transition system obtained with the CO-OPN/2 specification
is the same as the one obtained with the Java program.

Therefore, this chapter first provides CO-OPN/2 specifications close to Java programs.
Second, the running example of Chapter 6 is revisited, and a CO-OPN/2 specification
close to the Java program defined in Chapter 6 is provided. Finally, some advices are given
about how to build abstract contractual CO-OPN/2 specifications that can be refined to
CO-OPN/2 specifications of Java programs, and implemented in Java, according to the
implementation relation defined in Chapter 6.

7.1 CO-OPN/2 Specifications of Java Programs

We think that the most concrete contractual CO-OPN/2 specification that is reached
at the end of a refinement process, should encompass the whole complexity of a Java
program: instructions and behaviour. All instructions of the Java program should be
considered in the contractual CO-OPN/2 specification. Thus, the contractual Java pro-
gram itself is easily built from the contractual CO-OPN/2 specification. All behaviour
arising in the Java program should be present in the transition system of the most con-
crete contractual CO-OPN/2 specification. Therefore, the contractual Java program is
ensured to be a correct implementation, since the last contractual specification is actually
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a correct refinement of the most abstract specifications obtained during the refinement
process.

This section explains how it is possible to build CO-OPN/2 specifications reaching the aim
of being close to Java programs. It introduces several Java concepts. They are either part
of the Java Programming Language [6, 48, 36] or part of the Java Virtual Machine [49].
For each of them, we give our design decisions for their specifications in the CO-OPN/2
language. Report [32] gives a fully detailed description of CO-OPN/2 specifications of
Java concepts presented here.

7.1.1 Java Programming Language and Java Virtual Machine

The Java programming language is an object-oriented language, with the particularity
that a given Java program can be executed on any operating system and host machine.
Indeed, every Java program is compiled into a platform independent code, called bytecode.
The bytecode can be interpreted by any Java Virtual Machine that is an interpreter
dependent of the underlying system. Therefore, in addition to the traditional client /server
paradigm, it is possible to use the mobile code paradigm, i.e., a piece of Java program is
sent and executed remotely.

Each Java Virtual Machine can support many threads of execution at once. These threads
independently execute Java code that operates on Java values and objects residing in a
shared main memory. Threads may be supported by having many hardware processors,
or by time-slicing one or many hardware processors. The Java Virtual Machine initially
starts up with a single non-daemon thread which typically calls the method main of some
Class object. For every class, there exists a special object, called Class object, whose name
is the same as the name of the class. This object exists even if no instance objects of the
class have been created.

CO-OPN/2 Specifications

The Java Virtual Machine is specified by the CO-OPN /2 JVM class depicted by Figure 7.1.
Method java specifies the Java interpreter. Parameter ClassName (of type String) is
the name of the Class object whose main method has to be executed; parameters args
(whose type is an array of strings) are the parameters of the main method. Method java
stores the pair made of the identity of Class object ClassName (of type JavaObject)
and the parameters args. Method main of object ClassName with parameters args is
actually called by transition begin after the identity of the call <cnt,ClassName> has
been registered. The need for the registration of the call is explained in the sequel.
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Class JVM

java(ClassName,args)

~ - ™

<ClassName,args>

|

? Store:
pair-iavaobjectarraystring
<ClassName,args>

|

—

begin with

Counter.get(cnt) ..
ClassNameAregister(<args,main,<cnt,ClassName>>) ..
ClassName.main(args) j

-

Figure 7.1: CO-OPN/2 Specification of a Java Virtual Machine

7.1.2 Java Types

There are 3 kinds of Java types: Primitive, Reference types and the null type.

Primitive types are the boolean type and the numeric types. The boolean type defines
the two values true, false, and the usual operators on booleans. Numeric types are:
(a) integral, i.e., signed two’s complement integers: byte (8-bits), short (16-bits), int
(32-bits), Llong (64-bits); unsigned integers: char (16-bits); (b) floating-point types, i.e.,
float (32-bits) and double (64-bits).

Reference types are the class types, the interface types, and the array types:

e Each class type is a sub-class of another class type. The Java class Object is the
super-class of all class types. In Java, the name of the class and the name of the
type defined by the class are the same.

Sub-classes inherit the methods of their super-classes. A sub-class may keep a
method unchanged, thus it inherits of the super-class implementation. A sub-class
may change a method’s implementation, thus it overrides the super-class method.
The implementation provided by the super-class is no longer available for the sub-
class, unless it invokes explicitly the super-class implementation, using the super
keyword in calls of the form super.m(), where m is the father’s implementation of
the method m. The super keyword can be used from within a direct sub-class only,
i.e., constructions of the form super. super.m() calling method m of the grandfather
class are not allowed. A sub-class may add new methods, they are available only
for the sub-class and its children, but not for its super-class.

e The Java programming language does not support multiple inheritance, i.e. each
class has exactly one parent class, except for the Object class, which is the root and
has no parent class. Java interfaces allow a class to extend several other classes,
even though it has only one parent class. Java interfaces define constants (static and
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final variables), and interface of methods (every method is empty). A class which
implements one or more interfaces has to implement the body of the methods listed
in the interface.

e Elements of Java arrays are Java objects. Arrays are manipulated by reference, and
behave like Java objects. Java considers that arrays are of a different reference type
than class types, because a special syntax is defined for arrays.

Reference values are pointers to objects. An object is a dynamically created class instance
or an array. Reference types form a hierarchy.

Primitive types allow to pass parameters by value, while reference types only allow to
pass parameters by reference. In Java, in order to pass also primitive types by refer-
ence, each primitive type has a corresponding reference type. The Boolean, Character,
Double, Float, Integer and Long classes are Java classes which enclose the corresponding
primitive type.

The null type can always be converted to any reference type, it has only one possible
value, the null value.

CO-OPN/2 Specifications

For every primitive type, we define a corresponding CO-OPN/2 ADT module such that
every Java operator has a corresponding operation. For instance the Java boolean type
is specified with the CO-OPN/2 ADT module Booleans which defines the boolean sort.
(see Appendix A).

For every Java class, we propose to specify a dedicated CO-OPN/2 class. The inheritance
tree of the CO-OPN/2 classes is exactly the same as the inheritance tree of the Java classes.
The Object Java class is the super-class of all Java classes. In CO-OPN/2 this Class
module is called the JavaObject class and defines the javaobject type (corresponding
to the Java Object type). It is the super-class of all CO-OPN/2 classes related to Java.
The way to build CO-OPN/2 classes specifying Java classes is explained in the following
subsections.

We propose to specify Java interfaces as abstract CO-OPN/2 classes, and every variable
defined in the Java interface as a CO-OPN/2 static object or a CO-OPN/2 constant (for
ADT).

Java arrays are manipulated by reference, but are not defined with Java classes. Thus, we
propose to define a CO-OPN/2 JavaArray Class module which defines the java-array
type (corresponding to the Java Array type). It is defined as an array whose elements are
of javaobject type. Java arrays do not inherit from the Java Object class, thus there
is no inheritance relationship between the CO-OPN/2 JavaArray Class module and the
JavaObject Class module. The JavaArray class uses the JavaObject class, because it
specifies arrays of Java objects. An instance of the CO-OPN/2 JavaArray class has a
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reference, given by the CO-OPN/2 semantics, that can be used as a parameter by other
CO-OPN/2 classes.

The Java null type can be used instead of any other Java type. The CO-OPN/2 semantics
does not provide such an object. It is necessary to define a null object for each CO-OPN/2
type. For this reason, we will not specify the Java null type. When necessary, the specifier
will formalise the use of the null type with an explicit specification.

Remark 7.1.1 Definition 6.1.4 provides abstract definitions of programs. CO-OPN/2
spectfications of Java programs are as well described with abstract definitions. The abstract
definition of a program, and the abstract definition of the CO-OPN/2 specification close
to the program are two different mathematical definitions.

7.1.3 Java Methods

A Java method is a sequential code operating on data. It is through method invocations
that data is modified or checked. Interfaces of methods, i.e., their name and parameters,
are visible for a programmer, but their implementation is not visible for the programmer.
The method’s caller is blocked until the method returns.

Every method call is actually performed on behalf of a thread of execution. Threads are
special Java objects, with a special method run() that describes the sequence of method
calls requested by the thread to perform its execution. More precisely, every method call
occurs from within the body of another method, which is currently being called, and so
on till the most enclosing method which is the run() method of a thread. This thread
has generated, by the means of its run() method, all this cascade of method calls, and is
actually the caller of all these methods.

A Java method may be called simultaneously by several different threads or several times
simultaneously by the same thread. A method handles global variables, parameters and
local variables. In Java, as soon as a method is invoked, the parameters and the local
variables of the method are duplicated, so that every method invocation induces a method
execution with a separate memory space for parameters and local variables. On the
contrary, global variables are not duplicated, and every method invocation accesses the
same instance of the global variables. However, each time a global value is used or
assigned, the global value is first loaded from the main memory, then used or assigned
only once, and in the case of an assign, it is stored in the main memory, before a subsequent
use or assign.

CO-OPN/2 Specifications

In CO-OPN/2, in order to identify each method invocation and execution, together with
their private memory space for local variables and parameters, we introduce the notion of
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caller’s identity. The caller’s identity id is a pair id=<cnt,t>. The cnt part is an integer
used to distinguish concurrent calls to a same method, it is different for every call. The t
part is the reference of the thread which has initiated the cascade of method calls leading
to the current method call. It stands for the Java reference of this thread. A special
CO-OPN/2 Counter object provides unique counters, cnt. Before calling a method of
an object, the thread must require this unique counter, and register the call it wants to
perform; these two actions are performed in an unobservable manner.

We consider the following Java method:
public Object m(Object x){ ... ; y=o’.m’(x’); ... }

This method has an input parameter x of type Object and returns an output parameter
of type Object as well. The Java method m(x) begins with ”{” and ends with a ”}”. In
between, several sequential Java instructions actually build the method’s body. Amongst
them, we find the instruction y=o’.m’(x’). We consider a Java thread t that calls
method m by performing instruction y=o.m(x). Due to the Java semantics, both x and
y are references of two Java objects. We assume o to be an instance of the Java Object
class.

Figure 7.2 depicts: the CO-OPN/2 specification of the Java method m of object o; the call
of method m’ of object o’; the propagation of the thread’s reference; and the handling of
local variables and parameters.

Class JavaObject
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Figure 7.2: CO-OPN/2 Specification of a Java Method
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The CO-OPN/2 m(x,y) method is called by the CO-OPN/2 object t (modeling the Java
thread t). Method m(x,y) can be fired only if thread t has previously registered the call,
i.e., 1t has registered parameter x, method m, and its identity id using method register
of object 0. Method m(x,y) requires the synchronization with the start m(x,<cnt,t>)
method followed by the end m(y,<cnt,t>) method. Input parameter x is passed to
method start_m, and output parameter x is retrieved from method end_m. These two
methods stand for the actual begin and end of Java method m respectively. They are
hidden methods. Thus, in terms of observable events, only method m(x,y) is visible,
while start m(x,<cnt,t>) and end m(y,<cnt,t>) are hidden. Due to the CO-OPN/2
semantics, it is necessary to specify the begin and the end of a Java method with two
dedicated CO-OPN/2 methods, in order to allow output parameters to be returned, and
to delay the caller till the end of the method’s computation.

The CO-OPN/2 start m(x,<cnt,t>) method is called by the m(x,y) method. Method
start m(x,<cnt,t>) performs the following operations: (1) it stores input parameter x as
a pair <x,<cnt,t>>into a dedicated place; (2) it stores the caller’s identity <cnt,t> into a
dedicated place; and (3) it creates an instance of every local variable needed by the method
as a pair <local,<cnt,t>> into a dedicated place (one for each local variable). The
start m(x,<cnt,t>) corresponds to the "{” of the Java method. Storing every variable
with the caller’s identity has the following advantages: it helps discriminating every call
to method m(x,y); every call has its own private memory space for local variables and
parameters.

Every instruction of the method’s body is specified by one or more CO-OPN/2 methods,
called next. Such a next method can be fired only if the previous next has finished, and
as soon as itself finishes, it allows the consecutive next to be fired. This sequence of firing
of next methods models the sequential execution of the method. The first next is firable
only if startm(x,<cnt,t>) method has been fired. The sequence of next methods
respects the sequence of instructions of the Java method’s body. A next always needs a
caller’s identity ( <ecnt,t>), in a place, removes it from this place and puts it into another
place, where it is removed by the consecutive next. In the case of Figure 7.2, the body of
method m requires to call method m’ of object o’. In order to do this, the corresponding
next method requires a new unique identifier cnt’ by calling Counter.get(cnt’), and
registers to object o’ (calling o’ .register(<x’,m’,<cnt’,t>>)). The following next
method then calls method m’ of object o’. It is worth noting that the call to method
m’ is made on behalf of thread t, which is currently calling method m. Thus, the caller’s
identity <cnt’,t> contains reference of thread t. Consequently, the call to m’ propagates
the reference of thread t.

The CO-OPN/2 next methods are called, in an unobservable manner, by a special CO-
OPN/2 object specifying the scheduler of the Java Virtual Machine. The scheduler per-
manently loops: it calls one firable next method, waits for its complete execution, and
then calls another firable next method (possibly of another object), etc.

The firing of the last next enables the end m(y,<cnt,t>) method to be fired. The
end m(y,<cnt,t>) method removes the caller’s identity from a dedicated place, as well
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as all the local variables and input/output parameters from their own places. In addition,
it returns the output parameter y. The action of removing the caller’s identity, and the
local variables and parameters corresponds to the ”7}” of the Java method.

It is worth noting that input parameter x is passed to CO-OPN/2 method m as an object’s
identity, thus the method may have modified its internal state. The method’s caller also
has the knowledge of the input parameter’s identity, thus, at the end of the method, the
caller handles the object x with a possibly modified state.

Figure 7.2 shows an example of a method using parameters and local variables. The han-
dling of global variables from within a method requires that global variables are loaded
before they are used or assigned. The CO-OPN/2 specification of the use of global vari-
ables follows this schema: before using or assigning a global variable, the variable is
duplicated into a local copy. The use or assign make use of the local copy.

Java Constructors

In Java, constructors are not inherited, therefore they are not subject to hiding or overrid-
ing. If a constructor body does not begin with an explicit constructor invocation, and the
constructor being declared is not part of the primordial class Object, then the construc-
tor body is implicitly assumed by the compiler to begin with a super-class constructor
invocation super(). A call to super() can only occur from within a method of the direct
sub-class. A call of the form super.super() which would invoke the default constructor
of the grandfather class is not allowed.

CO-OPN/2 Specifications

In CO-OPN/2, a field called Creation contains all the methods that can be invoked to
create an instance of a class. This field is never inherited. The method create exists by
default for every class, and cannot be overridden by the specifier. If a non-default construc-
tor is required, the specifier must add in the Creation field the non-default constructor.
The CO-OPN/2 semantics states that, if, for example, the method new-constructor
belongs to the Creation field of a class, then a call o.new-constructor, where o is an
instance of the class, is actually treated as a call to o.create .. o.new-constructor.
Multiple constructors can coexist in the Creation field of a CO-OPN/2 specification.

Java constructors are specified in a slightly different way than Java methods. Indeed,
Java method requires that a thread that wants to call a method has to register the call.
However, it is not possible to register a call for a non existing object. Therefore, we
propose that the call is registered to the Class object (which always exists), and the
constructor method itself verifies if the call has been previously registered to the Class
object (instead of the object to create).

If no constructor is defined, CO-OPN/2 assumes that the create provided by default is
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used. Thus, unlike Java, there is no implicit call to the super-class constructor. Therefore,
we propose the following: if a Java class has no explicit constructor, then the CO-OPN /2
specification of this class has an explicit constructor, called super (), and that is the exact
copy of the default constructor of the direct super-class.

A Java constructor may support an overloading of parameters, i.e., the same constructor
name can be used with parameters that can vary in quantity and type. Such a constructor
is modelled in CO-OPN/2 using several different methods names, one for each possible
Java constructor.

7.1.4 Java Keywords

The Java static keyword is a modifier that can be applied to method and variable
declarations. There is only one copy of each static variable, regardless of the number of
instances of the class. Every class is provided with a Class object, i.e., a special static
object, whose name is the name of the class. A static method can be invoked through
an instance of the class or through the the Class object. Non-static methods cannot be
invoked through the Class object.

A public class or interface is visible everywhere, a public method is visible everywhere its
class is visible. A private method or field variable is not visible outside its class definition.
A protected method of field variable is visible only within its class, sub-classes, or within
the package of which its class is a part. A final class cannot be sub-classed, a final
method cannot be overridden, a final variable means that the variable has a constant
value. The extends keyword is used in a class declaration to specify the super-class. The
implements keyword is used to indicate that the class implements one or more interfaces.
The abstract keyword is used to declare methods that have no implementation. Classes
declared as abstract cannot be instantiated.

CO-OPN/2 Specifications

The Java static keyword is specified by the means of the CO-OPN/2 0bject field. Every
CO-OPN/2 specification Class module, that specifies a Java class, defines a CO-OPN/2
static object whose name is the name of the Java class. This CO-OPN/2 static object
stands for the Class object associated to the Java class. CO-OPN/2 does not provide an
equivalent of Java static methods. Therefore, we propose to specify these methods as
other Java methods. In the case of non-static methods, the specifier should invoke them
only through dynamically created CO-OPN/2 objects.

The Java public and protected keywords have no direct CO-OPN/2 keyword associated.
However, the definition of methods or objects in the interface, and the use of the CO-
OPN/2 keyword Use let the method or the object be public or protected. Similarly, the
Java private keyword has no direct CO-OPN/2 keyword associated, the use of methods
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in the body of a CO-OPN/2 specification lets the method be private or not. The Java
final keyword has no corresponding CO-OPN/2 keyword, the specifier must be override
such classes or methods. The Java extends keyword is specified by the means of the
CO-OPN/2 inherit keyword. The Java implements keyword has no CO-OPN/2 field or
keyword associated. Java abstract keyword applied to classes is specified by the means of
the CO-OPN/2 Abstract keyword. Java abstract methods are like other Java methods,
but their body is empty, i.e., there is no next method. The Java synchronized keyword

has to be specified with several CO-OPN/2 methods.

7.1.5 The Java Object Class

The Java Object class is the root of the hierarchy of Java classes, i.e., it is the super-class
of every Java class. Every Java object is provided with: (1) a mechanism for acquiring
and releasing a lock on an object; (2) a method wait() that enables a thread to be
blocked after having called this method; (3) methods notify() and a notifyAll() that
respectively resume a randomly chosen thread or every thread having performed a wait ();
(4) a mechanism for synchronizing threads based on the notion of locks. The Java Object
class contains other features, but we limit our specifications to the above points.

Java Locks

In Java, synchronization is implemented by accessing exclusively an internal lock associ-
ated with each Java 0Object. Each lock acts as a counter. If the count value is not zero
because another thread holds the lock, the current thread is delayed (blocked) until the

count is zero. The count value is incremented on entry, and decremented on exit.

CO-OPN/2 Specifications

Each class instance o of the CO-OPN/2 JavaObject class is provided with its own special
locker place. This place stores the reference of the thread that is currently locking the
object, together with the number of times it has acquired the lock. Thus, the type of the
locker place is given by the cartesian product of Thread and Integer. An extra locked
place is used to specify that the object is currently locked by no thread.

Two methods interact with place locker: lock(t) and unlock(t). The lock(t) method
acquires the lock of object o on behalf of the thread t. After the firing of method lock(t),
thread t is the locker of object o. Similarly, after the firing of the unlock(t) method,
thread t releases one lock of object o.

Figure 7.3 depicts a part of the JavaObject class: the locker and the locked places,
and the two CO-OPN/2 methods lock(t) and unlock(t). The locker place stores
pairs <t ,i>, where t is a thread’s identity and i is the number of locks that thread t has
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Class JavaObject
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lock(t) lock(t) unlock(t) unlock(t)

Figure 7.3: CO-OPN/2 Specification of Java Locks

acquired on object o. The locked place stores the value @ when no thread is currently
locking the object.

The lock(t) method is given by two axioms. The first axiom (given by the CO-OPN/2
lock(t) method on the left of the figure) specifies that if there is no current locker object,
then t becomes the current locker with one lock on the current object: value @ in place
locked is removed and value <t, 1> is inserted in place locker. The second axiom (given
by the CO-OPN/2 lock(t) method on the middle of the figure) specifies that if the
current locker is already t, then its number of locks is increased by one: token <t,i> is
replaced by token <t,i+1>. It is worth noting that if t is not the current locker, then
neither the first axiom nor the second axiom for lock(t) can be fired, thus, t is blocked
until one of these two axioms is firable.

The unlock(t) method is given by two axioms. The first axiom (given by the CO-OPN/2
unlock(t) method on the middle of the figure) specifies that if the current locker is t
and if it possesses more than one lock on the current object, then t releases one lock:
token <t,i+1> is replaced by token <t,i>. The second axiom (given by the CO-OPN/2
unlock(t) method on the right of the figure) specifies that if the current locker is t and
if it possesses exactly one lock on the current object, then, t releases its last lock on the
current object, and is no longer the current locker: value <t,1> is removed from place
locker and value @ is inserted in place locked.

As the CO-OPN/2 JavaObject class is the super-class of all the CO-OPN/2 classes related

to Java, every sub-class is provided with the same mechanism of lock as described above.
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Wait, Notify, Notify All

Java method wait () enables a thread to be removed from the scheduled threads. Methods
notify() and notifyAl1() resume respectively one or every thread having performed a
wait ().

Every object, in addition to having an associated lock, has an associated wait set, which
is a set of threads. When an object is first created, its wait set is empty. Methods wait (),
notify(),and notifyAll() interact with the lock, the wait set and the scheduling mech-
anism for threads.

A thread can invoke method wait () only if it has already locked the object. The wait ()
method then adds the thread to the wait set, disables the thread for thread scheduling
purposes, and performs as many unlock operations as the numbers of locks performed
by the thread on the object. The thread then remains inactive until one of the three
following things happens: (1) some other thread invokes the notify() method for that
object, and the inactive thread happens to be the one arbitrarily chosen as the one to
notify; (2) some other thread invokes the notifyAll() method for that object; (3) if the
call by the inactive thread to the wait () method specifies a time-out interval, then the
specified amount of real time has elapsed. The inactive thread is then removed from the
wait set and re-enabled for thread scheduling. It then locks the object again (which may
involve competing in the usual manner with other threads); once it has gained control of
the lock, it performs additional lock operations such that the state of the object’s lock
is exactly as it was when the wait () method was invoked. Finally, it returns from the
invocation of the wait () method.

The notify(), notifyAll() methods can be invoked for an object, only when the cur-
rent thread has already locked the object’s lock. In the case of the notify () method, one
thread is arbitrarily chosen in the wait set, removed from the wait set and re-enabled; in
the case of the notifyAll() method, all the threads in the wait set are removed from
the wait set and re-enabled. If method wait () has not been previously called, methods
notify(), notifyAll() have not effect.

CO-OPN/2 Specifications

The CO-OPN/2 JavaObject class maintains a special place named wait_set whose type
is a pair made of the identity of (1) the calling thread and the number of locks it holds,
and (2) the caller’s identity. The Java methods wait (), notify(), and notifyAll() are
specified in a similar way as other Java methods.

As the CO-OPN/2 JavaObject class is the super-class of all the CO-OPN/2 classes related
to Java, every sub-class is provided with wait sets and the CO-OPN/2 methods specifying
Java wait () and notify() methods. It is the same for each class instance.

Figure 7.4 depicts a part of the JavaObject class: the wait_set place and the specification
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of the Java methods wait() and notify(). The body of Java method wait () is depicted
on the right part of the figure, while the body of Java method notify() is depicted on
the left part of the figure. This figure does not show the case where an inactive thread
becomes active again because a time-out has elapsed; and the case where the notify ()
method is invoked before the invocation of the wait () method.

The CO-OPN/2 wait method requires simply the synchronization with the

start wait (<cnt,t>) and the end wait(<cnt,t>) methods of a given caller’s identity
previously registered. The start wait(<cnt,t>) inserts the caller’s identity <cnt,t>
into place p11. The first next method in the right part of the figure: (1) removes token
<t,i> from place locker; (2) inserts token @ in place locked, i.e. it releases all locks
that t maintains on the object; (3) stores this number of locks in place wait_set; (4)
moves the caller’s identity, <cnt,t> from place p11 to place p12. Token <t,i> in place
locker means that thread t locks the object with i locks. If t is not currently locking
the object, the next method cannot be fired, and t is delayed until it locks the object.
As soon as t obtains a lock on the object, the next becomes firable.

At this point, no method concerning the execution of Java method wait (), with caller’s
identity <cnt,t> is firable, unless notify is invoked.
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Figure 7.4: CO-OPN/2 Specification of wait(), notify()

We consider now a thread t1 calling method notify after having previously registered
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its call. The start notify(<cntl,t1>) stores the caller’s identity into place p21. The
first next method on the left of the figure checks if t1 owns the lock of the object. If
it is not the case, then method next is not firable until t1 acquires at least one lock. If
we assume that t1 owns at least one lock on the object, then method next inserts the
caller’s identity <cnt1,t1> into place p21. The second next on the left part of the figure
can then be fired. It moves a token, randomly chosen, from the wait_set place to the
resumed set place. It also moves the caller’s identity <cnti1,t1> of the thread which
performed the start notify(<cntil,t1>) from the p22 place to the p23 place. Finally,
the end notify(<cntl,t1>) removes the <cnt1,t1> from place p23 and returns. The
CO-OPN/2 specification of the Java notify () method essentially moves one thread from
the wait set to the resumed set.

We come back now to the wait method. As soon as the thread, which performed the
start wait (<cnt,t>) method, arrives in the resumed_set, the second method next on
the right part of the figure can be fired. It re-acquires all the locks that have been released
by t, i.e., it calls self.lock as many times as the number of locks. When all the locks
have been re-acquired, the end_wait(<cnt,t>) method can be fired, and returns.

Java Synchronized Methods

In order to allow exclusive access to an object, Java offers only one primitive which is
the synchronized keyword. A Java synchronized method m is declared in the following
way:

public synchronized Object m(Object x) { ... }

In order to execute a synchronized method, a thread has to compete for the lock of the
object which is the method’s owner. Subsequently, this thread is called the locker thread.
Synchronized methods work in the following way:

e A synchronized method ensures that only one thread at a time can be executing
this method. It is the locker thread;

e The locker thread can be executing concurrently several synchronized or non syn-
chronized methods of a given object;

e Several synchronized methods of the same object ensure that only the locker thread
can execute them at the same time. Note that this thread can execute several times
the same synchronized method and some of them simultaneously:

e Consider a given object with some of its methods declared as synchronized and
some of them not. In this case, exclusive access to the object is not ensured, because
any thread (locker or not) can execute at any time a non synchronized method,
even if the locker thread is already executing a synchronized method;
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e Exclusive access is guaranteed only if every method is declared as synchronized.
Otherwise, the exclusive access is not guaranteed.

A synchronized method automatically performs a lock operation when it is invoked; its
body is not executed until the lock operation has successfully completed. If the method
is an instance method, it locks the lock associated with the instance for which it was
invoked. If the method is static, it locks the lock associated with the Class object
that represents the class in which the method is defined. If execution of the method’s
body is ever completed, either normally or abruptly, an unlock operation is automatically
performed on that same lock.

CO-OPN/2 Specifications

A synchronized Java method is specified in the same way as other Java methods. The
acquisition of the lock is performed internally by the method’s body. Figure 7.5 depicts
the CO-OPN/2 specification of a synchronized method. We assume that a thread t
performs instruction y=o.m(x), and Java method m is declared synchronized.
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Figure 7.5: CO-OPN/2 Specification of Java Synchronized Methods

The difference with a non synchronized method is that two extra next methods are
needed: one which is fired just after the start m(x,<cnt,t>) method, and another one
which is fired just before the end m(y,<cnt,t>) method. The first next is responsible to
acquire the lock of object o on behalf of thread t (calling self.lock(t)). The last next
is responsible to release the lock of object o which is in possession of the caller, i.e., t
(calling self.unlock(t)). The specification of the Java method m is nested between this
pair of next. Thus, the method’s body can be executed only if the lock has been acquired
by the caller’s thread, and as soon as the method’s body is finished the lock is released.
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Remark 7.1.2 Note that we need both cnt and t to discriminate method calls. Indeed,
if we use only cnt, it is not possible to know if a given thread is holding a lock on an
object, because the cnt is unique for every call and does not give indication on the thread
which is behind the call. If we use only t, it is possible to manage the lock problem, but it
would be impossible to discriminate two concurrent calls of the same method by the same
thread (recursion), even if the method is a synchronized method.

Java Synchronized Statements

A Java synchronized statement is a more basic construct than synchronized method.
It is of the form:

synchronized(z) { I }

where z is an object, and I is a block of instructions. A synchronized statement is
always part of the body of a method. In order to execute a synchronized statement, a
thread has to compete for the lock on the object z.

CO-OPN/2 Specifications

A Java method having in its body a synchronized statement is specified in the same way
as a synchronized method, except that the acquisition of the lock does not occur at the
beginning of the method’s execution, but at the point where the synchronized statement
occurs. The lock is released at the end of the synchronized statement and not just before
the end of the method.

7.1.6 Java Thread Class

Java threads are created and managed by the classes Thread and ThreadGroup. Usually,
a thread is started with its Java start () method, and this method calls the Java run()
method, which is the “body” of the thread. The thread runs until the run() method
returns or until the stop() method of its Thread object is called. The caller’s identity
is a pair <cnt,t> where t=self is the own identity of the thread. The propagation of
the thread’s reference ends when a new thread is created, i.e., when a method start ()
is reached in the cascade of method’s calls. The reference of the caller is no longer
propagated; instead, it is the reference of the newly created thread that is propagated,
firstly from its start () method to its run() method, and subsequently to all the methods
that are called from within its run() method. It is also possible for a thread to call directly
the run method of another thread. In this case, the caller’s identity is a pair <cnt,t>
where t is the identity of the thread which called the run method.
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The static methods of the Thread class operate on the currently running thread. The
instance methods may be called from one thread to operate on a different thread.

CO-OPN/2 Specifications

CO-OPN/2 Class module JavaThreads specifies the Java Thread class. It defines type
javathread. Figure 7.6 gives a partial view of the CO-OPN/2 specification of the Java
start () and run() methods. The Java start() is a synchronized method, thus it is
specified accordingly, i.e, the body is embedded into a call to self.lock(t) and a call to
self.unlock(t).
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Figure 7.6: CO-OPN/2 Specification of a Java Thread

Just before returning, the start method calls the run method of the thread which is
started, and breaks the propagation of thread’s reference. Indeed, the registration of the
call to method run is not made on behalf of thread t that called method start, but on
behalf of the current thread itself. This point is the actual point where a new execution
flow is started, which will control its own cascade of method calls.

The Java run() method is specified like any other Java method, with the particularity
of not being a blocking method. Consequently, the caller of the start() method is not
blocked waiting for the run() method to be finished. For this reason, the CO-OPN/2

specification of the Java run() method ends with a next, called by the Java scheduler.
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7.1.7 Java Applet Class

Java applets are piece of code that are moved from one machine to another one. The Java
init () method is used to perform any one-time initialisation that is necessary when the
applet is first created. The Java start() method is called by the system. It is like the
init () method, but it may be called multiple times throughout the applet’s life. The
Java stop() method stops the applet from executing. The Java destroy () method frees
up any resources that the applet is holding. The Java Virtual machine captures events
occurring in the graphical user interface provided by an applet and, in an unobserved
manner, invokes method action(Event e, Object o) (returning a boolean value) of
the applet for the corresponding event. The Applet () constructor provided by the Java
Applet class is a default constructor. All these methods are called by an applet viewer
or a Web browser, they are never called by another object.

Remark 7.1.3 In order to represent the capture of events by the applet, we propose that
the mathematical representation, (Md%mg)MyApplet, of a Java class MyApplet, a sub-class
of Java class Applet, contains as many methods as the number of events that the applet
can handle, even though they are not present in the Java source code.

CO-OPN/2 Specifications

CO-OPN/2 Class module JavaApplets specifies the Java Applet class, and defines type
javaapplet. We model methods init (), start(), and stop(), and action(e,o0,b) only.
Java does not provide any body for these methods, i.e. their body is empty. For this rea-
son, the corresponding CO-OPN /2 specification, depicted in figure 7.7, provides only the
pairs of CO-OPN/2 methods: (1) start_init(id), end_init(id);(2) start_start(id),
end_start(id); (3) start_stop(id), end_stop(id); (4) start_action(e,0,id),
end_action(b,id).

We do not provide a constructor, because the Java constructor of the Applet class is a
default one, thus the CO-OPN/2 default constructor, create, is used for this purpose.

In order to specify the capture of events occurring in the graphical user interface provided
by an applet, we propose to add to every applet as many CO-OPN/2 methods as the
number of events that the action() method is able to handle. These extra methods have
no corresponding Java method, they simply enable to observe the interaction of the user
with the GUI, and to call, in an unobservable manner, the action() for the captured
event.

We skip all the other Java methods being part of the Java Applet class.
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Figure 7.7: CO-OPN/2 Specification of a Java Applet

7.1.8 Java Sockets

The Java Programming language defines several classes to work with sockets, particularly
the ServerSocket class and the Socket class. Two types of communication through a
socket are available: (1) a communication based on an underlying reliable connection-
based stream protocol; (2) a communication based on an underlying unreliable datagram
protocol. A stream protocol is the default.

We focus more precisely on reliable streams. A communication through a socket based
on a reliable connection-based stream protocol implies the following: (1) a connection is
established between the partners of the communication before any exchange of messages
is performed; (2) messages between partners are received in the same order than the order
in which they are sent; (3) no message is lost during the communication. More precisely,
the establishment of the connection is established in the following way: an instance of
ServerSocket class is created and waits for socket connections on a given host and a
given port. Every instance of Socket class is created with the knowledge of the host and
the port where the ServerSocket instance is waiting. As soon as the Socket instance is
created the ServerSocket accepts (by the means of an accept () method) the connection
and receives two streams (input and output) to actually send and receive data. The
communication is then established.

CO-OPN/2 Specifications

CO-OPN/2 Class module JavaSockets, defining type javasocket, specifies the Java
Socket class. The creation of every instance of JavaSockets Class module causes the
creation of two instances of JavaArrayBytes Class module. This Class module specifies
a Java array of bytes. One of these queues is used by the client to write information
and by the server to read information, while the other one is used by the server to write
information and by the client to read information. They stand for the input and output
streams. Before returning, the constructor registers to an underlying system the two
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streams as well as the host and the port where to connect.

CO-OPN/2 Class module JavaServerSockets, defining type javaserversocket, spec-
ifies the Java ServerSocket class. The accept() method is specified such that it gets
registered connections from the underlying system; and returns the input and output
streams.

The underlying system is specified as a buffer that stores 4-tuples (two streams, name of
host, and port number).

7.1.9 Java Vector Class

Java Vector class defines ordered structures storing Java object identifiers. Several meth-
ods enable to insert an element at a given position, insertElementAt (obj,index); read
an element, elementAt (i); remove an element at a given position,

removeElementAt (obj,index).

CO-OPN/2 Specifications

CO-OPN/2 Class module JavaVectors defines type javavector and specifies the Java
Vector class. It is specified as an array of Java objects.

7.2 Running Example

Running example of Chapter 5 shows the refinement of contractual CO-OPN/2 specifi-
cation C'Specy (see Example 5.2.8), defining a heap of normal chocolate packaging, by
a contractual CO-OPN/2 specification C'Spee; (see Example 5.2.14), defining a FIFO
of normal and deluxe chocolate packaging. Chapter 6 gives a contractual Java program
C Prog; (see Example 6.1.24) implementing C Spec; and hence C Specy.

The purpose of this section is to define CSpecy that refines €' Spec; and which is very
close to contractual program C'Prog;. In addition, it gives the refine relation on C'Spec;
and C Specy, and the implement relation on C'Specy and Prog;.

Contractual CO-OPN/2 Specification CSpec,

Figure 7.8 depicts a part of the CO-OPN/2 specification of the Java class JavaConveyorBelt
given by Figure 6.2. It depicts only methods insertElement () and removeElement ().
Since Java class JavaConveyorBelt class extends Java Vector class and hence the Java
Object class, methods insertElementAt (box),removeElementAt (), size(),and wait (),
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notify(), etc., are also available. The CO-OPN/2 Class module JavaConveyorBelt de-
fines the java-conveyor-belt type and the static object the-java-conveyor-belt.

Class JavaConveyorBelt

insertElement with
register(<box, startinsertElement(box,<cnt,t>) ..
insertElement,<cnt,t>>) end_insertElement(<cnt,t>)

start_removeElement(<cnt,t>) start insertElement(box,<cnt,t>)

next with
Counter.get(cnt2) ..
theconveyorbelt.register(
<size,<cnt2,t1>>)

next with
Counter.get(cntl) ..
theconveyorbelt.register(

<0,elementAt,<cntl,t>>) (i >= 51) => © with
1 = = next wi

theconveyorbelt.size (i)
next with

theconveyorbelt.elementAt(i,elem)
(i < 51) => next with

next with Wit
theconveyorbelt.size(i)

Counter.get(cnt2) ..
theconveyorbelt.register(

<0,removeE1ementAt,<cnt2,t>>) next with

Counter.get(cnt2) ..
Counter.get(cnt3)
theconveyorbelt.register(
<box,insertElementAt,<cnt2,t>>) ..
theconveyorbelt.register(
<size,<cnt2,t>>)

next with
theconveyorbelt.removeElement At (0)

next with
theheap.size(i) //
end removeElement(box, <cnt,t>) theheap.insertElement At (i)

end-insertElement(<cnt,t>)

register(<removeElement, removeElement(box) with
<cnt,t>>) start_removeElement(<cnt,t>) ..
end.removeElement(box,<cnt,t>)

Figure 7.8: The CO-OPN/2 Specification of Java Class JavaConveyorBelt

Left part of Figure 7.8 shows method removeElement (), while right part shows
insertElement (). Their specification follows from Subsection 7.1.3, i.e., every instruc-
tion of the Java method’s body is specified using CO-OPN/2 next methods. It is just
interesting to note the specification of the test theconveyorbelt.size()<51 (ligne 6 of
Figure 6.2). Two next methods have been used, (second and third next methods on
the right): one for ending immediately the method (by enabling the firing of method
end_insertElement), and the other one for continuing with the next instruction (by
enabling the firing of the fourth next method).

It is worth noting that between ligne 6 and ligne 7, as well as between ligne 12 and ligne
13 of Figure 6.2, a lot of other Java instructions may occur. This is particularly visible on
the CO-OPN/2 specification, since other next methods can be fired between the fourth
and the fifth next, on the right of Figure 7.8; and between the second and the fourth next
on the left of Figure 7.8. Thus, for the left part, even though we think that we are actually
removing element 0, it can happen that element 0 has already been removed and replaced
by some other element, or even worse, all elements have been removed and there is no
element at position 0. This cause no problem if only one flow of control exists. Otherwise,
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method removeElement () and insertElement () should be declared as synchronized in
the Java class JavaConveyorBelt.

Similarly we define the CO-OPN/2 specification of Java JavaPackaging and
JavaDeluxePackaging. They defines the java-packaging and java-deluxe-packaging
types respectively. The CO-OPN/2 ADT module Booleans and Integers specify the
Java boolean and the Java int types respectively.

Contractual CO-OPN/2 specification C'Specy =< Specy, @5 > is such that:

SPGCQ = {(Mdg7Q)Booleansa (Mdg7g)1ntegersa (Md;7Q)JavaObject7 (Md;7Q)JavaVectorsa

C C C
(MdEJ) ) JavaPackaging; (MdEJ) ) JavaDeluxePackaging; (Mdz Q )Ja.vaConveyorBelt}> .

The contract ®, is similar to the contract ¥y of contractual program C Prog;, variables
are given by the set:

Xy = {javapack,, ... , javapacks; }iavapackaging U {Javadeluzepack }iayadeluxepackaging-

¢2, =  <javapack;.create><the-java-conveyor-belt . insertElement(javapack; )>
<the-java-conveyor-belt . removeElement(javapack,)> T

¢2, = —(<javapack;.create>
<the-java-conveyor-belt . removeElement(javapack,)> T)

¢y, =  <javapack;.create><javapacks. filljaya packaging(true)> T

P24

<javapack;.create><javapack;.create>
<the-java-conveyor-belt . insert Element(javapack; )>
<the-java-conveyor-belt . insert Element(javapacks;)>
(<the-java-conveyor-belt . removeElement(javapack,)>
<the-java-conveyor-belt . removeElement(javapacks)> A
=( <the-java-conveyor-belt . removeElement(packs; )>
<the-java-conveyor-belt . removeElement(pack; )>))T
e, =  <javapack.create> ... <javapacksg.create><javapacks;.create>
<the-java-conveyor-belt . insert Element(javapack;)> . ..
<the-java-conveyor-belt . insert Element(javapacksqg)>
—(<the-java-conveyor-belt . insert Element(javapacks,)>)T
by =  <javadeluzepack.create><javadeluzepack. filljava deluxe-packaging(false)>
<javadeluzepack. filljaya deluxe-packaging( true)> T

@2, =  <the-java-conveyor-belt . notify> T.
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Refine Relation

The refine relation on CSpec; and C'Specy is obviously given by A; below. It is very
similar to the implement relation Al on CSpec; and C Prog; (see Example 6.2.4), since
contractual CO-OPN/2 specification C Specy is meant to replace contractual program

C Prog;.

={(chocolate, boolean), (praline, boolean), (truffle, boolean)}

={(packaging, java-packaging), (deluxe-packaging, java-deluxe-packaging),
conveyor-belt, java-conveyor-belt) }

A1,a ={(Ppratine; trueboslean)s ( Trufe, falseboolean) }

A1, =1(neWeonveyor-belts N€Wjava-conveyor-belt), (INitconveyor-belts Nitjava-conveyor-belt);

NE€Wpackaging, newjava—packaging)a (1n1tpackaging7 1nltjava.—pa.ckaging)7

)\lM :{ putconveyor—belt,packagingv insertElernentjava—conveyor—belt,java—packaging)7
getconveyor—belt,packaging ren’loveEﬂen’lentjava—conveyor—belt,java—pa.ckaging)7
ﬁllpa.cka.ging,chocola.te7 ﬁlljava—packa.ging,boolean) 9
ﬁudeluxe—packaging,chocolate7 ﬁlljava—deluxe—packaging,boolean)}

A1, ={(the-conveyor-belt, the-java-conveyor-belt)}

(
(
(
(
(
(
(NeW deluxe-packaging: L€ Wiava-deluxe-packaging ) s (111t deluxe-packaging: 1111 tjava-deluxe-packaging) }
(
(
(
(
(
(

My ={(pack;, javapack;) (1 <1 < 51), (dpack, javadeluzepack)}.
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Implement Relation

The implement relation on C' Spec, and C Prog, is given by Al below. It is just a renaming
of the type, sort, method and object names of C Spec, into respective names of C' Prog; .

)\gsA ={(boolean, boolean)}

)\gsc ={(javaobject, Object), (javavector, Vector),
(java-packaging, JavaPackaging), (java-deluxe-packaging, JavaDeluxePackaging),
(java-conveyor-belt, JavaConveyorBelt) }

gFA :{(truebooleam trueboolea.n)a (falsebooleam faLlSeboolean)}>

)‘ch = { (newjavaobject7 neVVObject) ) (initjavaobjecty initObject) 9
(neravavect0r7 neWVector)7 (initjavavectory init\/ector)a
(newjava—conveyor—belt7 neVVJavaConveyorBelt)7 (initjava—conveyor—belt7 initJavaConveyorBelt)7
(nerava—packaginga neWJavaPackaging)7 (initjava—packaging7 initJavaPackaging)7
(newjava—deluxe—packaging7 neWJavaDeluxePackaging)7
(lnltj ava-deluxe-packaging; initJavaDeluxePaCkaging) }

)\gM = { (iHSGI’t Elementj ava-conveyor-belt,java-packaging insert ElementJavaConveyorBelt,j ava—packaging) )
(removeElementj ava-conveyor-belt,java-packaging;
removeElementJavaConveyorBelt,java—packaging) )

(ﬁujava—packaging,boolean7 ﬁHJavaPackaging,boolean) )
(ﬁllj ava-deluxe-packaging,boolean; ﬁllJava.DeluxePackaging,boolean) }
A , =1(the-java-conveyor-belt, theconveyorbelt) }
)\gx ={(javapack;, javapack;) (1 <1 <51), (javadeluzepack, javadeluzepack)}.

Remark 7.2.1 We have that X of Example 6.2. is actually equal to the composition
)\1 5 )\g

7.3 Advices for Implementing in Java

The CO-OPN/2 specifications language and the Java programming language share some
similarities essentially because they are both object-oriented. However, they differ by
several points: ADT modules cannot be defined in Java; every Java class is sub-class of
the Java Object class; constructors behave differently in Java and in CO-OPN/2; ete. In
order to conduct a refinement process towards a Java implementation, it is necessary to act
with caution during the refinement process. Otherwise, the implementation theory defined
in Chapter 6 does not apply. This section lists some points that should be respected in
order to correctly and easily perform the implementation phase.
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Refinement process ends with CO-OPN/2 specifications of Java program

Contrarily to the other points below, this point is more an advice than an obligation.
Ending the refinement process with a contractual CO-OPN/2 specification entirely built
with CO-OPN/2 classes specifying Java classes has the following advantages. First, the
implementation is trivially performed, since every instruction of the program is already
specified. Second, the Java program will behave like the most concrete contractual CO-
OPN/2 specification. Thus, no unexpected behaviour arises during the implementation
phase, since it has already been observed at the CO-OPN/2 specification level. Conse-
quently, the contract of the most concrete contractual CO-OPN/2 specification is pre-
served by the program, and this ensures that the program is a correct implementation.
Section 7.2 evidences the following fact: methods inserElement () and removeElement ()
of Class module JavaConveyorBelt are not specified as Java synchronized methods, and
this can cause errors in the case of multiple flows of control.

CO-OPN/2 ADT modules

According to the implement relation given in Definition 6.2.2, CO-OPN/2 ADT terms
appearing in the contract have to be related to a term of a Java primitive type. The Java
primitive types are: int,long, etc. Since this list is very restricted, it is not possible to
relate any CO-OPN/2 ADT term to a term of one of these types. For this reason, it
is necessary to avoid the use of complex ADT modules that cannot be related to Java
primitive types and to use instead a Class module that wraps it.

However, for CO-OPN/2 ADT terms that does not appear in contract, it is not necessary
to wrap them into a Class module. For instance, the CO-OPN/2 ConveyorBelt Class
module (see Example 5.2.14) uses ADT module FifoPackaging internally, and no formula
of the contract concerns this module. Therefore, it is not necessary to wrap it in a Class
module.

Constructors

CO-OPN/2 implement relation states that CO-OPN/2 default constructors are related to
Java default constructors. Most of the time, a default constructor is not sufficient, and
a Java class defines as well non-default constructors. Therefore, we recommend to use
non-default CO-OPN/2 constructors very early in the refinement process, even though a
default constructor is sufficient.

Systems and JVM

A software system is always starting at a given moment. When the system is imple-
mented in Java, the start of the system corresponds to the invocation of command java
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ClassName args which starts the main(args) method of Java class ClassName. CO-
OPN/2 Class module JVM (see Figure 7.1) specifies the Java Virtual Machine, a method
java(ClassName,args), and the call to the main(args) method. When a whole sys-
tem has to be specified, we recommend to use a method init(Name,args) from the
most abstract contractual CO-OPN/2 specification. Method init(Name,args) is re-
fined to method java(ClassName,args), and finally implemented with command java

ClassName args. An example of use of method init (Name,args) is provided by the case
study, described in Chapter 9.

Graphical User Interfaces

We have treated Java Graphical User Interfaces (GUIs) in a particular way. Additional
methods are used both in the abstract definition of a program using GUI and in the CO-
OPN/2 specification of the program. These methods enable to capture events occurring of
the interaction of the user with the GUI, and invoke the corresponding method (action())
of the Java object handling the event. These methods are not methods appearing in the
source program.



Chapter 8

Veritying Refinement and
Implementation using Test
Generation

Chapters 5 and 6 develop respectively a theory of stepwise refinement, and a theory of
implementation of contractual CO-OPN/2 specifications, which are based on contracts
expressed using HML formulae. The use of HML formulae is motivated by the fact that
they are currently employed in the theory of test generation developped for CO-OPN/2.
The purpose of the current chapter is to propose a means, using this theory of test
generation, to practically verify: that a set of HML formulae expressed on a CO-OPN/2
specification is actually a contract (horizontal verification); that refinement steps are
correct (vertical verification); and that the implementation phase is correct too (program
verification).

The theory of test enables to generate a reduced test set, representative of the whole
behaviour of a CO-OPN/2 specification, such that if the model of a program satisfies
the test set, then this model is bisimular to that of the specification. In the theory of
refinement and implementation by contracts, we need only to test if the model of the
program is bisimulable to that of the specification on the part specified by the contract.
Therefore, the basic idea for applying the theory of test for verifying a refinement step,
consists of generating test sets on the basis of the contract, instead of the whole set of
formulae satisfied by the model of the specification.

This chapter first presents the theory of test generation, then it explains the use of test
generation for the horizontal verification, for the vertical verification, and finally for the
program verification.
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8.1 Introduction to Test Generation

The theory of test, developped by Barbey, Buchs and Péraire in [12, 11, 52|, generates
a minimal set of test cases able to ensure that if a program satisfies the test set, then
the program satisfies its specification, i.e., the model of the program is bisimular to that
of the specification. Test cases are pairs made of a HML formula and a boolean value.
Bisimulation is easily provided since HML formulae are able to discriminate models as
finely as the bisimulation equivalence. The minimal set of test cases is obtained at the
end of a test selection process that starts with an exhaustive test set and reduces it by
applying a series of reduction hypotheses on the program. The theory of test generation
is completed by a tool that generates test cases from a given CO-OPN/2 specification.

This section briefly introduces some preliminary definitions, the theory of formal testing,
the test selection process, and finally the practical test selection.

8.1.1 Preliminary Definitions

A test case is a pair made of a HML formula and a value, either true or false. A set of
such test cases is called a test set.

Definition 8.1.1 Test Cases and Test Sets.
A test case is a pair (f,r), where f € PROP is a ground HML formula, and r €
{true, false}.

A test set is a set of test cases.

Notation 8.1.2 Test Sets.
We denote TEST the class of all possible sets of test cases.

A test set is satisfied by a program if for every test case (f,r) of the test set, the transition
system of the program satisfies f iff r = true. The satisfaction relationship Fp on pro-
grams and test sets states in which cases a test set is satisfied by a program. Sub-script
O stands for the oracle, which is a decision procedure that verifies if a program satisfies
the test set.

Definition 8.1.3 Satisfaction Relationship on Programs and Tests.
The satisfaction relationship on programs and tests, noted FoC PROG x TEST, is such
that:

(ProgFo T) < (V{(f,r) €T then
Modpoy Fumr | and r = true or
Modprog Fumr [ andr = false) ,
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where Prog € PROG is a program, Modp,., is the transition system of Prog, T € TEST
is a test set, and Fgpp ts the HML satisfaction relation given by Definition 6.1.15.

8.1.2 Formal Testing

The aim of formal testing, as defined by Barbey, Buchs, and Péraire in [12, 11, 52], is to
find a test set such that if a program Prog satisfies the test set, then the program satisfies
its specification Spec, noted Prog F Spec. Prog satisfies a given specification Spec if
Prog is bisimular to Spec.

Definition 8.1.4 Bisimulation.

Let T'Sy, TSy be two transition systems, Staters,, Staters, be the set of states of T'Sy,
TS, respectively, and Inity, Inity be the initial state of TSy, T'Sy respectively. TSy is
bistmular to T'Sy, noted T'S; = T'S,, if there is a relation R C Staters, X Staters, such
that:

2. If sty R sty and (sty,e,st)) € TSy then 3 (stq, e,sty) € T'Sy s.t. st} R st}
3. If sty R sty and (stq, €, sty) € TSy then 3 (sty,e,st}) € T'S; s.t. st} R st} .

The relation R is called a strong bisimulation.

Definition 8.1.5 Satisfaction Relationship on Programs and Specifications.
The satisfaction relationship on programs and specifications, noted F C PROG X SPEC, s
such that:

Prog E Spec & Modp,oy = SSem 4(Spec) and there is signature morphism
between the global signature of Prog and the global signature of Spec.

This definition implies that the set of events of the transition system of Prog is the same
as the set of events of the transition system (i.e., step semantics) of Spec.

Given Prog, a program and Spec, a specification, the aim of formal testing is to find a
test set T' such that:

(Prog F Spec) < (Progko T). (1)
Such a test set is called pertinent.

Test cases are built with HML formulae, two transition systems are equivalent iff they
satisfy the same set of HML formulae.
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Definition 8.1.6 HML FEquivalence.
The HML equivalence relationship, noted ~gppC TS x TS, is such that:

(TSl ~NIOML TSQ) <~ (\V/f € PROP, TS, Egmr f & TS Frur f),

where T'S1, TSy € TS are two transition systems.

The full agreement theorem, proved by Hennessy and Milner in [41], shows that HML
formulae distinguish image-finite! transition systems as finely as the bisimulation equiv-
alence. Indeed, it underscores the fact that two transition systems are bisimular iff they
satisfy the same set of HML formulae.

Theorem 8.1.1 Full Agreement.
Let T'Sy, T'Sy be two transition systems, then the following holds:

(TSlQTSQ) e (TSl ~NHML TSQ)

Given a specification Spec, the exhaustive test set derived from Spec is given by the whole
set of test cases satisfied or not by the step semantics of Spec. Hp is a set of hypotheses,
called the oracle hypotheses, ensuring that the oracle knows how to decide the success or
the failure of a test case.

Definition 8.1.7 FEzhaustive Test Set.

Let Spec be a CO-OPN/2 specification, SSem 4(Spec) be the step semantics of Spee, and
Ho the oracle hypotheses. The exhaustive lest set, noted EXHAUSTg e, i, € TEST, @s a
test set such that:

EXHAUSTspec,, = {(f,7) € PROP x {true, false} |
(SSem 4(Spec) Egmr | and r = true)or
(SSem 4(Spec) Fumr | and r = false)}.

The full agreement theorem enables to conclude that if a program Prog satisfies the
exhaustive test set of a specification Spec then the program satisfies the specification
Spec:

(Prog satisfies Hp) = (Prog E Spec < Prog Fo EXHAUSTspe 1, )- (12)

Thus, thanks to the full agreement theorem, the exhaustive test set 7' = EXHAUSTgpec, 1,
is a test set that let formula (7) be true.

la transition system is image-finite if every reachable state of the transition system has a finite number
of successor states.
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8.1.3 Test Selection

In order to verify if a program Prog satisfies a specification Spec, it suffices to prove
formula (i2). However, EXHAUSTgy.. n, is a huge set. Therefore, additional hypotheses
are made on the program in order to reduce the size of the test set.

More generally, given an initial test context (Ho,7Tp), i.e., a pair made of a small set
of hypotheses Hy and a huge test set Ty, an iterative refinement of the test context is
performed, in order to reach a new test context (H,,T,) with a bigger set of hypotheses
and a smaller test set. We use the term iterative refinement as it has been used in [11].
Thus, it must not be confused with the refinement of specifications as defined in this
thesis.

The iterative refinement of the test context leads to a chain of test contexts:
(Ho, 1), ... ,(H,,T,)
such that H;_y C H; and T;_; 2 T}, (1 <1 < n), and:

(Prog satisfies H;y1) = (Prog satisfies H;) and
(ProgFo T; & Progko Tiv1) (0<i:<n-—1).

By transitivity, the following proposition holds:

Proposition 8.1.1 [lterative refinement of the Test Context.
Let Prog be a program. Let (Ho,To),...,(Hy,,T,) be a chain of test contexts such that
Hi 1 CH and T,-1 2 T;, (1 <1 <n). The following holds:

(Prog satisfies H,) = (ProgFo Ty < ProgFo T,).

Thus, in order to reduce the exhaustive test set of a specification Speec, an iterative
refinement is performed on the initial test context (Ho, EXHAUSTspe. 1, ). It leads to the
test context, noted (H,Tsyec), where H = Ho U Hg, and Hp is an additional set of

reduction hypotheses.

The theory of test generation uses exclusively pertinent test sets, i.e., a program satisfies
the test set iff it satisfies the specification. Thus, due to Proposition 8.1.1, formula (1)
above becomes:

(Prog satisfies H) = (Prog E Spec) & (Prog Eo Tspec,r)- (1217)
In order to prove that the program Prog is bisimular to the specification Spec, it suffices

to prove that Prog satisfies the hypotheses H and the test set T's,.. .

Remark 8.1.8 Since in practice, it is difficult to verify the hypotheses H, a weaker result
is actually reached. If Prog Ho Tspee.m then we are sure that the Prog does not satisfy
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Spec. If program Prog Fo Tspee,ir, this actually means that there is no test case in Tspec i
such that Prog does not satisfy it. However, since hypotheses H are not formally proved,
it is not excluded that Prog does not satisfy some test case of the exhaustive test set.
Therefore, in the case of success, i.e., Prog Fo Tspee,r, we can only be confident thal
Prog F Spec.

8.1.4 Practical Test Selection

In order to practically derive a test set having a reasonable size, the test selection process
starts from the set EXHAUST gy i, and retains the minimum set of test cases represen-
tative enough to guarantee that all cases are covered, provided some hypotheses, H, are
satisfied. The set EXHAUSTgpe. 1, 1s not explicitly constructed, it is replaced by a set
made of exactly one test case (f,r) where f is a variable that stands for every HML
formula, and r is a variable that stands for true or false.

During the test selection process, uniformity and regularity hypotheses are stated on
the program so that the set {(f,r)} is progressively replaced by a set of formulae with
variables. Finally, subdomain decomposition is performed, and a set of ground formulae
is obtained.

Uniformity hypotheses make the assumption that if a test containing a variable holds
for one instantiation of this variable, then the test holds for every instantiation of this
variable. Variables, appearing in HML formulae used for test purposes, have a slightly
different meaning than those used for contracts. In a test case, variables stand for any
possible term, while in a contract, variables are existentially quantified.

Regularity hypotheses make the assumption that if a test is successful for terms having
a complexity (number of events, depth, and occurrences of a method) less or equal to
certain bounds, then the test is successful for every term whatever its complexity.

Subdomain decomposition consists of establishing disjoint sets of terms, and of applying
reduction hypotheses for every domain.

Péraire [52] has completed the theory of test generation for CO-OPN/2 specifications with
a tool able to generate reduced sets of test cases.

8.2 Horizontal Verification

The aim of horizontal verification consists of showing that a CO-OPN/2 specification
Speec, and a set of HML formulae ®, expressed on the specification, actually form a
contractual CO-OPN/2 specification, i.e., MODgpe. F @ (see Definition 5.2.1). In this
case, the specification itself ¢s the program to test.
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In the theory of test generation, test selection process is applied to the exhaustive test
set EXHAUST g 17, made of all HML formulae satisfied by the model of the specifica-
tion, as well as all HML formulae not satisfied by the model of the specification (see
Definition 8.1.7). Therefore, this exhaustive test set corresponds to:

EXHAUSTspec, i, = {(f,7) € PROP X {true, false} | f € ®gpec and r = true}.

Remember that ®g,.. is the set of all HML formulae satisfied by the model of Spec (see
Definition 5.2.1). Negative formulae of ®g,.. correspond to the formulae that the model
must not satisfy. Without loss of generality, we assume that contracts are made only
of ground HML formulae. Indeed, first the set EXHAUSTg,ec 1, as defined in the theory
of test generation is a set of ground HML formulae, and second, variables are used in
contracts only to alleviate the work of the specifier, and are existentially quantified. If a
contract contains HML formulae with variables, these formulae can be replaced by ground
formulae.

For horizontal verification, the test selection process starts with an exhaustive set of test
cases built from @, the contract to verify, instead of ®g,... This set is exhaustive wrt ®,
but not wrt the whole specification.

Definition 8.2.1 FEzhaustive Test Set of CSpec.

Let CSpec = (Spee, @) be a pair made of a CO-OPN/2 specification Spec, and a set of
HML formulae ®. Let SSem 4(Spec) be the step semantics of Spec, and Ho a set of oracle
hypotheses. The exhaustive test set of C'Spec, noted EXHAUST¢spec 1, € TEST, is a lest
set such that:

EXHAUSTcspec. i, = {(f,7) € PROP x {true, false} | f € ® and r = true}.

We state that the initial test context is (Ho, EXHAUST ¢ spec,H, )-

The iterative refinement of test context is applied, i.e., additional hypotheses are made
on Spec, and a smaller test set is generated from EXHAUST¢gpec,m,. The test context
reached after this process is noted (H, T¢spec.rr)-

Applying Proposition 8.1.1 to CO-OPN/2 specifications provides the following result.

Proposition 8.2.1 [lterative refinement of the Test Context.

Let CSpec = (Spee, @) be a pair made of a CO-OPN/2 specification Spec, and a set of
HML formulae ®. Let EXHAUST G gpec 1, be the exhaustive test set of CSpec, and Tespec,n
be the test set generated from EXHAUSTcgpee, .- Lhe following holds:

(Spec satisfies H) = (Spec Fo EXHAUSTcspec, < SpecFo Tospee, )

Since the exhaustive test set is trivially built from @, the following corollary, following from
Proposition 8.2.1, enables to conclude that satisfying the test is equivalent to satisfying

o.
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Corollary 8.2.1 Horizontal verification.

Let CSpec = (Spec, ®) be a pair made of a CO-OPN/2 specification Spec, and a set of
HML formulae ®. Let EXHAUSTCspec 1, be the exhaustive test set of C'Spec, and Tospec,n
be the test set generated from EXHAUSTcspec,H, - Lhe following holds:

(Spec satisfies H) = (Spec Fo Tospee, gy < MODgpe. E @).

Proof.
Proposition 8.2.1 provides (1) below. EXHAUST¢spec, 1, is built from @ by creating from
every formula f of the contract a test case (f,true).

By definition of Fo: (SpecFo (f,true)) < MODg, F f. This provides (2) below:
(Spec satisfies H) = (Spec Fo Tespeen < Spec Fo EXHAUST  spec. )
:2> (SPGC ':O TCSpec,H = MODSpec = (I))
|

Corollary 8.2.1 enables to conclude that if a specification Spec satisfies hypotheses H
and the test set Tospee,m, then CSpec = (Spec, @) is actually a contractual CO-OPN/2
specification.

Remark 8.2.2 When the set of HML formulae to test is @gpe., then the exhaustive set
of the specification C Spec is the same as the one obtained in the theory of test for Spec,
i.e., when EXHAUSTCSpec, i, = EXHAUSTgpee 1, - Consequently, the iterative refinement
of the test contexts provides the same minimal test set, t.e., Tospee, v = Tspec, -

Practical Generation of Test Sets

We have seen in Subsection 8.1.4 that in order to construct Tspe. i from EXHAUSTgpec 1,
in practice, the set EXHAUSTg,.. 1, 1s is replaced by a set made of exactly one test case
(f,r) where f is a variable that stands for every HML formula, and r is a variable that
stands for true or false. In order to practically construct T gpec, i from EXHAUSTcspec, 1,
a similar procedure must be contemplated: one or more HML formulae with variables
replace EXHAUST¢gpec,r,- In that case variables are universally quantified, since the
theory of test generation uses universally quantified variables.

8.3 Vertical Verification

The aim of vertical verification is to assert if a given refinement step is correct. We intend
to use the theory of test generation in order to verify the correctness of a refinement
step made of C'Spec = (Spec, @) an abstract contractual CO-OPN/2 specification, and
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CSpec = (Spec,®') a concrete contractual CO-OPN/2 specification, i.e., we want to
verify if C'Spec C CSpec’. CSpec plays the role of the program (of the theory of test),
and C' Spec that of the specification.

Two cases must be distinguished. First, the contracts are partial, i.e., ® C ®g ... Second,
the contracts are total, i.e., ® = Dg,...

When the contract is partial, test generation theory must be applied in a way such that
the preservation of the contract in subsequent refinement steps is ensured. We show that
a lower-level contractual specification refines a higher-level contractual specification if: it
satisfies the test set generated from the exhaustive test set of the higher-level contractual
specification, and if its own generated test set is part of the exhaustive test set of the
higher-level contractual specification.

As we have alredy noticed in the case of horizontal verification, when the contract is total,
the theory of test generation applies directly, since EXHAUST¢ gpec, i, = EXHAUSTgpec 1, »
and we show that if a lower-level contractual specification satisfies the test set generated
from the exaustive test set of a higher-level contractual specification, then the lower-level
contractual specification correctly refines the higher-level contractual specification.

This section presents the vertical verification, first in the case of partial contracts, and
second, in the case of total contracts.

8.3.1 Partial Contract

The theory of refinement based on contracts allows a concrete contractual specification
to refine an abstract contractual specification without their respective specification parts
being bisimular. This is the case when the contracts are strict subsets of the whole set of
HML formulae satisfied by the step semantics of the specifications.

Therefore, the initial text context cannot be EXHAUSTg,.. , (see Definition 8.1.7); it is
the same as that obtained for the horizontal verification, i.e., it is the exhaustive test set
EXHAUST¢spec, i, built from the contract (see Definition 8.2.1). Then the test selection
process is applied, it iteratively increases the set of hypotheses, decreases the test set, and
ensures that satisfying the smallest test set is equivalent to satisfying the initial test set.

Since the CO-OPN/2 refine relation is essentially a renaming, we assume that the refine
relation A is the identity on contractual specifications, and thus formula refinement A is
the identity on HML formulae.

Applying Proposition 8.1.1 to CO-OPN/2 contractual specifications provides the following
proposition.

Proposition 8.3.1 [lterative refinement of the Test Context.
Let CSpec = (Spec, @), and CSpec’ = (Spec’, ®') be two CO-OPN/2 contractual speci-
fications. Let EXHAUSTCgpec, 1, be the exhaustive test set of CSpec, and Tespee,m be the
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test set generated from EXHAUSTCSpec, 1, - Lhe following holds:

(Specd satisfies H) = (Spec Fo EXHAUSTospec, < Specd Fo Tospeen)-

Since the exhaustive test set of contractual specifications is trivially built from their
contracts, the following corollary, following from Proposition 8.3.1, enables to show that
satisfying the test set is equivalent to satisfying the whole contract.

Corollary 8.3.1 Satisfying Test is Fquivalent to Satisfying Contract.

Let CSpec = (Spec, @), and CSpec’ = (Spec’, @) be two CO-OPN/2 contractual speci-
fications. Let EXHAUSTCgpec,, be the exhaustive test set of CSpec, and Tospee,m be the
test set generated from EXHAUSTCSpec,H, - Lhe following holds:

(Spec satisfies H) = (Spec Eo Tospeen < MODgpee E ®).

Proof.
Proposition 8.3.1 provides (1) below. EXHAUST¢spec, 1, is built from @ by creating from
every formula f of the contract a test case (f,true).

By definition of Fo: (Spec’ Eo (f,true)) < MODgpee E f. This provides (2) below:
(Spec satisfies H) = (Spec’ Fo Tespees & Spec’ Fo EXHAUSTOSpec i, )
:2> (Specl ':O TCSpec,H <~ MODSpec’ = (I))
[ ]

Corollary 8.3.1 is not sufficient to prove that C'Spec’ refines C Spec. The fact that C'Spec
satisfies the contract of C'Spec is not sufficient to guarantee that a further contractual
specification C Spec”, satisfying the contract of C'Spec, satisfies as well the contract of
C'Spec. Additional conditions are necessary. Indeed, the theory of refinement based on
contracts requires that the contract of C' Spec is part of the contract of C'Spec’ in order to
guarantee the preservation of the contract till the implementation. The corresponding re-
quirement, when verifying the refinement using tests, consists of imposing that the test set
generated from EXHAUST¢gpec i, 1s part of the exhaustive test set of EXHAUSTCSPSC/H:O.

Proposition 8.3.2 Preservation of Contract.

Let C'Spec = (Spec, @), CSpec’ = (Spec’, d'), and CSpec” = (Spec”, ") be CO-OPN/2
contractual specifications. Let EXHAUST¢gpec i, and EXHAUSTcspechfO be the ezhaustive
test sets of C'Spec and CSpec respectively. Let Teospeer and Tospee o be the test set
generated from EXHAUSTospec,, and EXHAUSTcsyeer 2, Tespectively, then the following
holds:

((Sped satisfies H) A (Tospee,n < EXHAUSTCSPeclﬂlo) ANHCHY)) =
((Spec” satisfies H') = (Spec”’ Eo Tospeer. it = MODgpeon E @)).



8.3. VERTICAL VERIFICATION 213

Proof.
Proposition 8.3.1 provides (1) below. Since Tespeen C EXHAUSTCSpeer 11, (2) holds.
Finally, H C H' and Corollary 8.3.1 allow us to conclude (3).

(Spec” satisfies H') (Spec” Eo Tospeer . & Spec” Fo EXHAUSTGspeer 17,

1
=
2
= (Spec” ':O EXHAUSTCSpec‘,H'O = Spec// ':O TCSpec,H)
3
=

(Spec" Fo TCSpec,H = MODSpec” F (I))
|

Proposition 8.3.2 above holds also if Tospee, s € Tospeer mr (instead of

Tespee, g © EXHAUSTCSPeCQHé ). However, this is practically impossible to obtain, since
generated test sets are made of only some relevant ground formulae, and it may happen
that the test selection process choses formulae for generating Tcgpe. i that are different
from that chosen for generating T gpecr m.

It is important to note that the theory of refinement based on contracts requires that
¢ C @’ (provided that the refine relation is the identity). In terms of test sets, this means
that EXHAUSTcspec, i, C EXHAUSTCSWd’H’d Proposition 8.3.2 does not guarantee this
inclusion. However, it guarantees that an abstract contract is preserved during a whole
refinement process, and this is sufficient to guarantee that refinements steps are correct.

For this reason, when verifying refinement using tests in practice, we alleviate the con-
straints of inclusion of the contracts, and we consider that the refinement is correct if
contracts are preserved during the whole refinement process.

Theorem 8.3.2 Vertical Verification.

Let CSpec = (Spec, ®), and CSpec’ = (Spec’, ®') be two CO-OPN/2 contractual spec-
ifications. Let EXHAUSTCgpec,, and EXHAUSTcgpeC/H:O be the exhaustive test set of
CSpec and CSpec respectively. Let Tospee,m and Tespeer i be the test set generated from
EXHAUST¢S e, and EXHAUSTCSPSU’H/O respectively. The following holds

(Spec’ satisfies H) A (Tospeer € EXHAUSTogper ) A (H € H') = C'Spec E CSpec’.

Remark 8.3.1 In the case of small contracts made of ground formulae, it is not necessary
to use test generation, since the contract is probably equal to the generated test sest.

Practical Verification

As described above, the Co-opnTest tool of Péraire [52] is used for generating test cases
either from EXHAUSTg e 1, or from EXHAUSTcspec 1, -

In order to verify that Togpecnr C EXHAUSTCSPeC/H/O in practice, or more generally that
® C @' we propose to use as well the Co-opnTest tool.
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The use of Co-opnTest for verifying this inclusion is slightly different from the use of Co-
opnTest for generating test cases. Indeed, we can roughly separate the tool into two parts:
a syntactical part, and a semantical part. The semantical part takes into account CO-
OPN/2 specifications with Class modules, i.e., with a dynamic behaviour. The syntactical
part takes into account ADT modules. Since T gpec,n and EXHAUSTCSPGC”H/O (or ® and
®’) are sets of ground HML formulae, we propose to syntactically verify the inclusion of
the former into the latter.

Péraire [52] defines ADT modules specifying HML formulae, since the Co-opnTest
tool actually transforms HML formulae into ADT terms in order to automatically de-
rive Horn clauses for a Prolog resolution procedure. The idea for verifying Togpee.nr C
EXHAUSTCSPSC@HfO consists of specifying this inclusion by the means of an ADT module
(based on that of Péraire for HML formulae), and of defining a CO-OPN/2 specification
for this module. It suffices then to generate test cases from the exhaustive test set of
that CO-OPN/2 specification. If we find a test case that is not satisfied by the specifi-
cation, then the refinement step is not correct. Otherwise, we can be confident that the
refinement step is correct.

8.3.2 Total Contracts

Total contracts are such that ® = ®g,.., where ®g,.. denotes the whole set of ground
HML formulae satisfied by the step semantics of a CO-OPN/2 specification Spec. In term
of test cases, this means that EXHAUST¢ gpec, i, = EXHAUSTg ec 1, , and the reduced test
sets are such that Tospec, iy = Tspec,-

A result similar to Theorem 8.3.2 is obtained. It is more powerful and more simply derived.
Indeed, it suffices to prove that a lower-level contractual specification satisfies the test set
generated from the exhaustive test set of a higher-level contractual specification, in order
to ensure that the total high-level contract is included in the lower-level contract, and
consequently to ensure that the refinement step is correct.

Theorem 8.3.3 Vertical Verification.

Let CSpec = (Spec, Pspe.), and CSpec’ = (Spec, Pgpeer) be two CO-OPN/2 contractual
specifications. Let T'spe.p be the test set generated from the exhaustive test set of Spec.
The following holds:

(Specd satisfies H) = (Specd Eo Tspeey < CSpec C CSpec').
Proof.

Corollary 8.3.1 is generic and applies also to total contracts. Since Tespee i = Tspec, i,
we conclude (1) below. Since the contract of CSpec’ is @ g, we have necessarily that
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Ospee € Pgpeer, and by definition of C we obtain (2).

(Spec satisfies H) (Spec’ Fo Tspeer < MODgpeer F Pspec)

1
=
2 (Spec Eo Tspeen & CSpec T CSped').

8.4 Program Verification

Program verification is used to demonstrate that a given contractual program is actually
a correct implementation of a given contractual CO-OPN/2 specification.

Section 6.2 shows that contractual programs are defined as contractual CO-OPN/2 spec-
ifications for their observable part. Thus, verifying that a contractual program correctly
implements a contractual CO-OPN/2 specification is similar to verifying the correctness
of a refinement step. Thus, similarly to refinement, in order to practically determine if
(Spec, @) ~~» (Prog, W), i.e., if ® C ¥ we make use of test generation. Without loss of
generality, we make the same assumption as that made in the theory of test generation,
i.e., we assume that the transition system of the program and that of the specification
have the same set of events. Therefore, we assume that the formula implementation is
the identity.

Since the program is the last step after the refinement process, it is necessary to verify
that the program satisfies the contract of the contractual specification. However, it is
not necessary to verify that the contract of the contractual specification is preserved
by a further step, since there is no further step. Thus, it is not necessary to force the
contract of the program to contain the contract of the specification. Therefore, the case
of partial contracts and that of total contracts lead to the same result: in order to verify
(Spec, @) ~~ (Prog, V), it is sufficient to verify that the model of the program satisfies
the test set Togpec m-

Indeed, we apply Proposition 8.1.1, and we obtain the following result:

Proposition 8.4.1 [lterative refinement of the Test Context.
Let C Spec = (Spec, @) be a CO-OPN/2 contractual specification, and C Prog = (Prog, V)

be a contractual program. Let EXHAUST(Spec, i, be the exhaustive test set of C'Spec, and
Tespec,r be the test set generated from EXHAUST¢gpecr, - Lhe following holds:

(Prog satisfies H) = (Prog Fo EXHAUSTCspecn, < Prog Fo Tospeer)-

Similarly to vertical verification, we obtain that satisfying the test set is equivalent to
satisfying the contract.
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Corollary 8.4.1 Satisfying Test is Fquivalent to Satisfying Contract.

Let CSpec = (Spec, @) be a CO-OPN/2 contractual specification, and C Prog = (Prog, V)
be a contractual program. Let EXHAUST¢spec, 1, be the exhaustive test set of CSpec, and
Tespee, be the test set generated from EXHAUSTcgpecn, - The following holds:

(Prog satisfies H) = (Prog Fo Tespee, g < MODp,,, F ®).

Finally, since implementation relation consists of preserving the contract ®, Corollary 8.4.1
immediately provides the fact that satisfying a test set is equivalent to be a correct im-
plementation.

Theorem 8.4.2 Program Verification.

Let CSpec = (Spec, @) be a CO-OPN/2 contractual specification, and C Prog = (Prog, V)
be a contractual program. Let Tegpecm be the test sel generated from EXHAUSTospec,H,, -
The following holds:

(Prog satisfies H) = (Prog Fo Tespeey < CSpec ~ CProg).

Remark 8.4.1 In the case of a total contract we have actually an inclusion of the con-
tracts. Indeed, in this case we have ® = ®g,.., and ¥V = Vp,,,, where Up,,, is the set of
all HML formulae satisfied by the model of Prog. As already explained Tespee, i = Tspec,i-
Since it is generic, Corollary 8.4.1 applies and the main result is:

(Prog satisfies H) = (Prog Fo Tspee.y < MODp,o, F @).

Since U = Up,,, we have necessarily that & C 0.

Summary

Figure 8.1 shows the horizontal, and vertical verifications, as well as the program verifi-
cation that have to be undertaken during a refinement process. The refinement process
considered in Figure 8.1 starts with the pair C'Specy =< Specy, D¢ > as the most abstract
contractual CO-OPN/2 specification. A first refinement leads to the pair C'Spec; =<
Specy, @1 >; the refinement process continues and reaches the pair C'Spec, =< Spec,, ®,, >.
Finally, the implementation phase provides the contractual program C Prog =< Prog, ¥ >.

Horizontal verification asserts that every pair C'Spec; =< Spec;, ®; > (0 < i@ < n) ob-
tained during the refinement process is actually a contractual CO-OPN/2 specification,
ie., Modg,e.; F @;. It consists of generating a test set Togpec, i, from the exhaustive test
set of C'Spec; (for every CSpec; (0 <1 < n)), and of verifying with an oracle that Spec;
satisfies Togpec; 1,5 1-€-,

Speci ':0 TCSpec,‘,HZ‘ (0 S l f n)
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In the case of total contracts Tespec, 7, = Tspeci,r; (0 <@ < n), where Tspec, m, is the test
set generated from the exhaustive test set of Spec;. In that case Spec; Fo Tospec;,m; 1s a
trivial result.

Vertical verification aims at verifying the correctness of the refinement steps, i.e., ®; C
Q11 (0 < i< n—1). It consists of verifying with an oracle that Spec;;; satisfies the test
set generated from the exhaustive test set Spec;, i.e.,

SpGCH_l ':0 TCSpec,;,Ht‘ (0 S L S n — 1)

In the case of partial contracts it is necessary to verify as well that

TCSpeci,Hi g EXHAUSTCSpec¢+1,H¢+1O-

Finally program verification enables to conclude that contractual program
C Prog =< Prog,¥ > correctly implements contractual CO-OPN/2 specification

C Spec,, =< Spec,,, ®, >, and hence every contractual CO-OPN/2 specification C Spec;
(0 <@ < n). It consists of verifying with the oracle that Prog satisfies Tespec, 1, i-€.,

PT‘Og ':0 TCSpecn,Hn-

Figure 8.1 can be compared to Figure 3.1, which depicts the formal proofs the under-
take during a refinement process. It is worth noting that every proof is replaced by the
verification of test cases.
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Horizontal Verification Vertical Verification

Speco Fo Tespeey,H,
Specy Fo Tespeeo,H,

Specy Fo Tospee, H,

Specn Fo Tospec,_y Hay

Specy, Fo Tospeen,H,
peem Program Verification

$ = ProgFo Tospee, H,

Figure 8.1: Horizontal, Vertical, and Program Verifications



Chapter 9

A Complete Example - From
Requirements to Java
Implementation

Chapter 3 defines a theory of refinement of formal specifications based on the use of
contracts. According to these principles, Chapters 5 and 6 define a theory of refinement
and implementation of CO-OPN/2 specifications. The purpose of the current chapter is
to apply this theory to a concrete example.

A whole stepwise refinement process is conducted: starting from requirements informally
stated, an initial contractual CO-OPN/2 specification is realized, and three refinement
steps are conducted. For each step, the refine relation is given, and the proof that the
refinement is correct is sketched. Once a detailed contractual CO-OPN/2 specification
close to a Java program has been reached, according to Chapter 7, the implementation
phase is performed, and its correctness is showed.

9.1 Informal Requirements

The Gamma paradigm [10] advocates a way of programming that is close to the chemical
reactions. One or more chemical reactions are applied to a multiset: a chemical reaction
removes some values from a multiset, computes some results and inserts them into the
multiset. We consider the following example: computing the sum of the integers present
in a multiset. Figure 9.1 depicts a multiset and a possible Gamma computation achieving
the result 8.

We intend to develop an application allowing several users to insert integers into a multiset
that is distributed across the Web. According to the Gamma paradigm, chemical reactions
are applied on the multiset; they have to perform the sum of all the integers entered by
all the users. We call DSGamma (Distributed Gamma) system, the system made of the
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Global Multiset

Figure 9.1: Gamma addition

users, the multiset and the chemical reactions. We present the informal requirements in
three parts. The first one presents the system operations that must be provided to the
users, the second one, the details about the data and internal computations, and the third
one, informations about the desired implementation.

System operations: [1] A new user can be added to the system at any moment; [2] A
user may add new integers into the system, at any moment, between his entering time
and his exit time; [3] At any moment, the application eventually gives the result to a
user, i.e., the sum of the integers entered in the system since the beginning; [4] A user
may exit the system provided he has entered it.

State and internal behaviour: [5] The integers entered by the users are stored in a
multiset; [6] The application realizes the sum of all the integers entered by all the users;
[7] The sum is performed by chemical reactions according to the Gamma paradigm; [8] A
chemical reaction removes two integers from the multiset, adds them up, and inserts the
sum into the multiset; [9] There is only one type of chemical reaction, but several of them
can occur simultaneously and concurrently on the multiset; [10] A chemical reaction may
occur as soon as the state of the multiset is such that the chemical reaction can occur,
i.e., as soon as there are at least two integers in the multiset.

Implementation: The system is implemented by the means of the Java programming
language, and with an architecture using Java Applets.

9.2 Initial Specification: Centralised View

The initial CO-OPN/2 specification I provides the most abstract view of the DSGamma
system that fulfils the informal requirements. There is a global multiset with several chem-
ical reactions occurring concurrently on it. We have a non distributed data (the multiset),

several processes (the chemical reactions), and each process, considered separately, is not
distributed.



9.2. INITIAL SPECIFICATION: CENTRALISED VIEW 221

CO-OPN/2 Specifications

The initial CO-OPN/2 specification I is given by the least complete CO-OPN /2 specifica-
tion that enables to define Class modules Users, defining type user, and DSGammaSystem,
defining type dsgamma-system and static object DSG. These Class modules are depicted
by figures 9.2, and 9.3 respectively.

Class Users
exit with
DSG.user_exit(self)

L]

4 )

Init:
blacktocken

|7

result(i) with Q I insert(i) with )
DSG.result(i,self) DSG.user_action (i,self)

——
init with
DSG.new user(self)

- J

Figure 9.2: CO-OPN/2 Specification I: Users

Class module Users defines three methods: insert(i), result(i), and exit. These
methods simply forward the request of the user to the underlying DSGamma system,
DSG. As soon as a new user is created, the new user announces itself to the system, in an
unobserved manner, by the means of transition init (firable only once).

Class DSGammaSystem

new _user(usr) user_exit(usr)

3 3
@ jnit: AN
blacktocken \
usr usr
usr HSInt:integer usr
i —
i \p— i user_action(i,usr)

i+ 5 i

1/

ChemicalReaction /

init(DSGamma,par)

result(i,usr)

Figure 9.3: CO-OPN/2 Specification I: Centralized System

Class module DSGammaSystem defines five methods. Method init (DSGamma,par) is used
to actually start the system. DSGamma is of type string, and par is of type arraystring,
defined respectively in Class modules Strings and ArrayStrings. Method

init (DSGamma,par) is used to start the system with parameters par; it simply enables
the firing of method new user(usr). As explained in Section 7.3 this method will be
mapped at the implementation phase to the java command.
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Methods new_user(usr), user_action(i,usr), result(i,usr), and user_exit (usr)
realize actually the four services, system operations [1] to [4], that the system provides
to the users.

The new_user (usr) method inserts the users’ identity into the users place of type user
(defined by Class module Users). CO-OPN/2 MSInt place is of type integer (type
integer is specified using ADT module Integers specifying signed integer numbers).
This place models the multiset of integers entered by the users in the system. The CO-
OPN/2 semantics of places is such that the content of place MSInt is actually given by a
multiset. The user_action(i,usr) method checks if usr has already entered the system
(i.e., if usr is in the place users), and inserts integer 1, into the place MSInt. If the user
usr has not yet entered the system, the method cannot be fired, thus the i value is not
inserted into the multiset!. The result (i,usr) method checks if usr has already entered
the system, and reads one integer i in the place MSInt. If usr is in the users place, the
user_exit (usr) method removes usr.

The CO-OPN/2 ChemicalReaction transition models the chemical reaction. It takes two
integers i,j from the MSInt place, and inserts their sum i+j in MSInt. Due to the CO-
OPN/2 semantics (stabilisation process), transition ChemicalReaction is fired as long as
it is firable, i.e., as long as there are at least two integers in MSInt. Meanwhile, no method
can be fired. Therefore, method result(i,usr) is firable after ChemicalReaction has
fired, and thus always returns the sum of all integers entered in the system since the
system has been started.

CO-OPN/2 specification I is given by:

I= {(Md/f_\LQ )Integers; (Mdgg )Naturalsy (Mdéhﬂ )Boolean57 (MdQLQ )BlackTockens;

(Md%7Q)Stringsa (Md;j))ArrayStrings; (Md%7Q)Usersa (Md%7Q)DSGammaSystem}-

Indeed, in order to specify Class modules Users and DSGammaSystem, it is necessary to
use as well Class module Strings, ArrayStrings and ADT modules BlackTockens, Integers,
which needs the Naturals and the Booleans ADT modules.

Iremember that if one element needed by a method or transition event is not available, then its

execution is impossible.
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Contract

The contract of CO-OPN/2 specification I is given by ®1 = {¢r,,... , ¢1,} below, for the

set of variables X1 = {usry, usrs fuser U {2, J Hinteger!
¢1, = <DSG . init(DSGamma, [|)><usr;. create><usr,. create> T
¢1, = <DSG . init(DSGamma, [])><usry. create><usr;. insert(i)> T
¢1, = <DSG . init(DSGamma, [|)><usr;. create><usry. insert(i)><usry. result(i)> T
¢1, = <DSG . init(DSGamma, [|)><usry. create><usr,. create>
<usry.insert(i) // usrq.insert(y)><usry.result(i 4+ j)> T
¢1, = <DSG . init(DSGamma, [|)><usry. create><usr,. create>
<usry. insert(i)><usrs. insert(j)><usry. result(i + j)> T
¢1, = <DSG . init(DSGamma, [])> ((<usr;. create><usry. exit>) A
—(<usry. exit><usr;. create>))T.

System operations [1] to [4] are partially covered by this contract. Indeed, system op-
erations [1] to [3] require items that have to be true at any moment; system operation
[4] requires that any user may exit provided he has entered the system. In order to com-
pletely cover these system operations, it is necessary to have an infinite contract covering
every case, since the chosen logic does not allow to express several properties by the means
of a single formula. Thus, in order to remain simple in this example, we have chosen only
some of these properties.

Property ¢y, corresponds to system operation [1]; it states that DSGamma system DSG
is started with no parameters, and that two users can be created, and hence entered in
the system. Property ¢1, corresponds to system operation [2]; it states that once a user
has entered the system, he can enter an integer. Properties ¢p, to ¢1, stand for system
operation [3]; three cases have been considered: a single user enters an integers and gets
the result; two users enter simultaneously an integer and one of them gets the result; two
users enter sequentially an integer and one of them gets the result. Finally, property ¢r,
stands for system operation [4]; it states that a user may exit after having entered the
system, and a user cannot exit the system before entering it.

These formulae are actually properties of I, since every formula is a possible path begin-
ning from state (L, @, 1).

Definition 9.2.1 CI.
We define the following contractual CO-OPN/2 specification:

Cl=<1I1%o;>.

Remark 9.2.2 Requirements [5] to [10] are not expressible by the means of HML formu-
lae. Indeed, these requirements deal with the internal behaviour of the system, and HML
formulae can be built with observable events only. However, they are actually satisfied by

CO-OPN/2 specification L.
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9.3 First Refinement: Data Distribution

The initial specification I provides a centralised view of the application. As we intend
to obtain an implemented application distributed over the Web, it is now necessary to
introduce distributivity in the specification. Refinement R1 is concerned with data dis-
tributivity.

Refinement Process

The multiset of integers is physically distributed over several different locations. We call
local multiset the portion MS; of the multiset present in a given location, and we call global
multiset the multiset obtained by the union of all the local multisets. Figure 9.4 gives
an illustration of chemical reactions over the distributed multisets MS;, that compute the

MSs .2 -3
l” “}2+3‘ Mss
1{" 5. : 2+6 —7

145 MS,

result 8.

Figure 9.4: Distributed Gamma-like addition

Class module Users is the same as in specification I. Class module DSGammaSystem pro-
vides the same methods as the initial specification 1. However, as the global multiset is
split over several local multisets (one for each user), we redefine the behaviour of methods
of Class module DSGammaSystem such that: (1) each user is mapped to a local multiset
specified with a bag of integers; (2) the chemical reactions have to remove integers from
one or more local multisets; (3) the integers present in the local multiset of a user who
wants to leave the system must be properly dispatched to the other local multisets.

CO-OPN/2 Specifications

CO-OPN/2 specifications of the application with distributed multisets is given by Class
module Users depicted by figure 9.2, and Class module DSGammaSysteml depicted by
figure 9.5, which defines type dsgamma-systemi, and static object DSG.

The MSInt place stores the local multiset of users currently in the system, while the
MSIntToEmpty place stores the local multiset of users wishing to leave the system. They
are Cartesian products of users and bagintegers of type pairuserbag, defined in ADT
module PairUserBags; pairs are generated using operator <>. The specification of the
type baginteger is made using ADT module BagIntegers which defines an empty bag
{ } and an operation ’ for adding new integers to the bag.
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Figure 9.5: Refinement R1: Data Distribution

The init (DSGamma,par) method starts the system. The new_user (usr) method inserts
pairs of integers and empty bags <usr,{} > into the MSInt place. A new user joins the
system with an empty bag, representing an empty local multiset. The user_action(i,usr)
method checks if usr has already entered the system, i.e., removes the pair <usr,bag>
from the place MSInt, and inserts the i value into bag, i.e., inserts the pair <usr,bag
’ i> into MSInt. Bag bag ’ i stands for a new bag made of the union of bag and the
set {i}. This method cannot be fired if usr has not already joined the system. The
result (i,usr) method can be fired iff the bag of user usr contains exactly one element
i(i.e.,{} 1). It is worth noting that due to the CO-OPN/2 semantics, after each firing
of the chemical reactions, only one integer remains in one local bag.

The user_exit (usr) method inserts the usr value in the place UsrToExit. The exit
transition then removes the pair <usr,bag> from the MSInt place and inserts it into the
MSIntToEmpty place. As the user is tightly coupled with a local multiset, it is necessary
to introduce at this point a treatment for dispatching his values. Therefore, after having
exited the system, a user may no longer enter a new integer, nor get the result, nor exit
the system, unless it reenters the system, and the system itself cannot add integers into
the user’s local multiset.

Four chemical reactions (CR1 to CR4) have been defined on MSInt only. They describe the
four possible ways of removing two integers from one or two bags and inserting their sum
into a (possibly other) bag. Four chemical reactions (CR5 to CR8) have been defined on
both MSInt and MSIntToEmpty. They are basically the same as the four chemical reactions
defined on MSInt only, except for the fact that they have to remove integers from local
multisets stored in the MSIntToEmpty place, and they have to insert integers into local
multisets stored in the MSInt place. These four chemical reactions specify the fact that
once a user has decided to leave the system, then his local multiset has to be emptied,
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no new integers may be inserted into his local multiset. For simplicity purpose, figure 9.5
depicts only the behaviour of chemical reactions CR1 and CR5: for CR1 two integers 1, j
are removed from the same local multiset, their sum is inserted into this local multiset;
for CR5 two integers 1, j are removed from the same local multiset in MSIntToEMpty, and
their sum is added to another local multiset in MSInt.

After a firing of the CRi transitions, only one integer remains in MSInt. The remaining
integer is the sum of the integers present in all the bags of MSInt and MSIntToEmpty
before the firing of CRi. If all users leave the system, the computation is halted until a
new user enters the system.

CO-OPN/2 specification R1 is given by:

R1 = {(Mdéhﬂ)lntegers; (Mdg7Q)Naturalsy (Md§]7Q)Booleansy (Mdg7Q)BlackTockensa
(Mdg7Q)BagIntegersa (MdéLQ)PairUserBagsy (Mdgj7ﬂ)stringsy (Md;J))ArrayStrings;

(Mdg7Q)UserS7 (Mdgj))DSGammaSysteml}-

Class modules Users and DSGammaSystem1 require Class module Strings, ArrayStrings,
and ADT modules BlackTockens, BagIntegers and PairUserBags which require ADT
module Integers, Naturals, and Booleans.

Contract

The contract of CO-OPN/2 specification R1 is given by ®ry = {¢Rr1,,--. , ®r1,} below,
for the set of variables Xr1 = {usry, usrs buser U {2, 7 Finteger:

¢r1, = <DSG . init(DSGamma, [])

¢r1, = <DSG .init(DSGamma, [|)><usry. create><usr;. insert(z)> T

¢r1, = <DSG . init(DSGamma, [])

¢r1, = <DSG .init(DSGamma, [])><usry. create><usrs. create>
<usry.insert(i) // usrq.insert(j)><usry.result(i 4+ j)> T

¢r1, = <DSG .init(DSGamma, [])><usry. create><usrs. create>
<usry.insert(z)><usry. insert(j)><usrq.result(z + j)> T

¢r1, = <DSG .init(DSGamma, [])> ((<usr;.create><usr;. exit>) A
—(<usry. exit><usr;. create>))T

¢r1, = <DSG . init(DSGamma, [])><usry. create><usrs. create>
<usry.insert(i)><usry.exit><usry. result(z)> T.

><usry. create><usry. create> T

> <usry. create><usry. insert(i)><usry. result(i)> T

Formulae ¢gr1, to ¢r1, correspond to formulae ¢1, to ¢1,. They are exactly the same
because observable events of I and of R1 are the same. Formula ¢y, is a new formula.



9.3. FIRST REFINEMENT: DATA DISTRIBUTION 227

It states the fact that a user leaving the system does not affect the computing of the
result. These formulae are actually properties of R1.

Definition 9.3.1 CR1.
We define the following contractual CO-OPN/2 specification

CR1=<R1,%p, > .

Refine Relation

Given CI, CR1 given by Definitions 9.2.1 and 9.3.1 respectively, we define a CO-OPN/2
refine relation Ay C ELEMcy X ELEMcRy in the following way:

={(integer, integer)}
={(string, string), (arraystring, arraystring), (user, user),
(dsgamma-system, dsgamma-system1)}

)\OFA :{(+integer7 —I'integer)}

)\OFC :{(newstring7 newstring)y (initstringy initstring)y
(newarraystring7 neVVarraystring); (initarraystringy initarraystring)y
(NeWyser, N€Wuyser ), (iNituser; iNituser),
(newdsgamma—systerm newdsgamma—systeml)y (initdsgamma—system7 initdsgamma—systeml):ll>

Aoy =1 (eXityser, €Xityser), (InS€rtyser integers INS€Ttyser integer)
(reSUItuser,integen Iesunuser,integer)y
(initdsgamma—systern,string,arraystrin@ initdsgamma—systeml,string,arraystring)7
(HGW -US€I'dsgamma-system,integer,user, 1EW —userdsgamma—systeml,integer,user)7
(user—aCtiOndsgamma—system,integer,user7 user—aCtiOndsgamma—systeml,integer,user)7
(reSUltdsgamma—system,user7 I’68111tdsgamma—systernl,user)7
(user_exitdsgamma-system,users USET_€Xitdsgamma-system1,user) }
(
(

)\0:

(@]

{
Moy, ={

X

DS Gdsgamma—systerm DS Gdsgamma—systeml) }

usry, USTI), (USTQ, USTQ), (l7 L)7 (.]7.])}

CO-OPN/2 specification R1 contains the interface of CO-OPN/2 specification I. For this
reason, the refine relation maps elements appearing in the contract of CI to elements of
CR1 having the same name.

Formula Refinement

Since refine relation A is the identity on elements of CI, formula refinement Aq is the
identity as well. Thus, we have trivially that Ag(®y) C Pgy.
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9.4 Second Refinement: Behaviour Distribution

Refinement R1 provides a distributed view of the application at the data level. As we
intend to obtain a Java application distributed over the Web, it is necessary to think
about applets storing the local multiset related to the user who starts the applet. These
applets need to communicate with each other in order to realize the DSGamma system.
The Java programming language constrains an applet to connect exclusively to the host
where it comes from. For this reason, refinement R2 introduces a server. This leads to a
behaviour distribution.

Refinement Process

The server acts as a buffer between all applets. The server is only able to receive integers
from a set of applets, and to send these integers to this same set of applets, such that an
integer goes randomly from one applet to another via the server.

The system operations and internal behaviours are specified such that: (1) the server
is specified as a FIFO buffer; (2) each user is mapped to an applet; (3) the applets are
responsible to maintain a local multiset of integers; (4) an applet has to insert integers
entered by the user into its local multiset; (5) an applet has to collect pairs of integers, to
make their sum, and to insert this sum into its local multiset; (6) an applet has to send
integers to the server; (7) the applet has to correctly send its local multiset of integers
to the server, once the user wants to leave the system; (8) the applets have to avoid a
deadlock situation that would occur when the number of integers present in the whole
system is less than the number of applets.

CO-OPN/2 Specification

The CO-OPN/2 Class modules of the application viewed with a client/server architec-
ture are given by figures 9.6, 9.7 and 9.8. Class module DSGammaSystem?2 specifies the
underlying system; it defines type dsgamma-system2, and static object DSG. Class module
GlobalRelays specifies the server and defines type globalrelay. Class module Applets
specifies the applets, and defines type applet.

Class module DSGammaSystem?2 simply specifies the start up of the system: method

init (DSGamma,par) creates and stores a server gr as an instance of Class GlobalRelays.
Class module DSGammaSystem2 offers method get_server(gr). This method is used by
the newly created applets to learn the identity of the server they have to use in order to
communicate with each other.

Class module GlobalRelays maintains a FIFO buffer of integers. An integer i is inserted
at the end of this FIFO by the means of the put (i) method, and an integer is removed,
from the beginning of this FIFO when it is non-empty, using get (next of (b’i)). ADT
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Class DSGammaSystem?2

init(DSGamma,par)
with gr.create

e e N

gr
GR:
globalrelay

gr 8T

\ 3/_ J

getserver(gr)

Figure 9.6: Refinement R2: Overall System

module FifoIntegers defines the type fifointeger, the empty fifo [1, as well as operator
? for appending an integer at the end of the FIFO, and operators remove from and next
of for removing and reading respectively the integer at the beginning of the FIFO.

Class GlobalRelays

( )
remove from(b’i) - b
buffer:
fifointeger
N\ J

Figure 9.7: Refinement R2: Server Side

Class module Applets is meant to replace Class module Users of CO-OPN/2 specifi-
cation I. Therefore, it specifies the same three CO-OPN/2 methods: insert(i), exit,
result(i).

As soon as a new applet is created the init transition requires the server gr from DS-
Gamma system DSG, in an unobservable manner (calling DSG.get _server(gr)). The end
place is initialised with false, and the beginning place with true. The end place stores
the value false if the user is currently in the system and stores the value true if the user
exits. The beginning place stores the value true if a first integer has to be requested, and
nothing if a first integer has already been obtained. This place is used to ensure that a
new first integer is requested only after the previous sum has been computed. The MSInt
place stores integers, it specifies the local multiset maintained by the applet in behalf of
the user.

The insert (i) method inserts the integer i into the local multiset. The exit method
replaces the token false by the token true in place end. In that way, all methods are no
longer firable. The result (i) method returns an integer which is either a partial sum or
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a complete sum.

Class Applets

exit

Init: init with
blacktocken DSG.get_server(gr)
Q

T

true false getfirst with
gr-get(i) //
R.random (millis) // C.clock(hour)

gr
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8T globalrelay
end:boolean true i —
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Figure 9.8: Refinement R2: Client Side

Chemical reactions are specified by the means of the four transitions: getfirst, getsecond,
tik, put. The getfirst transition is responsible for obtaining the first integer being in-
volved in a sum; as soon as it obtains a first integer from server gr it enables a timeout.
The getsecond transition is responsible for removing a second integer from gr, and for
disabling the timeout. The tik transition handles a timeout event occurring when a sec-
ond integer has not been obtained by getsecond during the elapsed time. It is responsible
for disabling the timeout and inserting the first integer (instead of a sum) into the local
multiset. This timeout is necessary, because a deadlock occurs as soon as the number of
integers present in the global multiset (the union of the local multisets) is smaller than or
equal to the number of users, because all integers are blocked by different applets. During
the deadlock, method result (i) is firable, it returns a partial sum. After a possibly long
time, only one integer will remain in the system, because pairs of integers will succeed
in meeting in the same applet. Note that due to the tik transitions, this integer will go
from one applet to the other one. In this case, method result (i) returns the correct
sum. The put transition randomly removes integers from the local multiset, and sends
them to gr.

As soon as a user exits, the getfirst transition stops receiving integers. Progressively,
MSInt place is emptied by transition put, and finally the applet ends its activity. If all the
users leave the system simultaneously, then the applets will send all their integers, stored
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in MSInt, and stop receiving integers, thus gr will store all the integers. A remaining
integer is obtained provided at least one user remains in the system.

CO-OPN/2 specification R2 is given by:
R2 = {(Mdg7g)1ntegersy (MdéLQ)Naturals; (MdéLQ)BlackTockensy (MdéLQ)Booleansy

(Mdg Q)Fifolnteger57 (Md;7Q)Clock7 (Md;7Q)Random7
(Md;,Q)String57 (MdgLQ)ArrayStrings,
(Mds q)

C C
Applets; (MdE7Q)GlobalRelayS7 (MdE7Q)DSGammaSystem2}-

Contract

The contract of CO-OPN/2 specification R2 is given by ®ra = {¢Rr2,,--. , ®r2, } below,
for the set of variables Xgra = {a1, a2, a3 }appier U {2, 7, @, blinteger U {97 } globalrelay:

¢r2, = <DSG .init(DSGamma, []

¢r2, = <DSG .init(DSGamma, []

¢r2, = <DSG .init(DSGamma, []

¢r2, = <DSG .init(DSGamma, []
<ay.insert(z) // ay.insert(

¢r2, = <DSG .init(DSGamma, [])
<ay.insert(z)><as. insert(j)><ay.result(i + j)> T

PRz, = <DSG .init(DSGamma, [|)> ((<a;.create><ay. exit>) A

)T

¢dr2, = <DSG .init(DSGamma, [])><a;. create><a,. create>

~—

><ay.create><a,y. create> T

S—

><ajy. create><ay. insert(¢)> T
><ay. create><ay. insert(i)><ay. result(z)> T
><ay . create><asg. create>

Jj)><ay.result(z + 7)> T

NN

><ay.create><a,. create>

—(<ay. exit><a;. create>)

<ay.insert(:)><ay. exit><asy. result(i)> T

¢r2; = <DSG .init(DSGamma, [|)><a;. create><a,. create><as. create>
<ay.insert(z) // ay.insert(j)><as.result(:)><ay. result(j)>
<as.result(z 4+ j)> T

PRr2, = <gr.create><gr.put(a)><gr. put(b)>
(<gr.get(a)> A= <gr.get(b)>)T.

Formulae ¢r2, to ¢ra, are similar to formulae ¢r1, to ¢ri,: users are simply replaced
by applets. Formulae ¢ra, and ¢rz, are new formulae. Formula ¢ra, states that when
the number of entered integers is less than the number of applets, it may occur that the
system enters a deadlock state (i and j are blocked in applet a; and a; respectively)

2

but the result is finally correctly computed (and visible for a3)?. Formula ¢rz, states

2Formulae ¢ra, and ¢Rra, have also less or equal integers than the number of applets, but these
formulae correspond to the case where the deadlock does not occur and is not observed.
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that instances of Class module GlobalRelays act as a FIFO. These formulae are actually
properties of R2.

Definition 9.4.1 CR2.
We define the following contractual CO-OPN/2 specification

CR2=< R2,9p, > .

Refine Relation

Given CR1, CR2 of Definitions 9.3.1 and 9.4.1 respectively, we define a CO-OPN/2
refine relation Ay C ELEMcRr; X ELEMcR2 in the following way:

={(integer, integer)}

)\150 ={((string, string), (arraystring, arraystring), (user, applet),
dsgamma-system1, dsgamma-system?2) }
)\IFA :{ —I'integer; —I'integer)}

(i
(
(
(
Al =1(N€Wstring, N€Wstring), (INitstring, iNitstring ),
(€W arraystrings N€Warraystring) s (101 barraystring, 10itarraystring)
(NEWyser, N€Wapplet ), (1Nituser, INitapplet)
(
(
(
(
(
(

NEeWdsgamma-system1; newdsgamma—systemZ)y (lnltdsgamma—systemla lnltdsgamma—systemQ)}

>
2
Il

o { eXituser; eXitapplet), (insertuser,integera inSertapplet,integer)7
reSlﬂtuser,integery reSultapplet,integer);
lnitdsgamma—systeml,string,arraystringy initdsgamma—system2,string,arraystring)}

o { DSGdsgamma—systemh DSGdsgamma system?)}

={

usry, ay), (usry, as), (1,1), (4,7)}-

Refine relation A; maps init method and DSG object of Class module DSGammaSystem1
of R1 to init method and DSG object respectively of Class module DSGammaSystem?2
of R2. Since, the other methods are no longer in DSGammaSystem2 of R2 and does not
take part in contract ®ry, the refine relation is not defined for them. Since Class module
Applets replaces Class module Users, elements of Class module Users are simply mapped
to elements of Class module Applets with the same name.

Formula Refinement

Refine relation A; is essentially a renaming of methods of Class module Users to methods
of Class module Applets. Formula refinement A; is simply a renaming as well. Thus, we
have actually A1(Pgry) C Pra.
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9.5 Third Refinement: Communication Layer

Refinement R2 provides a client/server view of the application, with applets communicat-
ing with each other through a server acting as a FIFO buffer. The applets communicate
directly with the server. As the targeted application has to run across several physically
distributed hosts, it is now time to introduce the sockets, i.e., the communication layer be-
tween the applets and the server. The specification provided at this stage is also intended
to be the last one before the Java program. For this reason, refinement R3 takes into
account features of the Java programming language, according to Chapter 7. Therefore,
it specifies all the Java components that will be part of the final program.

Refinement Process

The informal view of both specification R3 and the implementation of the DSGamma
system is given by figure 9.9. The server is bigger than it is in refinement R2, it is

Host 2

W
DSGammidiientApp g f?‘ ﬁ

TakeoffLocal TakeoffGlj

@ Socket|

InputRelay Ou\pu(Re\Aj

U
~ GlobalRelay @
od ﬁi j

Host 1

RandomRel ayServer

|:| Hostn
JavaApplet
O Multiset of Integers %@

D Thread
[ ]

(@]

Figure 9.9: DSGamma Implemented Architecture

now given by class RandomRelayServer which is a sub-class of Class module JavaThread
(position 1 on figure 9.9). It handles the following elements: an instance of Class module
JavaServerSockets for handling connections with applets; an instance of Class module
GlobalRelay, which handles a FIFO buffer specified with a JavaVector; and for each
applet a pair of threads, of classes OutputRelay, InputRelay, which are dedicated to the
handling of the communication with an applet (position 2 on figure 9.9).

The global multiset is logically given by the union of (1) several local multisets, each one
located inside an applet; (2) the FIFO buffer maintained by the GlobalRelay object; and
(3) the sockets buffers.
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The applets are given by class DSGammaClientApp. They are more complex than what
they are in refinement R2. As soon as an applet is created, two threads of classes
TakeoffLocal, TakeoffGlobal are created. These threads are responsible for communi-
cating with the server using the socket; and for the handling of the chemical reactions,
the timeout and the quitting protocol (position 2 on figure 9.9). The applet also handles
the local multiset MSInt, which is specified as an instance of Class module JavaVectors.

The communication layer is given by the sockets. Java sockets are specified by sev-
eral Class modules: JavaSockets, JavaDatalnputStreams, JavaDataOutputStreams,
JavalnputStreams, JavaOutputStreams, and JavaServerSockets. For every applet
connecting to the server, two streams are created: the first stream goes from the server
to the applet, it is made of one instance of JavaDataInputStreams at the applet side
and one instance of JavaDataOutputStreams at the server side. The second stream goes
from the applet to the server; it is made of one instance of JavaDataInputStreams at the
server side and one instance of JavaDataOutputStreams at the applet side. More simply
said, every socket is specified with four buffers (two buffers per stream).

CO-OPN/2 Specifications

CO-OPN/2 specification of the application close to the Java program is given by several
CO-OPN/2 classes specifying Java basics classes (among others the Java classes needed
for handling sockets), several CO-OPN/2 classes specifying the server side, and several
CO-OPN/2 classes specifying the client side (i.e., applet side), and a class for specifying
the underlying Java Virtual Machine.

System: Class module JVM replaces Class module DSGammaSystem?2 of refinement R2. It
defines type jvm and static object JVM2,

Class JVM

java(RandomRelayServer,[])

e - ™

<RandomRelayServer,[] >

|

? Store:
pair-iavaobjectarraystring
<RandomRelayServer,[] >

|

—

begin with
Counter.get(cnt) ..
RandomRelayServer.register(<main,[],<cnt,RandomRelayServer>>) ..

\ RandomRelayServer.main([]) j

Figure 9.10: Refinement R3: Java Virtual Machine

3remember that every Class module specifying a Java class defines a static object having the same

name as the name of the class. This object stands for the Java Class object of the class.
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Method java(RandomRelayServer, []) enables the firing of the begin transition, which
starts the main method of Java Class object RandomRelayServer with an empty string
of arguments.

Server side: Class module RandomRelayServer defines type randomrelayserver. It is
partially given by figure 9.11, is a sub-class of Class module JavaThreads (see Subsec-
tion 7.1.6). It defines a main method that creates an instance of RandomRelayServer.
This thread is actually the server of all applets.

Class RandomRelayServer

start_main([], <cnt,t>)

WA
ort Loen e
4, Lcnt 77

<cnt,t>

<cnt’,t>>)

A <cnt,t>
o
e
A g
o =
1/<,° = ,; next with
o 4 g 9 Counter.get(cnt’) ..
‘,‘f\ é‘ \{ = <cnt,t> RandomRelayServer.register(
PP I3 IS A <default-port,
& v g RandomRelayS
register(<x,m, <cnt,t>>) % E new-RandomRelayServer,
o o+
Vv
\%

main(args) with
self.start_main(args,<cnt,t>) ..
self.end main(<cnt,t>)

next with
o.new-RandomRelayServer(
default-port)

g <cnt,t>
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=
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<cnt,t>
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end main(<cnt,t>)

Figure 9.11: Refinement R3: Server

Non-default constructor new-RandomRelayServer (port) creates an instance gr of Class
module GlobalRelays and an instance of a JavaServerSockets on port port. Method
run of RandomRelayServer waits indefinitely for connections on the JavaServerSockets,
and as soon as an applet connects, it creates two threads of class OutputRelay, InputRelay
respectively connected to the applet’s socket.

Additional Class modules at Server side: Class module InputRelay defines type
inputrelay,it is a sub-class of Class module JavaThreads. The creation of an InputRelay
thread implies the creation of an instance of JavaDataInputStreams. The main task of
this thread is to read integers from an instance of JavaDataInputStreams, and to forward
them to gr (positions 3 on figure 9.9). It is also responsible for the handling of end signals

incoming from the applet.

Class module OutputRelay defines type outputrelay, it is a sub-class of Class module
JavaThreads. The creation of an OutputRelay thread implies the creation of an instance
of JavaDataOutputStream. The main task of this thread is to remove integers from gr,
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to write them to JavaDataOutputStream (positions 4 on figure 9.9). It is also responsible
for handling end signals.

Class module GlobalRelays defines type globalrelay. It maintains a FIFO buffer by
the means of an instance of JavaVectors. It has the same methods put and get as in
refinement R2. These methods are synchronized methods, in order to protect the access

to the FIFO buffer.

Applet side: Class module DSGammaClientApp defines type dsgammaclientapp. It is
partially given by figure 9.12, is a sub-class of Class module JavaApplets (see Sub-
section 7.1.7). The init method creates instances of the following Class modules: (1)
JavaSockets, JavaDatalnputStreams and JavaDataOutputStreans (specifying the socket
stream); (2) JavaVectors (specifying local multiset MSInt); (3) TakeoffLocal,
TakeoffGlobal, threads (realizing the chemical reaction, the timeout, and a quitting pro-
tocol); and (4) JavaTextFields, JavaTextAreas, and JavaButtons (specifying elements

of the GUI).

As described in 7.1.7, several extra methods, not defined in the Java program, are used in
order to specify both the capture of an event, and its handling by the applet. Therefore,
Class module DSGammaClientApp defines three methods action textfield (i),
action_stop_button, and action result(i). These methods replace respectively meth-
ods insert (i), exit, and result (i) of Class module Applets of refinement R2. Method
action textfield(i) is called when an integer is entered by the user into the system by
the means of the instance of TextField provided in the GUI. Method action textfield (i)
simply calls method action, which then correctly gets the integer and stores it into MSInt.
Similarly, method action_stop_button is called when the user wants to leave the system
and presses the stop_button. Method action_stop_button simply calls method action,
which handles the exit of the user. Finally, method action_result (i) is called when the
user wants to see the result and presses the result button. Method action result (i)
calls method action which prints the result (partial sum or complete sum), on an instance
of Class module JavaTextAreas, when this button is pressed.

Class DSGammaClientApp

action_result(i) with action_textfield(i) with

self.register (<[event-result _button, Counter.get(cntl) ..

result_button], action,<cntl,self>;) .. self.register(<[event-textfield,textfield],
self.action (event-result_button, action, <cntl,self>>) ..
result_button,b) self.action(event-textfield,textfield,b)

action_stop_button with

init withl . self.register(<[event-stop_button,
self.start'_lplt(<cnt,t>) . stop_button], action,<cntl,self>>) ..
self.end init(<cnt,t>) self.action (event-stop_button,stop_button,o)

Figure 9.12: Refinement R3: Applet

Additional Class modules at the applet side: Class module TakeoffLocal defines
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type takeofflocal, and is a sub-class of Class module JavaThreads. An instance of
TakeoffLocal permanently checks for integers in MSInt, removes one randomly and writes
it to the instance of JavaDataOutputStream at the applet’s side. It also handles end
signals.

Class module TakeoffGlobal defines type takeoffglobal, and is a sub-class of Class
module JavaThreads. An instance of TakeoffGlobal reads a first integer from the in-
stance of JavaDatalInputStreams at the applet’s side. As soon as it has obtained it, it
enables a timeout, and reads a second integer. If the second integer arrives before the
timeout deadline, then it is added to the first one, and inserted into MSInt. Otherwise,
a tik transition prevents a deadlock, by inserting the first integer into MSInt. It also
handles end signals.

In refinement R2, the timeout is already specified, it is specified exactly in the same way
in refinement R3. The quitting protocol of refinement R2 is more simple, because there
is no intermediate buffers storing integers. It is enhanced in refinement R3, in order to:
(1) notify the server that the user wants to exit; (2) receive, from the server, integers
present in the instance of JavaDataOutputStreams at the server’s side; and finally (3)
empty the local multiset MSInt a last time before stopping.

Communication layer: Class modules JavaDataOuputStreams and
JavaDatalInputStreams are used to insert or remove integers into or from a
JavaOuputStreamand a JavaInputStreamrespectively. Class modules JavaOuputStream
and JavaInputStreamwork actually on arrays of bytes, i.e., Class module JavaArrayBytes.
An instance of the JavaSockets class creates an instance of JavaInputStreams and an
instance of JavaOutputStreams and realizes the TCP protocol (neither loses nor disor-
ders the packets). Moreover, the JavaSockets class actually specifies the connection with
a JavaServerSockets given a remote host and a port.

CO-OPN/2 specification R3 is given by:
R3 = { M 2 /Integers; (Mdg\LQ)Bytem

A A
Q /Naturals; (Md279 )Booleans; (MdEJz )PairAppletIntegers;

&.

Q ) Threadldentitysy - « « (Mdgg )PairIntegerThreadIdentity7

Q )JavaObjectss (Md; Q ) JavaTextFields, (Mdgg )JavaTextAreasy
JavaButtons; (Md; Q ) JavaEvents;

JavaThreadss (Mdz Q )JavaAppletsy (Mdz Q ) JavaVectorss

JavaSocketss (Mdz Q ) JavaServerSocketss

d
ds;,

C C
JavaArrayBytes; (MdEJ))JavaInputStreamsy (MdELQ)JavaOutputStreams;

OMOMOM
D

\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/\_/

C
JavaDatalnputStreams, ( Mdz Q ) JavaDataOutputStreams;

C C
Q ) Takeoff Global, (Mdz Q )TakeoﬂLocal; (Mdgjz )DSGammaClientApp;

iiiiiiiiii

C C C
Q )GlobalRelay (MdELQ ) OutputRelays (MdE’Q )InputRelay; (MdELQ )RandomRelayServer;

(
(
(
(
(
(
(
(
(
(
(
(M

) ) JavaStrings, (Mdg7Q)JavaArrayStringsy (Mdghﬂ )JVM } .
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R3 is made of:
e some ADT modules necessary to define an internal behaviour close to that of a Java
program (ADT module Integers to ADT module PairIntegerThreadIdentity);

e (Class modules of Java basics classes needed to define parent classes of Java classes
particular to the application (Class modules JavaObjects to JavaVectors);

e Class modules of Java basics classes necessary to define the sockets (Class modules
JavaSockets to JavaDataOutputStreams);

e Class modules particular to the application, and needed at the client side (Class
modules TakeoffGlobal to DSGammaClientApp);

e Class modules particular to the application, and needed at the server side (Class
modules GlobalRelay to RandomRelayServer);

e Class modules necessary for specifying the Java Virtual Machine (Class module
JavaStrings to JVM).



9.5. THIRD REFINEMENT: COMMUNICATION LAYER 239

Contract

The contract of CO-OPN/2 specification R3 is given by ®r3s = {¢rs,,--. , ®rs3, } below,
for the set of variables XR3 = {Cll, az, a3}dsgammaclientapp U {L; j; a, b}integer U {gr}globalrelay:

¢r3, = <JVM .java(RandomRelayServer, [])
¢r3, = <JVM .java(RandomRelayServer, ])
¢r3, = <JVM .java(RandomRelayServer, [|)><a;. create>

><ay.create><a,y. create> T
><ajy. create><ay. action_textfield(¢)> T

<ay.action_textfield(:)><ay. action_result(z)> T
¢rs3, = <JVM .java(RandomRelayServer, [|)><a;. create><ay. create>
<ay.action_textfield(z) // as.action_textfield(j)>
<ay.action_result(i + j)> T
¢rs3, = <JVM .java(RandomRelayServer, [|)><a;. create><as. create>
<ay.action_textfield(:)><as. action_textfield(j)>
<ay.action_result(i + j)> T
¢r3, = <JVM .java(RandomRelayServer, [|)> ((<a;. create><a;. action_stop_button>) A
—(<ay. action_stop_button><ay. create>))T
¢r3, = <JVM .java(RandomRelayServer, [|)><a;. create><ay. create>
<ay.action_textfield(:)><ay. action_stop_button><a,. action_result(z)> T
¢r3; = <JVM .java(RandomRelayServer, [|)><a;. create><as,. create><as. create>
<ay.action_textfield(z) // as.action_textfield(yj)>
<ay. action_result(i)><ay. action_result(j)>
<as.action_result(i + j)> T
¢Rr3, = <gr.create><gr.put(a)><gr.put(b)>
(<gr.get(a)> A— <gr.get(b)>)T.

Formulae ¢rs, to ¢rs, correspond to formulae ¢ra, to ¢ra,. The only differences are the
following: first DSG object is replaced by JVM object; second, methods of Class module
Applets of refinement R2 are replaced by methods of the form action textfied, etc.

These formulae are actually properties of R3.

Definition 9.5.1 CR3.
We define the following contractual CO-OPN/2 specification

CR3=< R3,9ps > .
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Refine Relation

Given CR2, CR3 of Definitions 9.4.1 and 9.5.1 respectively, we define a CO-OPN/2
refine relation Ay C ELEMcRr2 X ELEMcRs in the following way:

A2, ={(integer, integer)}

A2 . ={(string, javastring), (arraystring, java-arraystring),
applet, dsgammaclientapp)(globalrelay, globalrelay),
dsgamma-system2, jvm)}

)\QFA ={ ~Finteger -|-integer)}

A2, =1{(N€Wstring, N€Wjavastring) > (INitstring, INitjavastring)
NEW arraystrings N€Wijava-arraystring) s (101 barraystring, 101 tjava-arraystring)

NEe€Wapplet newdsgammaclientapp)y (1n1tapplet7 1nltdsgammaclientapp)7

NEeWdsgamma-system2; HGijm), (initdsgamma—system27 lnltjvm)}

)\QM :{ initdsgamma-SyStem?,Stl“ing,al“raystl"ing7java’jvm,java.string,java—a.rraystring)7
inSerta.pplet,integer7 aCtion—teXtﬁelddsgammaclientapp,integer)7
reSlﬂta.pplet,integery aCtion—reSlﬂtdsgammaclientapp,integer)7

(

(

(

(

(

(

(

(

(neW globalrelays NEW globalrelay ) (1itglobalrelays 1Nitglobalrelay ),
(

(

(

(

(eXitdsgamma-system2, action_stop_buttony .. mmactientapp)»
(

(

(

pUtglobalrelay,integem pUtglobalrelay,integer)7 (getglobalrelay,integem gethObalrelay,integer)}
)\20 :{ DSGng&mma—system; JVijm}
Moy ={(a1, @), (a2, a2), (as, as), (i,7), (7,5, (a,b), (b,b), (g7, gr)}.

Refine relation Ay maps elements of Class module DSGammaSystem2 to elements of
Class module JVM; elements of Class module Applets to elements of Class module
DSGammaClientApp; and elements of Class module GlobalRelay of R2 to elements of
Class module GlobalRelayof R3.

Formula Refinement

Similarly to refine relation Ay, refine relation A, is essentially a renaming of methods
of Class module DSGammaSystem and Applets to methods of Class module JVM and
DSGammaClientApp. Formula refinement A, is simply a renaming as well. Thus, we
have actually Ay(Prz2) C Prs.
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9.6 Implementation: The Java Program

The Java program has exactly the same classes than refinement R3 with exactly the same
behaviour.

Implementation process

The only differences with refinement R3 are the following: first, a CO-OPN/2 transi-
tion is firable as soon as its pre-condition is fulfilled, this naturally specifies polling. In
the Java program, the four thread classes: TakeoffGlobal, TakeoffLocal, InputRelay,
OutputRelay use wait, notify methods in order to avoid polling. Second, CO-OPN/2
specifications of Java GUI are treated in a special way, in order to be able to specify the
capture of events occurring in the GUI. Therefore, the Java source code of the applet
slightly differs from CO-OPN/2 Class module DSGammaClientApp of refinement R3.

Figure 9.13 shows a snapshot of the graphical user interface provided by the applets. A
user may enter several integers in the textfield, he sees the evolution of his local multiset
in the textarea, he can request to see an integer by pressing the result button, and he can
exit the system by pressing the exit button.

Part (a) of Figure 9.14 shows a system with a single user who has entered integers 1,2, 3, 4.
They are firstly stored in his local multiset (maintained by the applet), and then randomly
removed. Progressively sums are performed and inserted into the local multiset. Finally,
the result 10 is obtained.

Part (b) of Figure 9.14 shows the arrival of a new user who does not enter any integer. The
result 10, previously computed, jumps from one applet to the other (due to the timeout).
Part (c) depicts the case where the second user enters integers 5,6,7,8. As for the first
user, they are inserted in his local multiset, and randomly removed. Since two applets
are running, some sums are computed in one applet, and some others in the other applet.
Finally, the result 36 is computed.
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e Distributed Gamma-Iik

Figure 9.13: DSGamma GUI

Program

Program Prog is given by
PI‘Og {(MdProg)mtJ (MdProg)byt67 (Mdlé’rog)bOOIGam
MdProg Objects (Mdprog)TextFleldg (Mdprog)TextAreag (Mdgrog)Button; (MdProg)Eventg
Prog Thread (Mdprog)Applety (Mdprog)Vectory

C
Prog Sockets (MdProg)ServerSDckety

( )
(Mdp,og)
(Mdp,og)
(M, Prog)ArrayBytesg (M, d%rog)lnputstreamy (Mdlcr»mg)outputStream,
(M, pmg)DataInputStream, (M, d%rog)DataOutputStreamg

(M, pmg)TakeoffGlobal, (M, dlcamg)TakeoﬂLocal, (M, dlcamg)DSGammacuentApp,

(Mds pmg )GlobalRelays ( MdS Prog ) OutputRelay, (M, dpmg )InputRelays (Md pmg)RandomRelayserver,
(Mdpyog)

Prog Strings (MdProg)ArrayStringsa (MdProg)JVM}-
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Figure 9.14: DSGamma Application

Prog contains less ADT modules than R3, because R3 needs extra ADT modules nec-
essary to specify the internal behaviour of the Java Virtual Machine. This behaviour is
not visible in a Java program source. Prog is made of Java classes corresponding to
all CO-OPN/2 Class modules of refinement R3 specifying Java classes. Finally, Prog
contains JVM class which stands for the Java Virtual Machine itself.
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Contract

Given Prog, and the set of variables Y = {a1, a2, a3}pscammaciientapp U {2, J, @, b}ine U
{gr}GlobalRelay. Formulae 11, to ¢g below form a contract ¥ = {t1,... , 9} :

Y1 = <JVM .java(RandomRelayServer, [|)><a;. DSGammaClient App>
<ay. DSGammaClientApp> T
y = <JVM .java(RandomRelayServer, [|)><a;. DSGammaClient App>
<ay.action_textfield(z)> T
s = <JVM .java(RandomRelayServer, [|)><a;. DSGammaClient App>
<ajy. action_textfield(:)><ay. action_result(¢)> T
Yy = <JVM .java(RandomRelayServer, [|)><a;. DSGammaClient App>
<az. DSGammaClientApp><a;. action_textfield(z) // as.action_textfield(j)>
<ay.action_result(i + j)> T
s = <JVM .java(RandomRelayServer, [|)><a;. DSGammaClient App>
<az. DSGammaClient App><a;. action_textfield(z)><as. action _textfield(;)>
<ay.action_result(i + j)> T
g = <JVM .java(RandomRelayServer, [|)>
((<a;. DSGammaClientApp><a;. action_stop_button>) A
=(<ay. action_stop_button><a;. DSGammaClientApp>))T
Yy = <JVM .java(RandomRelayServer, [|)>
<ai. DSGammaClientApp><ay. DSGammaClient App>
<ay. action_textfield(z)><ay. action_stop_button><a,. action_result(:)> T
s = <JVM .java(RandomRelayServer, [|)>
<ay. DSGammaClient App><ay. DSGammaClient App><as. DSGammaClient App>
<ay.action_textfield(z) // az.action_textfield(j)>
<az. action_result(i)><a;. action_result(j)>
<as.action_result(i + j)> T
g = <gr. GlobaRelay><gr. put(a)>
<gr.put(b)> (<gr.get(a)> A~ <gr.get(b)>)T.
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These formulae correspond to formulae ¢rs, to ¢rs,. They have the same syntax, except
for the create constructors which are replaced by the corresponding Java class names.

These formulae are satisfied by the execution of the program. Thus, we consider ¥ to be
actually a contract of Prog. Use of testing method, as described in Chapter 8, would
help to formally verify that W is a contract.

Definition 9.6.1 CProg.
We define the following contractual program

CProg =< Prog,V > .
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Implement Relation

Given CR3, CProg of Definitions 9.5.1 and 9.6.1 respectively, we define a CO-OPN/2
implement relation A’ C ELEMcRrs X ELEMcprog in the following way:

)\IA ={(integer, int), (byte, byte), (boolean, boolean)}
Lo ={(javaobject, Object), (javatextfield, TextField),

javatextarea, TextArea), (javabutton, Button), (javaevent, Event),
javathread, Thread), (javaapplet, Applet), (javavector, Vector),
javasocket, Socket), (javaserversocket, JavaServerSocket),
java-arraybyte, ArrayBytes),
javainputstream, InputStream), (javaoutputstream, OutputStream),
javadatainputstream, DatalnputStream),
javadataoutputstream, DataOutputStream),
takeoffglobal, TakeOffGlobal), (takeofflocal, TakeOffLocal),
dsgammaclientapp, DSGammaClientApp),
globalrelay, GlobalRelay), (outputrelay, OutputRelay),

inputrelay, InputRelay), (randomrelayserver, RandomRelayServer),

FA _{ +1nteger7 +1nteger)}

{ NEeWjavaobjects neWObJect) (lnitjavaobject7 initObject); ey
NE€Wjavasockets neVVSocket) (lnitjavasockety initSocket); ey
NE€Wjavasockets neWSocket) (lnitjavasocketa initSocket)y vy
NEeW dsgammaclientapps neWDSGammaChentApp) (lnitdsgammaclientappa initdsgammaclientapp); e
NE€W randomrelayservers neVVRandomRelayServer) (lnitrandomrelayservera initRandomRelayServer)7 e
NE€Wjym, €W yyM ), (1Nitjym, inityvm )}

={(waitjavaobject, Waitobject ), (NOtifY;, mobiect> DOLITY Opject ) - - -

a’Ct1Ondsgamma.chentapp,Javaeventdava.object booleans aCtIOHDSGva.mma.ChentApp,Event Object, boolean)
action_textfieldqsgammactientapp,integer; action_textfieldpsGammaClientApp,int ) s

action I’esultdsgammachentapp,lnteger7 action resultDSGvammaChentApp,lnt)

action_ stop_buttondsgammachentapp, action_stop_buttonpgaammaCiient App)

(
(
(
(
(
(
(
(
(
(
(
(
(javastring, String), (java-arraystring, ArrayString), (jvm, JVM)}
(
(
(
(
(
(
(
(
(
(
(
(
(

new- RandomRelayServerrandomrelayserver,integer7

RandomRelayServerRandomRelayServer,int)7 cee
pUtglobalrelay,integem pUtGlobalRelay,int)7 (getglobalrelay,integem getGlobalRelay,int)7 e

javag,y,, javagyy ) }
Object. Objectopject), - - -

DSGammaChentAppdsgammaclientapp? DSGammacnentAppDSGammaClientApp)7 cee
JVM;ym, JVMyym)

a1,a1),(a2,a2) (GS,GB) ( ) (J .7) ( )7(bab)a(97"797")}-

A ={

javaobject?

o~ o~ o~ o~ o~

A =
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Since CR3 is very close to CProg every element (type name, method, Class object) of
CR3 is trivially mapped to its corresponding element in CProg. It is worth noting the
following:

e Refine relation M is defined on methods action_result (i), action_textfield (i),
and action_stop_button. Indeed, (Md%rog)DSGammaC]ientApp defines these methods

even though they are not actually in the Java source.

e CO-OPN/2 non-default Constructor new-RandomRelayServer (port) is related to
non-default Java creation method RandomRelayServer(port).

Formula Implementation

Implement relation A/ maps elements of CR3 to elements of CProg having the same
name; and CO-OPN/2 create constructors to Java constructors having the name of the
Java class. We see easily that A/(®grs) = V.

Summary

The refinement process described above is directed by the idea of implementing the system
by the means of the Java programming language, and with an architecture using Java
Applets. It starts with contractual CO-OPN/2 specification CI and ends with contractual
Java program CProg:

o CI gives a centralised view of the application to develop. It deals with the problem
of correctly computing the sums;

e CRI1 gives a view of the application with a distributed multiset of integers. It has
to resolve the problem of correctly computing the result even though a user leaves
the system;

e CR2 gives a client/server view of the application. It solves the problem of deadlock
occurring when the number of integers present in the system is less than the number
of users. Therefore it introduces a timeout.

e CR3 gives the complete CO-OPN/2 specification of the Java program. It integrates
the use of sockets, and uses a two-phase protocol to correctly perform the sum when
users leave the system.

e CProg is the Java program, close to CR3, and providing a graphical user interface.

Appendix B gives the CO-OPN/2 specifications I, R1, R2, R3, and the Java program
Prog.
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The refinement process integrates progressively more and more details, and enables the
specifier to concentrate separately on different problems (the computing of the sum first,
the quitting protocol, the deadlock, and finally the sockets). Therefore, we think that
schema a development proposed here (CI to CProg) is well suited for the development
of distributed Java applications.

Other Refinement Process

Starting with the same requirements and initial contractual specification CI, another
refinement process has been realised. It is guided by the concern of satisfying certain non-
functional requirements, such as making the system tolerating to certain breakdowns, as
well as by constraints of design integrating the concept of a certain kind of multi-threaded
transactions, called Coordinated Atomic Actions (CAAs) [62].

Reports [30, 31] contain the complete CO-OPN/2 specifications of the DSGamma system
designed using CAAs.
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Conclusion

Model-oriented formal specifications languages allow to easily describe a model of a system
to be developped, but are not well-suited for explicitly expressing properties of the system.
Conversely, logical languages easily express properties, but describe a model with more
difficulty. The two languages framework, described among others by Pnueli in [54], consists
of using a logical language for expressing requirements and a model-oriented language for
describing models or implementations.

Meyer [50] advocates that in order to address the correctness issue, i.e., the ability of a
software to perform according to its specification, it is necessary to develop software with
built-in features for dealing with correctness, in order to ”write correct software and know
it”.

This thesis is based on the two languages framework as described by Pnueli, and integrates
built-in features for addressing the correctness issue as proposed by Meyer. Indeed, this
thesis advocates the joint use of a specifications language and a logical language, in order
to perform the stepwise refinement of model-oriented specifications. The logical language
enables to express a contract on a model-oriented system specification, i.e., a set of logical
formulae, satisfied by the model of the specification. The contract has a dual function:
first it semantically determines correct refinement steps; and second, it is the key for
verifying the correctness of the refinement process.

10.1 Summary

This thesis defines a theoretical framework for the stepwise refinement and implementation
of specifications using a two languages framework. Due to the use of two specific languages,
we derive methodological results that allow to deal with the correctness issue during the
whole development process. Finally, the application of the theoretical results to the CO-
OPN/2 specifications language and the Hennessy-Milner logic is a first step towards a
development methodology in the framework of CO-OPN/2.
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Theoretical Framework

The theoretical framework necessary to define a stepwise refinement and implementation
based on contracts is made of the following elements:

o A Formal Model-Oriented Specifications Language
It is used to give a complete and mathematical solution (how) that represents to
system to be developped. At each step of the refinement process it takes into account
refinement choices;

o A Logic on the Formal Specifications Language
It is used to express the contracts on the specifications. The contracts are sets of
formulae that express the essential requirements and refinement choices (what) that
must be kept till the implementation. A contractual specification is a pair given by
a specification and a contract, such that the model of the specification part satisfies
the contract;

o A Refine Relation, A Formula Refinement, A Refinement Relation
The refine relation is a relation on syntactical elements of contractual specifica-
tion. It expresses the syntactical changes that occur to the specifications during a
refinement process.

Given a refine relation, the formula refinement is a function able to transform a
high-level contract into lower-level formulae, according to modifications required by
the refine relation on the elements constituting the formulae.

The refinement relation conveys the semantical requirements defining a correct re-
finement step. It is a relation on contractual specifications, that simply requires that
a lower-level contract contains the translation, provided by the formula refinement,
of a higher-level contract. This ensures that the model of the lower-level specifica-
tion satisfies the higher-level contract, and that the high-level contract is satisfied
as well by subsequent correct refinement steps;

e A Programming Language
The programming language, different from the specifications language, is the lan-
guage chosen for the software implementation. The choice of the programming
language may affect refinement choices performed during the refinement process;

e A Logic on the Programming Language
It is used to express the contract of the program. This logic is certainly different from
that used for the formal specifications language, since the programming language
and the formal specifications language are different;

o An Implement Relation, A Formula Implementation, An Implementation Relation
The implement relation is a relation on elements of contractual specifications and
elements of contractual programs. It explains the syntactical links between a con-
tractual specification and a contractual program.
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The formula implementation transforms a specification contract into formulae ex-
pressed on a program.

The implementation relation on contractual specifications and contractual programs
simply requires that the program contract contain the translation of the specifica-
tion contract. Therefore, the program satisfies the contract of every contractual
specification obtained during the refinement process.

Methodological Results

The use of two distinct languages during a refinement process leads to the following
methodological results:

o A General Theory of Stepwise Refinement and Implementation Based on Contracts
It advocates the joint use of a model-oriented formal specification, and a set of logical
formulae, called a contract, satisfied by the model of the specification. Correctness
of a refinement step is obtained by preservation of contracts. Implementation is
similarly treated;

o Correctness as a Built-In Feature
The use of explicit contracts during a development process allows the specifier to
recognise essential properties to preserve during a refinement step; and let the veri-
fication process be easier since the contract explicitly identifies the properties that
have to be checked.

CO-OPN/2 Development Framework

The application of the general theory of refinement and implementation to the CO-OPN/2
specifications languages brings some elements useful for defining a whole development

framework for CO-OPN/2:

o A Theory of Stepwise Refinement and Implementation Based on Contracts

The CO-OPN/2 language expresses the system specifications, while the Hennessy-
Milner logic expresses the contracts. The choice of this logic is motivated by the
fact that is used in the CO-OPN/2 framework for generating test cases. The refine
relation is an injective, partial function, that is total on elements of the contract; it
is essentially a renaming that maintains the part of the structure of the high-level
specification which is concerned by the contract. The formula refinement is a simple
rewriting of the formulae based on the renaming given by the refine relation.

The implementation is considered towards object-oriented programming languages.
The implement relation and the formula implementation are defined in a similar
way as the refine relation and the formula refinement;
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o Implementation of CO-OPN/2 Specifications in Java

Advices are given for performing a stepwise refinement based on contracts, followed
by an implementation using the Java programming language. Among others, the
most concrete contractual CO-OPN/2 specification reached at the end of the refine-
ment process should specify every instruction of the program, and should convey the
semantics of the Java programming language. We show how to obtain a CO-OPN/2
specification which specifies a Java program and reflects the Java semantics.

Through a concrete case study, a whole refinement process has been realised and
has lead to the development of a Java program having a client/server architecture
distributed across the Web using Java applets. Guidelines for such a development
process have been identified: an initial specification is provided which describes
the system in a centralised manner; a first refinement step leads to a view of the
system with distributed data; a second refinement step introduces the client/server
architecture; and finally, a last refinement step takes into account the socket layer -
necessary to communicate through a network - as well as the Java semantics;

Verification Using Generated Tests

A way of verifying the refinement steps and the implementation phase using gener-
ated tests is proposed for the CO-OPN/2 language. It consists mainly of generating
test cases that are representative of the contract;

Towards a Methodology of Development

The three points above constitute starting elements for establishing a development
methodology with formal proofs for the CO-OPN/2 framework (design, implemen-
tation, verification). Indeed, the work presented in this thesis can be combined
with current other works (test, direct implementation of CO-OPN/2 specifications
in Java, axiomatic semantics) occurring in the framework of the CO-OPN/2 lan-
guage, in order to form a complete methodology of development using CO-OPN/2
specifications.

10.2 Future Works

As we have seen above, this thesis brings some elements useful for the establishment of a
methodology of development in the framework of the CO-OPN/2 language. In order to
actually reach this aim both theoretically and practically, the following works should be
undertaken:

o Assessment of the General Theory

Chapter 3 presents a general theory of refinement and implementation based on
contracts, which can be applied to any model-oriented specifications language, and
any logic well-suited for expressing properties on these specifications. Even though
this general theory is presented independently of any specifications and logical lan-
guages, some fundamental definitions, such as the one of the refine relation, and
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the formula refinement, take their motivation by the application of the theory to
the CO-OPN/2 specifications language, and the Hennessy-Milner logic. In order to
assess the foundation of the general theory it is necessary to confront it with other
specifications and logical languages:

o Industrial Case Studies
The case study described in Chapter 9 is rather an academic application. In order
to identify problems that could occur during the development of more complex
applications, it is necessary to put the CO-OPN/2 theory of refinement to the test
with well-known examples of refinement, and with industrial case studies;

e Enhancement of HML
Currently any invariant property that must be satisfied at each state (or at least
at an infinite number of states) of a transition system, needs an infinite number
of HML formulae to be expressed. In order to be of practical use for a specifier
the current version of HML, described in this thesis, should be enhanced with some
temporal operators and variables quantifiers. In that manner, a single enhanced
HML formula could represent an infinite number of simple HML formulae;

o Development of Tools

In order to make the work of the specifier easier, a series of tools, integrated into
a homogeneous toolkit, would be very useful: (1) a tool for generating contracts
by deriving simple HML formulae from enhanced HML formulae; (2) a tool for
graphically editing high-level and low-level contractual specifications; for helping
the specifier to build the refine relation; and for constructing the formula refinement
from the refine relation; (3) a tool for proving: that the models of the specifications
satisfy their contract (horizontal verification); that a low-level contract contains
the translated high-level contract (vertical verification); and that the models of the
program satisfy their contracts (program verification). This last tool should be
related to the Co-opnTest tool, which automatically generates test cases;

o Weaker Refine Relation
Chapter 5 defines a strong refine relation; it is functional, injective, and do not allow
that a high-level Class module or ADT module is split over several lower-level Class
modules of ADT modules respectively. However, in some cases, it could facilitate
the refinement process, if splitting Class modules is allowed;

o Towards an Aziomatic Verification
Once the axiomatic semantics for CO-OPN/2, currently studied by Buchs and Va-
chon [59], is established, it will be possible to propose an axiomatic verification of
the correctness of the refinement process and the implementation step;

o Another Compositional Refinement
This thesis proposes a hierarchical operator for composing CO-OPN/2 specifica-
tions, and a compositional refinement based on this hierarchical operator. Buffo
and Buchs [23] propose a compositional semantics for CO-OPN/2 specifications. It
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could be worth studying another compositional refinement, which would be based
on this new compositional semantics.

The work presented in this thesis provides a theoretical basis for a development method-
ology using the CO-OPN/2 language. We are confident that the development of tools
proposed above will considerably help a specifier, using the CO-OPN/2 language, to
practically build reliable software.



Appendix A

Swiss Chocolate Factory

A.1 CO-OPN/2 Textual Specifications

Here are the CO-OPN/2 textual specifications used for running examples of Chapters 4
and 5.

1 O ass Packagi ngUnit;

2 Interface

3 Type packagi ng-unit;

4 Met hod t ake;

5 Body

6 Use Chocol ate, ConveyorBelt, Packagi ng, PralineContainer;
7 Transitions

8 filling, store;

9 Pl ace

10 wor k- bench _ : packagi ng;

11 AXi ons

12 take with the-conveyor-belt.get box ::
13 - > wor k- bench box;

14 filling with

15 t he-pral i ne-container. get choc .. box.fill choc ::
16 wor k- bench box -> work-bench box;

17 store with box.full-praline choc ::

18 wor k- bench box -> ;

19 wher e

20 box: packagi ng;

21 choc: chocol at e;

22 End Packagi ngUnit;

24 Cl ass Packagi ngProducer;

25 I nterface

26 Use Packagi ng;

27 Type packagi ng- pr ocuder;

28 nj ect t he- packagi ng- pr oducer;
29 Met hod

20 produce;

31 Body

32 AXi om

33 produce with
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34 box. creat e- packagi ng .. the-conveyor-belt.put box :: ->;
35 wher e
36 box: packagi ng;

7 End Packagi ngPr oducer;
38

39 Class PralineContainer;
w0 Interface

41 Use Chocol at e;

42 Type praline-container;

43 bj ect the-praline-container;
44 Met hod get _ : praline;

45 Body

46 Use Natural, Capacity;

47 Pl ace

48 amount > : natural;

49 Initial

50 anmount cont ai ner-capcity;

51 AXi om

52 get p :: amount n -> amount (n-1);
53 \Wher e

54 p : praline;

55 n : natural;

ss  End PralineContai ner;
57

s Cl ass Heap;

59 Interface

60 Use Packagi ng;

61 Type heap;

62 bj ect the-heap;

63 Met hods put _, get _ : packaging;
64 Body

65 Pl ace storage _ : packagi ng;

66 AXi ons

67 put box :: -> storage box;

68 get box :: storage box -> ;

69 \Wher e

70 box : packagi ng;

71 End Heap;

72

73 Class ConveyorBelt;

72 I nterface

75 Use Packagi ng;

76 Type conveyor - bel t;

77 nj ect the-conveyor-belt;

78 Met hods put _, get _ : packaging;
7o Body

80 Use Fi f oPackagi ng;

81 Place belt _ : fifo-packaging;

82 Initial belt [];

83 AXi ons

84 put box ::

85 (size f)>conveyor-capacity = true =>
86 belt f -> belt (insert box f);
87 get (first ')

88 belt f° -> belt (extract f');
89 wher e

90 f : fifo-packaging;

91 f' : ne-fifo-packagi ng;

92 box : packagi ng;
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End ConveyorBelt;

G ass Packagi ng;
Interface
Use Chocol at e;
Type packagi ng;

Met hods
fill _ : chocol ate;
full-praline;
Creation
cr eat e- packagi ng;
Body
Use Naturals, Capacity;
Pl ace
#square-holes _ : natural
Initial

#squar e- hol es praline-capacity;
Axi ons

fill P :: #square-holes n -> #square-holes (n-1);
full-praline :: #square-holes 0 -> #square-holes O;

where n: nz-natural;
End Packagi ng;

Cl ass Del uxePackagi ng;
I nherit Packagi ng;
Renane packagi ng -> del uxe-packagi ng;
Interface
Use Packagi ng;
Subt ype del uxe- packagi ng < packagi ng;
Met hod
full-truffle;
Creation
cr eat e- packagi ng;
Body
Pl ace
#round-holes _ : natural
Initial
#squar e- hol es praline-capacity;
#round- holes truffle-capacity;
Axi ons

fill T :: #round-holes n -> #round-holes (n-1);
full-truffle :: #round-holes O -> #round-hol es 0;
create-packaging :: ->

where n : nz-natural;
End Del uxePackagi ng;

Adt Fi f oPackagi ng;
I nterface
Use Naturals, Packagi ng;

Sorts ne-fifo-packagi ng, fifo-packagi ng;
Subsort ne-fifo-packaging < fifo-packagi ng;

Generators
[ : -> fifo-packaging;

insert _ _ : packaging fifo-packaging ->

ne-fif o- packagi ng;
Oper ati ons

first _ : ne-fifo-packagi ng -> packagi ng;
extract _ : ne-fifo-packaging -> fifo-packagi ng;
si ze _ : ne-fifo-packagi ng -> natural

257
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152 Body

153 AXi ons

154 first (insert box []) = box;
155 first (insert box f) = first f;
156

157 extract (insert box []) =11;
158 extract (insert box f) =

159 insert box (extract f);
160

161 size [] = 0;

162 size (insert box f) =1 + (size f);
163

164 wher e

165 box : packagi ng;

166 f : ne-fifo-packagi ng;

1e7  End Fi f oPackagi ng;

168

169 Adt Chocol at e;

1o I nterface

171 Sorts chocol ate, praline, truffle;
172 Subsort

173 praline < chocol at e;

174 truffle < chocol ate;

175 Generators

176 P : praline;

177 T : truffle;

178 End Chocol at e;

179

150 Adt Capacity;

151 I nterface

182 Use Naturals;

183 Oper ati ons

184 praline-capacity : -> natural;
185 truffle-capacity : -> natural;
186 conveyor-capacity : -> natural;
137 Body

188 AXi ons

189 praline-capacity = 16;

190 truffle-capacity = 8;

191 conveyor-capacity = 50;

192 End Capacity;

193

104 Adt Naturals;

195 I nterface

196 Use Bool eans;

197 Sort natural;

108 Generators

199 0 : -> natural;

200 succ _ : natural -> natural;
201 Oper ati ons

202 _+ ,

203 - )

204 _ * _ y

205 _/ _ )

206 % _ : natural natural -> natural;
207 _ = _ )

208 _<=_

209 < s

210 > ,
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_o>= natural natural -> bool ean;
max natural natural -> natural;
mn natural natural -> natural;
even _ nat ural -> bool ean;

2% % _ ,

_ ** 2 : patural -> natural;

;; constants

1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 :
Body

Axi ons
O+nat Var1 = nat Var 1;

-> patural ;

(succ nat Var 1) +nat Var2 = succ (nat Var 1+nat Var 2);

;. substraction,
O-natVarl = 0O;

if natVar2 > natVar1l then natVarl-natVar2 = 0

(succ natVar?2)-0 = succ nat Var 2;

(succ nat Var2)-succ natVarl =

O*natVarl = 0O;

nat Var 2- nat Var 1;

(succ nat Var 1) *nat Var2 = (nat Var 1*nat Var 2) +nat Var 2;

;; division,
natVar1/0 = 0O;
nat Var 1<nat Var 2
nat Var 1>=nat Var 2

;; nodul o,
nat Var 1%at Var 2 =

0=0 =
O=succ nat Var 1
succ nat Var 1=0

(succ nat Varl)=succ natVar2 =

nat Var 1<=nat Var 2

0<0
O<succ nat Var 1
succ natVarl < 0

succ natVarl < succ natVar2 =

nat Var 1>nat Var2 =
nat Var 1>=nat Var 2

even 0 = true;
even succ nat Varl

2**0 = succ O;
2**succ natVarl =

(nat Var 1<=nat Var 2) =t r ue

if natvVar2 =

if natvVar2 =

true => nat Var 1/ nat Var 2
true => nat Var 1/ nat Var 2

O then div natVarl natVar2 = 0

0;

succ ((natVar1l-natVar2)/natVar2);

O then nmbd natVar1l natVar2 = 0

nat Var 1- ( nat Var 2* ( nat Var 1/ nat Var 2) ) ;
true;

= fal se;

= fal se;

not nat Var 2<nat Var 1;
= fal se;

true;

fal se;

not nat Var 1<=nat Var 2;

not nat Var 1<nat Var 2;

= not even nat Var1l;

(succ succ 0)*(2**nat Varl)

=> max

nat Var 1=nat Var 2;

nat Var 1<nat Var 2;

(nat Var 1<=nat Var 2) =f al se =>
(nat Var 1<=nat Var 2) =true => mi
(nat Var 1<=nat Var 2) =f al se => mi

nat Var 1**2 = nat Var 1* nat Var 1;

max

natVarl natVar2 = natVar?2 ;
natVarl natVar2 = natVarl ;
n natvVarl natVar2 = natVarl ;
n natVarl natVar2 = natVar?2 ;

259
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1 = succ O; 2 = succ 1;

5 = succ 4; 6 = succ 5;

9 = succ §; 10 = succ 9;

13 = succ 12; 14 = succ 13;

17 = succ 16; 18 = succ 17;
Theor ens

11
15
19

= succ 2; 4 = succ 3;
= succ 6; 8 = succ 7;
= succ 10; 12 = succ 11;
= succ 14; 16 = succ 15;
= succ 18; 20 = succ 19;

;; various properties for division and nodul o

O/ natVarl = 0O;

(natVarl %natVar2) / natVar2 =

0 %natVarl = O,
(nat Var1l % nat Var2) % nat Var 2

Wher e
nat Var 1, natVar2: natural;

I nherit Equival enceRel ati on;
Renane
theSort -> natural;

I nherit Total Order Rel ati on;
Renane
theSort -> natural;

I nherit Total Order Rel ati on;

Renane
theSort -> natural;
<= ->  >=
mx __ ->mn _ _;
mn __ ->max _ _;

Inherit StrictTotal OrderRel ation;
Renane
theSort -> natural;

Inherit StrictTotal OrderRel ation;

Renane
theSort -> natural;
< -> >

I nherit AssociativityCommutativity;
Renane ;. "+" is associative and conmutative

theSort -> natural;
_the® _ -> _ + _;
I nherit Neutral El ement; -
Renane
theSort -> natural;
1->0;
Undefine 1;

"4

I nherit AssociativityCommutativity;
Renane ;. "*" is associative and conmutative

theSort -> natural;
_the®p _ -> _* _;
I nherit Neutral El ement; -
Renane theSort -> natural;

"%

0;

nat Var1 % nat Var 2;

;; "=" is an equival ence

;; "<=" is a total order

i ">=" is a total order

o "<" is a strict total order

o ">" is a strict total order

has "0" as neutral el enent

has "1" as neutral el enent
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329

230 I nherit ZeroEl enent; ;o "*" has "0" as zero el enent
231 Renane theSort -> natural;

332 Undefi ne 0;

333

33« | nherit AssociativityConmutativity;

335 Renane ;; "max" is associative and commutative
336 theSort -> natural;
337 _the® _ -> max _ _;

33 End Natural s;
339

340 Adt Bool eans;
a1 | nterface

342 Sort bool ean;

343 Cenerators

344 true . -> bool ean;

245 fal se . -> bool ean;

346 Oper ati ons

347 not . bool ean -> bool ean;

348 _and _ : bool ean bool ean -> bool ean;
349 _or _ : bool ean bool ean -> bool ean;
350 __ xor _ : bool ean bool ean -> bool ean;
351 = . bool ean bool ean -> bool ean;
352 Body

353 AXi ons

354 not true = fal se;

355 not false = true;

356

as7 true and bool eanVarl = bool eanVar1l,
258 fal se and bool eanVarl = fal se;

359

360 true or bool eanvarl = true;

361 fal se or bool eanvarl = bool eanVar 1,
362

363 fal se xor bool eanVarl = bool eanVar1i,
364 true xor booleanVarl = not bool eanVarl;
365

366 (true=true) = true;

367 (true=false) = false;

368 (fal se=true) = false;

369 (fal se=fal se) = true;

370

371 Theor ens

372 7, reflexivity

373 (bool eanVar1l = bool eanVar1l) = true;

374

ars ;; synetry

376 (bool eanVar1l = bool eanVar2) = true =>
377 (bool eanVar 2 = bool eanVarl) = true;
378

379 7, transitivity

380 (bool eanVar1l = bool eanVar2) = true &
381 (bool eanVar2 = bool eanVar3) = true =>
382 (bool eanVar 1l = bool eanVar3) = true;
383

384 VWher e

385 bool eanVar 1, bool eanVar2, bool eanVar3 : bool ean;

386
ss7 I nherit AssociativityConmutativity;
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288 Renane ;; "and" is associative and commutative
389 t heSort -> bool ean;

390 _the®p _ -> _and _;

391

s92 I nherit AssociativityComutativity;

293 Renane ;; "or" is associative and commutative
394 t heSort -> bool ean;

395 _the®p _ -> _or _

396

s97 I nherit AssociativityComutativity;

298 Renane ;; "xor" is associative and commutative
399 t heSort -> bool ean;

400 _the®p _ -> _ xor _

101 End Bool eans;

A.2 CO-OPN/2 Abstract Specifications

This section presents the mathematical definitions of CO-OPN /2 specifications of running
examples of Chapters 4 and 5.

Example 4.1.24: Spec

The CO-OPN/2 specification of Spec of Example 4.1.24 is given by:

Spec = {(MdéLQ)Chocolate; (Mdg’ﬂ)(japacityy (MdéLQ)Booleansy

(MdéLQ )Naturalsa (Md%7g )Packaginga (Md%7g ) ConveyorBelt)

(Md%7g )PralineContainera (Md; Q )PackagingUnit}> .

The global signature of Spec is given by:

Y= <{ chocolate, praline, truffle, boolean, natural} U

{ packaging, conveyor-belt, praline-container, packaging-unit},

{((praline, chocolate), (truffle, chocolate))*},

{ Ppraline, Ltrufiie, conveyor-capacity, praline-capacity, truffle-capacity,
true, false, not, and, or, xor, =, 0, suce, +,... ,1,... ,20} U

{ initpackagings N€W packaging:

lnltConveyor—belta NE€Wconveyor-belt, the_Convey()r_beltconveyor-belt7

lnltpraline—conta.iner; NE€W praline-container; the—prahne—cont alnerpraline_conta.inem

lnltpackaging—unity newpackaging—unit}> .
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The global interface of Spec is given by:

Q= <{ packaging, conveyor-belt, praline-container, packaging-unit }, @,

{ ﬁupackaging,chocolate; fuu_prahnepackaginga

put get

conveyor-belt,packaging? conveyor-belt,packaging?

takepackaging—unit; getpraline—container,praline}7

{ the-conveyor-belt,  cvorbelr» the-praline-container, . containers } > :

Example 5.1.2: Specy

The CO-OPN/2 specification of Specy of Example 5.1.2 is given by:

SPGCO = {(MdéLQ)Chocolate; (MdéLQ)Capacityy (Mdg7Q)Booleansy
(Mdg7Q)Naturalsy (Md;J))Packagin@ (Md;7Q)Heap}-

The global signature of Specy is given by:

Yo = <{ chocolate, praline, truffle, boolean, natural} U {packaging, heap},

{((praline, chocolate), (truffle, chocolate))*},
{ Ppraline; Ttruffie, conveyor-capacity, praline-capacity, truffle-capacity,

true, false, not, and, or, xor, =, 0, succ, +,... ,1,... ,20} U

{ lnltpackaging; NEeWpackaging, lnltheap; neVvheap}> .

The global interface of Specy is given by:

Qp = <{packaging,heap}, ,

{ ﬁupackaging,chocolate; fuu_prahnepackaging7

putheap,packaging? getheap,packaging7 } )

{ the—heapheap}> :

Example 5.2.14: Spec;

The CO-OPN/2 specification Spec; of Example 5.2.14 is given by:

263
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Specl = {(Mng))Chocolatey (MdéLQ)Capacity; (MdgA))Booleans;

(Mdg Q )Naturals; (Md; Q )Packaging7 (Md; Q )DeluxePackaging7

(Md; Q )FifoPackaging; (Md;Jz )ConveyorBelt}> .

The global signature of Spec; is given by:

¥ = <{Chocolate,praline, truffle,

boolean, natural, fifo-packaging} U {packaging, deluxe-packaging, conveyor-belt},
{((praline, chocolate), (truffle, chocolate), (deluxe-packaging, packaging)), },
{ P, T, conveyor-capacity, praline-capacity, truffle-capacity,

[], insert, first, extract, size,

true, false, not, and, or, xor, =, 0, succ, +,... ,1,... ,20} U

{ 1nltpackagingy NEeWpackaging, lnltheap7 neVvheap}> .

The global interface of Specy is given by:

0, = <{packaging,deluxe—packaging, conveyor-belt},

{(deluxe-packaging, packaging))*},

{ ﬁupackaging,chocolatea fuu_prahnepackaging7
ﬁudeluxe—packaging,chocolate7 fuu_prahnedeluxe—packaging?
fuu_trufﬂedeluxe—packaginga

pUtconveyor—belt,packaging? getconveyor—belt,packaging? } 9

{ the—conveyor—beltconveyor_belt}> )

A.3 Java Source Classes

The Java source classes of Examples 6.1.8 and 6.1.24 are given below:

package ChocFactory;

import java.util.x;
import java.lang.*;

public class ChocFactory {
public static void main(String argv[]){

~1 O TR W N -
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8 JavaPackaging elem;

9

10 // Test of Class JavaHeap

11 System.out.println("Test Heap");

12 // Inserts 10 packaging into theheap

13 for (int i=0; i<10;i++){

14 elem = new JavaPackaging();

15 // £ills the packaging with 3 "praline"

16 elem.fill(true);elem.fill(true);elem.fill(true);

17 JavaHeap.theheap.insertElement (elem);

18 System.out.println(elem);

19 }

20 // Removes 10 packaging from theheap:

21 // the order of extraction is different from that of insertion
22 for (int i=0; i<10;i++){

23 elem = JavaHeap.theheap.removeElement();

24 System.out.println(elem);

25 }

26

27 // Test of Class JavaConveyorBelt

28 JavaDeluxePackaging elem2;

29 System.out.println("Test ConveyorBelt");

30 // Inserts 5 deluxepackaging and 5 packagings into theconveyorbelt
31 for (int i=0; i<5;it++){

32 elem2 = new JavaDeluxePackaging();

33 // £ills deluxepackaging with 1 "praline", 2 "truffle"
34 elem2.fill(true);elem2.fill(false);elem2.fill(false);
35 // inserts deluxepackaging

36 JavaConveyorBelt.theconveyorbelt.insertElement (elem2) ;
37 System.out.println(elem2);

38

39 elem = new JavaPackaging();

40 // £ills packaging with 1 "praline"

41 elem.fill(true);

42 // inserts packaging

43 JavaConveyorBelt.theconveyorbelt.insertElement (elem);
44 System.out.println(elem);

45 }

46 // Removes 10 packaging from theconveyorbelt:

47 // the order of extraction must be the same as the order of insertion
48 for (int i=0; i<10;i++){

49 elem = JavaConveyorBelt.theconveyorbelt.removeElement () ;
50 System.out.println(elem);

51 }

52}

53 )

54

59 class JavaHeap extends Vector{

56 // Public Static Variables

57 public static JavaHeap theheap = new JavaHeap();

58

59 // Inserts a Packaging box at the end of theheap

60 public static void insertElement(JavaPackaging box){

61 theheap.insertElementAt (box,theheap.size());
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}

// Removes a Packaging box at a Random Position

public static JavaPackaging removeElement (){
JavaPackaging elem;
int i;
i = (int) (Math.random() * theheap.size()) % theheap.size();
elem = (JavaPackaging) theheap.elementAt(i);
theheap.removeElementAt (i);
return elem;

class JavaPackaging extends Object {

// Simulates the Insertion of a Praline into a Packaging box

public void fill(boolean P){
if (P == true) {
System.out.println("One more Praline");}

class JavaConveyorBelt extends Vector{
// Public Static Variables
public static JavaConveyorBelt theconveyorbelt = new JavaConveyorBelt();

// Inserts Packaging box at the end of theconveyorbelt
public static void insertElement(JavaPackaging box){
// Limited size
if (theconveyorbelt.size() < 51) {
theconveyorbelt.insertElementAt (box,theconveyorbelt.size());}

}

// Removes Packaging box at the beginning of theconveyorbelt
public static JavaPackaging removeElement (){
JavaPackaging elem;
elem = (JavaPackaging) theconveyorbelt.elementAt(0);
theconveyorbelt.removeElementAt (0);
return elem;

class JavaDeluxePackaging extends JavaPackaging {
// Simulates the insertion of a Praline and a Truffle
// into DeluxePackaging box
public void fill(boolean P){
if (P == true) { // Praline
super.fill(P);}
else // Truffle
System.out.println("One more Truffle");
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A.4 Java Abstract Programs

Here are the mathematical definitions of Java programs presented in Chapter 6.

Example 6.1.8: Prog

The abstract definition of program Progy of Example 6.1.8 is given by:

PTOQO = {(Mdg7g)boolean7 (MdéLQ)int;

(Md;7Q)JavaPackaging7 (Md;7Q)JavaHeap}-

The global signature of Progg is given by:

Y Prog, = <{ boolean,int} U {JavaPackaging, JavaHeap}, @,

{trueboolean7 falseboolean7 !booleany &boolean7 &&booleam |boolean7 Hboolean7 e

. _2int7 _1int7 0int7 1int7 2int7 +int7 —inty - .-
{ lnltJavaPackaginga NEW javaPackaging, lnltJa.vaHeapy neVVJavaHeap}> .
The global interface of Progy is given by:

Qproge = <{JavaPackaging,JavaHeap}, a,

{ﬁHJavaPackaging,booleam; nOtlfYJavaPackaging7 R

insert ElementJavaHeap,JavaPackaging; rernoveF/len’lentk]avaHeap,JavaPackaging;

insertElement Aty,yateap, Object, removeElement Aty,yateap Object

$1Z€JavaHeap,int, NOLITY Jvatieaps - - - J

{ theheapJavaHea.p}> .

Example 6.1.8: Prog,

The abstract definition of program Prog; of Example 6.1.8 is given by:

PTOgl - {(Mdg7ﬂ)booleana (MdéLQ)inty

C C C
( Md}LQ ) JavaPackaging; ( Mdz Q ) JavaDeluxePackaging; ( Mdz Q )JavaConveyorBelt}> .

267
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The global signature of Prog, is given by:

YProg = <{ boolean, int} U {JavaPackaging, JavaDeluxePackaging, JavaConveyorBelt},

1%}

{truebooleany falseboolean7 !booleam &booleam &&booleam |boolean7 Hbooleam cee
L) _2int7 _1int7 0int7 1int7 2int7 +int7 —inty - - -y
{ 1n1tJavaPackaging7 NEW JavaPackaging>

1nltJava.DeluxePaCka.ging; NEeW javaDeluxePackaging>

lnltJavaConveyorBelty neVVJavaConveyorBelt}> .

The global interface of Prog, is given by:

Qprog, = <{ JavaPackaging, JavaDeluxePackaging, JavaConveyorBelt}, &,

{ ﬁllJava.Packaging,boolea.m ﬁHJavaDeluxePackaging,boolean7
nOtlfYJavaPackaging? nOtlfYJavaDeluxePackaginy R

insert ElementJavaConveyorBelt,JavaPackaging; reInoveEllen’lentJa.vaConveyorBelt,Javal:’a.ckagingy

insertElement *L\tJavaCOnveyorBelt,Obj ect removeElement AtJavaConveyorBelt,Obj ect

S1Z€JavaConveyorBelt,ints nOtlfyJavaConveyorBelt7 e }7

{ theconveyorbeltJavaConveyorBelt}> .

A.5 A Program Execution

This is the program execution corresponding to a possible execution of Progy and Prog,
as requested by Class ChocFactory. We observe that the first test leads to an extraction
order of the packaging that is different from the insertion order, while the second test the
insertion and extraction orders are the same.

Test Heap

One more Praline

One more Praline

One more Praline
ChocFactory.JavaPackaging@1dc607a9
One more Praline

One more Praline

One more Praline
ChocFactory.JavaPackaging@1dc607e4
One more Praline

== O 00 =IO U= Wi —

— o

One more Praline
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

One more Praline
ChocFactory.JavaPackaging@1dc607d5
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc607c6
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc6080c
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc607£fd
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc60843
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc60834
One more Praline
One more Praline
One more Praline
ChocFactory.JavaPackaging@1dc60825
One more Praline
One more Praline
One more Praline

ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.
ChocFactory.

JavaPackaging@1dc6086b
JavaPackaging@1dc60834
JavaPackaging@1dc607d5
JavaPackaging@1dc60843
JavaPackaging@1dc607a9
JavaPackaging@1dc607c6
JavaPackaging@1dc607£fd
JavaPackaging@1dc6080c
JavaPackaging@1dc607e4
JavaPackaging@1dc60825
JavaPackaging@1dc6086b

Test ConveyorBelt
One more Praline

One more Truffle

One more Truffle

ChocFactory.JavaDeluxePackaging@1dc608af

One more Praline

ChocFactory.

JavaPackaging@1dc608ed

One more Praline

One more Truffle

One more Truffle

ChocFactory.JavaDeluxePackaging@1dc608e2

One more Praline

ChocFactory.

JavaPackaging@1dc608d3

One more Praline
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
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One more Truffle

One more Truffle
ChocFactory.JavaDeluxePackaging@1dc608c8
One more Praline
ChocFactory.JavaPackaging@1dc6090e

One more Praline

One more Truffle

One more Truffle
ChocFactory.JavaDeluxePackaging@1dc60903
One more Praline
ChocFactory.JavaPackaging@1dc608f4

One more Praline

One more Truffle

One more Truffle
ChocFactory.JavaDeluxePackaging@1dc6093d
One more Praline
ChocFactory.JavaPackaging@1dc6092e
ChocFactory.JavaDeluxePackaging@ldc608af
ChocFactory.JavaPackaging@1dc608ed
ChocFactory.JavaDeluxePackaging@1dc608e2
ChocFactory.JavaPackaging@1dc608d3
ChocFactory.JavaDeluxePackaging@1dc608c8
ChocFactory.JavaPackaging@1dc6090e
ChocFactory.JavaDeluxePackaging@1dc60903
ChocFactory.JavaPackaging@1dc608f4
ChocFactory.JavaDeluxePackaging@1dc6093d
ChocFactory.JavaPackaging@1dc6092e

SWISS CHOCOLATE FACTORY



Appendix B

DSGamma System

B.1 Initial Specification: I

Here is the CO-OPN/2 specification I described in Section 9.2.

Cl ass Users;

1

2> Interface

3 Use | ntegers;

4 Met hods

5 insert _ : integer;

6 result _ : integer;

7 exit;

8 Type user;

9 Body

10 Use DSGammaSystem Bl ackTockens;

1 Pl ace

12 Init _ : blacktocken;

13 Initial

14 Init @

15 Transitions

16 init;

17 Axi ons

18 init Wth DSG new user (Sel f)

19 o lnit @-> ;

20 insert(i) Wth DSG user-action(i,Self):: ->;
21 result(i) Wth DSG result(i,Self) :: ->;
22 exit Wth DSG user-exit(Self) :: ->;
23 \Wher e

24 i : integer;

25 End Users;

26

27 Cl ass DSGammaSyst em

25 I nterface

29 Use Integers, Users, String, ArrayStrings;
30 Met hods

31 init _ _ : string arraystring;
32 new user _ I user;

33 user-action _ _ : integer, user;

result _ . integer, user;

w
=
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APPENDIX B.
user-exit _ user;
nj ect DSG dsgamma-system
Type dsganmma- system
Body
Use Bl ackTockens;
Pl aces
init _ bl ackt ocken;
MSI nt _ i nt eger;
users _ @ user;

Transi tion
Chem cal Reacti on;
AXi ons
init(D (S (G (a(m(m(a[])))))),par)
Too=>0nit
new- user (usr)
init @->1init @ users usr;
user-action(i, usr)

users usr -> users usr, MInt i;
result(i,usr)
users usr, MsInt i -> users usr, MInt i;
user-exit(usr)
users usr -> ;
;7 Al the possible Chem cal Reactions
Chemi cal Reacti on
MBInt i, MSInt j -> MSInt i+j;
VWher e
i, ] i nt eger;
usr user;
par arraystring;

End DSGanwaSst em

Adt ArrayStrings As Array(String);
Mor phi sm el em -> string;

Renane array -> arraystring;
End ArrayStrings;

Adt Bl ackTockens;
I nterface
Gener at or
@: -> bl ackt ocken;
Sort
bl ackt ocken;
End Bl ackTockens;

B.2 First Refinement: R1

Here is the CO-OPN/2 specification R1 described in Section 9.3.

S B S N S

C ass DSGanmaSyst ent;

Interface
Use Integers, Users, String, ArrayStrings;
Met hods
init string arraystring;
new user user;

user-action _ _ i nt eger user;

DSGAMMA SYSTEM
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result
user - exi t

i nt eger
user;

user;

Obj ect DSG : dsgamma- syst em;

Type dsganma-systemnt;

Bl ackTockens;

Body
Use Bagl ntegers, PairUserBags,
Pl aces
init bl ackt ocken
Usr ToExi t user;
MBI nt _ pai r user bag;
MBI nt ToOEnpty _ : pai ruserbag;

Transi tion

CR1, CR2, CR3, CR4, CR5, CR6, CR7, CRS;

exit;
AXi ons

init(D (S (G (a (m(m(a'[])))))),par)

->init
new- user (usr)

init @->init @ MInt <usr {}>;

user-action(i, usr)
MSI nt <usr bag> ->
result (i, usr)

MBI nt <usr bag ' i>;

MBI nt <usr {}'i> -> MSInt <usr {}’'i>;

user-exit(usr)
::  -> UsrToExit usr;

7 Al possible Chenical Reactions
CRL :: MsInt <usr (bag ' i) ' j>
-> Ml nt <usr bag ' (i+j)>;
CR2 :: MsInt <usrl bagl ' i> WMsInt <usr2 bag2 ' >
-> Mslnt <usrl bagl ' (i+j)> MsInt <usr2 bag2>;
CR3 :: MInt <usrl (bagl ' i) ' j>, MSInt <usr2 bag2>
-> MBInt <usrl bagl> MSInt <usr2 bag2 ' (i+j)>;
CR4 :: MsInt <usrl bagl ' i> WMsInt <usr2 bag2 ' j>,
MBI nt <usr3 bag3>
-> Msl nt <usrl bagl> MsSInt <usr2 bag2>,
MBI nt <usr3 bag3 ' (i+)>;
exit :: UsrToExit usr, MSInt <usr bag>
-> MBI nt ToEnpty <usr bag>;
;; do not add integers in MSIntToEnpty
CR5 :: MsInt <usrl bagl> WMSBIntToEnpty <usr2 (bag2 ' i) ' j>
-> MBI nt <usrl bagl ' (i+j)> WMSIntToEnpty <usr2 bag2>;
CR6 :: MsInt <usrl bagl ' i>, WMSIntToEnpty <usr2 bag2 ' j>
-> MBI nt <usrl bagl ' (i+j)> WMSIntToEnpty <usr2 bag2>;
CR7 :: MsInt <usrl bagl ' i> MsInt <usr2 bag2>,
MBI nt TOEnpty <usr3 bag3 ' >
-> MBInt <usrl bagl> MsInt <usr2 (bag2 ' i) ' |>,
MBI nt TOEnpty <usr3 bag3>;
CR8 :: MsInt <usrl bagl>, WMSIntToEnpty <usr2 bag2 ' i>,
MBI nt TOEnpty <usr3 bag3 ' j>
-> MBI nt <usrl bagl ' (i+j)> WNSIntToEnpty <usr2 bag2>
MBI nt ToOEnpty <usr3 bag3>;
\Wher e
bag, bagl, bag2, bag3 : baginteger
usr, usrl, usr2, usr3 : user,
i, ] i nteger;
par : arraystring;

End DSGanmaSyst ent;
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66
67
68
69
70
71
72
73
74
75
76
77
78
79

Adt
Mor p

APPENDIX B. DSGAMMA SYSTEM

Bagl nt egers As Bag( | ntegers);
hi sm
el em -> integer;

Renane

End

Adt
Mor p

bag -> bagi nt eger
Bagl nt egers;

Pai r User Bags As Pair (Users, Bagl nt egers);
hi sm

elem -> user;

el en2 -> bagi nt eger

Renane

End

pair -> pairuserbag;
Pai r User Bags;

B.3 Second Refinement: R2

Here is the CO-OPN/2 specification R2 described in Section 9.4.

d as
Inte
Us
Me

(@)

Ty
Body

Pl

AX

End

d as
Inte
Us
Me

Ty
Body

Us

Pl

In

AX

s DSGammaSyst en®;

rface

e String, ArrayStrings, G obal Rel ays;
t hods

init _ _ : string arraystring;
get-server _ : gl obalrel ay;

j ect DSG : dsgamma-systen?;

pe dsgama- systen?;

aces

GR _ : globalrelay;

i ons

;; Ccreate globarelay gr at initialization
inft(D(S(G(a"(m(m(af[])))))),par) Wth gr.Create
o-> GRgr;

get-server(gr)

o GRor -> GRor;

\Wher e
gr : globalrelay;
par : arraystring;

DSGammaSyst en®;

s d obal Rel ays;

rface

e Integers;

t hods

put _ : integer;

get _ : integer;

pe gl obal rel ay;

e Fifol ntegers;

aces

buffer _ : fifointeger;
itial

buffer []; ;; enpty-fifo
i ors
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37 put(i) :: buffer b -> buffer b’ i;

38 get (next of (b'i)) :: buffer b’ i -> buffer (remove fromb'i));
39 \Wher e

40 i : integer;

a1 End G obal Rel ays;

4z Class Applets;
aa Interface
45 Use DSGammaSysten?, |ntegers, d obal Rel ays;

46 Met hods

47 insert _ : integer;

48 result _ : integer;

49 exit;

50 Type appl et;

51 Body

52 Use Bool eans, Random C ock, Bl ackTockens;

53 Pl aces

54 I nit _ : bl ackt ocken;

55 store-gr _ : globalrel ay;

56 Mslnt, first _ : integer;

57 endp _  bool ean;

58 begi nni ng _ : bool ean;

59 ti meout _ : integer;

60 Transitions

61 getfirst, getsecond, tik, put, init;

62 Initial

63 endp fal se;

64 begi nni ng true;

65 Init @

66 AXi ons

67 7, retrieve gr

68 init Wth DSG get-server(gr)

69 o Init @-> store-gr gr;

70

71 ;; add new i nteger to MSInt

72 insert (i)

73 ;. endp false -> endp false, MsInt i;

74 ;; change fl ag

75 exit

76 ;. endp false -> endp true;

77 7, get result taken fromplace first
78 result (i)

79 :: endp false, first i

80 -> endp false, first i;

81 ;; receives a first integer fromsystem
82 ;; provided the user has not exit

83 getfirst Wth

84 (gr.get(i) // Rrandom(mllis) // C.clock(hour))
85 :: endp fal se, beginning true, store-gr gr
86 -> endp fal se, store-gr gr,

87 first i, timeout (hour + mllis);

88 ;; user has perforned an exit

89 getfirst

90 :: endp true, beginning true

91 ->

92

93 ;; receive a second integer, adds it to first and

94 ;. inserts into NMSInt
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95
96
97

98
99
100
101
102
103

104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
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getsecond Wth gr.get(j)
first i, tineout d, store-gr gr
-> beginning true, MSInt i+j, store-gr gr;

;; to prevent deadl ock when no sufficient integers in the
;; system add only first integer to MsInt.
tik Wth C. cl ock(hour)
(hour > d) = true
=> timeout d, first i
-> beginning true, MSInt i;

;; renoves integer fromMsInt until no nore integer
put Wth gr.put (i)

. store-gr gr, MsInt i

-> store-gr gr;

\Wher e
gr : gl obal rel ay;
i, ] . integer;
hour, mllis, d : integer;
End Appl ets;

Adt Fi fol ntegers;
Interface
Use I ntegers, Naturals;
Sort fifointeger, ne-fifointeger;
Subsort ne-fifointeger -> fifointeger;
Generators
[ : -> fifointeger;
o i nteger, fifointeger -> ne-fifointeger;
Qper ati ons
insert _to _ : integer, fifointeger
-> ne-fifointeger;
next of _ : ne-fifointeger -> integer;
renmove from_ : ne-fifointeger -> fifointeger;
Body
AXi ons
insert i tofifo=1i ' fifo;

next of (i ' []) =1i;
next of (i ' j ' fifoVarl)
= next of (j ' fifoVarl);

renove from (i ' []) =11;
remove from (i ' j ' fifoVarl)
[ (remove from(j ' fifovarl));

=
VWher e
fifo : fifo;
i, j : elem
End Fif ol ntegers;

Cl ass Random
Interface
Use | ntegers;
Met hods
random _ : integer;
hj ect
R : random
Type random
End Random
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152 Class O ock;
154 I nterface

155 Use | ntegers;

156 Met hods

157 clock _ : integer;
158 oj ect

159 C : clock;

160 Type cl ock;
161 End d ock;

B.4 Third Refinement: R3

Here is the CO-OPN/2 specification R3 described in Section 9.5.

Server Side

1 ;; RandonRel ayServer cl ass
S

s O ass RandonRel ayServer;

4+ Inherit JavaThreads;

5 Renane

6 Thread -> RandonRel ayServer;

7 javat hread -> randonrel ayserver;

s Interface

9 Use JavaThreads, |ntegers,

10 JavaArrayStrings, RegisterParaneters;

11 Subt ype randonrel ayserver -> javat hread;

12 Met hods

13 run;

14 mai n _ : java-arraystring;

15 register _ © registerparaneter;

16 getregister _ : registerparaneter;

17 Creation

18 new RandonRel ayServer _ : integer;

19 Body

20 Use JavaServer Sockets, d obal Rel ay, JavaSocket s,
21 I nput Rel ay, CutputRel ay, Defaults,

22 Threadl dentity,

23 Pai r JavaSocket Thr eadl denti ty,

24 Pai r Qut put Rel ayThr eadl dentity,

25 Pai r I nput Rel ayThr eadl denti ty;

26 Met hods

27 start-run _ : threadidentity;

28 start-main _ _ : java-arraystring threadidentity;
29 End- mai n _ : threadidentity;

30 start - new RandonRel ayServer _ _ : integer threadidentity;
31 End- new RandonRel aySer ver _ ¢ threadidentity;
32 Pl aces

33 ;; G obal Variables

34 port _ : integer;

35 i sten-socket _ : javaserversocket;

36 gl obalrelay _ : gl obalrelay;
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37
38
39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
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68
69
70
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72
73
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79
80
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;; Local Variables

client-socket _ : pair-javasocketthreadi dentity;

outputrelay _ : pair-outputrelaythreadidentity;

i nputrel ay _ : pair-inputrel ayt hreadi dentity;

id _ : registerparaneter;

pl _, p2 _, p3 _,

pi1 _ , pl2 _, p13 _, pl4 _, pl5 _, pl6 _, pl7 _,

p21 _, p22 _, p23 _, p24 _, p25 _ : threadidentity;
Axi ons

;; Method register: put call into id place
regi ster(regpar)
:: ->1id regpar;
;; Renove call fromid (for dynamic creations only)
getregi ster(regpar)
:: id (regpar) ->;
;; Method main(): look for a call to main and
;; actually start the nmain nmethod
mai n(args) Wth Self.start-min(args, <cnt t>)
Sel f. End- mai n(<cnt t>)
id (args, min,<cnt t>) ->;
;; handl es input paraneters and | ocal variables
start-main([], <cnt t>)

-> X (<[] <cnt t>), local (<PORT <cnt t>>),
pl <cnt t>;
;; creation of an instance
next Wth Counter.get(cnt’)
RandonRel ayServer. regi ster(
<PORT new RandonRel ayServer <cnt’ t>>)
:7 pl <cnt t>, local (<PORT <cnt t>>)
-> p2 <cnt t>, local (<PORT <cnt t>>);
next Wth o.new RandonRel ayser ver ( PORT)
©1 p2 <cnt t>, local (<PORT <cnt t>>)
-> p3 <cnt t>, local (<PORT <cnt t>>);
End- mai n(<cnt t>)
p3 <cnt t>, local (<PORT <cnt t>>),
X (<[] <cnt t>>)
->;

;; Method new RandonRel aySer ver
new RandonRel ayServer (port) ;;with
RandonRel ayServer . getregi ster(
<port new RandonRel ayServer <cnt t>>)
Sel f. start-new RandonRel ayServer (port, <cnt t>)
Sel f. End- new- RandonRel aySer ver (<cnt t >)
->
;; replaces a non precised port with default port
start-new RandonRel ayServer (port, <cnt t>)
(port = zero) = true
=
-> pll <cnt t>, port PORT
;; Stores the given port
start-new RandonRel ayServer (port, <cnt t>)
(port = zero) = false
=
-> pll <cnt t>, port port;
;; Creation of a JavaServer Socket instance
next Wth Counter.get(cntl) ;
JavaSer ver Socket . regi st er(
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95 <port new JavaServer Socket <cntl t>>)

96 :: pll <cnt t>, port port

97 -> pl2 <cnt t>, port port;

98 next Wth |Is. new JavaServer Socket (port)

99 i1 pl2 <cnt t>

100 -> pl3 <cnt t>, |isten-socket Is;

101 ;; Creation of a d obal Rel ay i nstance

102 next Wth Counter.get(cntl)

103 d obal Rel ay. regi ster(

104 <[] new d obal Relay <cntl t>>)

105 i1 pl3 <cnt t>

106 -> pl4d <cnt t>;

107 next Wth gr.new d obal Rel ay

108 :: pld <cnt t>

109 -> pl5 <cnt t>, globalrelay gr;

110 ;; Activates its own nmethod start (=> run)
111 next Wth Counter.get(cntl) ..

112 Sel f.register(<[] start <cntl t>>)

113 i1 pl5 <cnt t>

114 -> pl6 <cnt t>;

115 next Wth Self.start

116 i1 plée <cnt t>

117 -> pl7 <cnt t>;

118 End- new RandonRel aySer ver (<cnt t>)

119 o pl7 <cnt t> ->

120 ;7 Method run()

121 run Wth Self.start-run(<cnt t>)

122 coid <[] run <cnt t>> ->;

123 start-run(<cnt t>)

124 -

125 -> p21 <cnt t>;

126 ;; accepts a client connection and stores
127 ;; socket

128 next Wth Counter.get(cntl)

129 I s.register(<[] accept <cntl t>>)

130 ;. p21l <cnt t>, listen-socket Is,

131 -> p22 <cnt t>, listen-socket Is

132 next Wth |s.accept(cs)

133 ;. p22 <cnt t>, listen-socket Is

134 -> p23 <cnt t>, |isten-socket Is,

135 client-socket <cs <cnt t>>;

136 ;; Creation of an QutputRel ay instance

137 next Wth Counter.get(cntl)

138 Qut put Rel ay. regi st er (

139 <[ cs, gr, STOP- TRANSM T] new- Qut put Rel ay <cntl t>>)
140 ©: p23 <cnt t>, client-socket <cs <cnt t>>,
141 gl obal rel ay gr

142 -> p24 <cnt t>, client-socket <cs <cnt t>>,
143 gl obal rel ay <gr <cnt t>>;

144 next Wth or.new Qut put Rel ay(cs, gr, STOP- TRANSM T)
145 ©1 p24 <cnt t>, client-socket <cs <cnt t>>,
146 gl obal rel ay gr

147 -> p25 <cnt t>, client-socket <cs <cnt t>>,
148 gl obalrel ay gr,

149 out putrel ay <or <cnt t>>;

150 ;; Creation of an InputRelay instance

151 next Wth Counter.get(cntl)

152 I nput Rel ay. regi ster(
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153 <[ cs, gr, or, STOP- TRANSM T, STOP- CONNECTI ON]
154 new | nput Rel ay <cntl t>>)

155 :: p25 <cnt t>, client-socket <cs <cnt t>>,
156 gl obalrelay gr, outputrelay <or <cnt t>>
157 -> p26 <cnt t>, client-socket <cs <cnt t>>,
158 gl obalrelay gr, outputrelay <or <cnt t>>;
159 next Wth ir.new | nput Rel ay(

160 cs, gr, or, STOP- TRANSM T, STOP- CONNECTI ON)
161 ©1 p26 <cnt t>, client-socket <cs <cnt t>>,
162 gl obalrelay gr, outputrelay <or <cnt t>>
163 -> p21 <cnt t>, client-socket <cs <cnt t>>,
164 gl obalrel ay gr, outputrelay <or <cnt t>>,
165 inputrelay <ir <cnt t>>;

166

167 ;; this thread loops infinitely !

168 next

169 1o p21 <cnt t> ->

170 Wher e

171 port . integer;

172 I's . javaserversocket;

173 cS . javasocket;

174 ar : gl obal rel ay;

175 ir : inputrel ay;

176 or . outputrel ay;

177 t . javat hread;

178 args . java-arraystring;

179 cnt, cntl, cnt’: integer;

150 End RandonRel ayServer;

181

182 ; Defaults Used for Connection
183 ,; =- - m - mm - ms---s--------------
181 Adt Defaults;

185 | nterface

186 Sort default;

187 Cenerators

188 PORT, REMOTE- HOST, STOP-TRANSM T, STOP- CONNECTI ON
189 -> defaul t;

190 Body

191 End Defaults;

192

193 ;; |l nputRelay class

194 5, === = === s s e s e s e s s s s s mm - - -
195 Cl ass | nput Rel ay;

196 | nherit JavaThreads;

197 Renanme

198 Thread -> | nput Rel ay;

199 javat hread -> inputrel ay;

200 I nterface

201 Use JavaThreads, JavaSockets, G obal Rel ay,

202 Qut put Rel ay, | ntegers;

203 Subtype inputrelay -> javathread;

204 Met hods

205 run;

206 Creation

207 new | nputRelay = j avasocket gl obal rel ay outputrel ay
208 i nteger integer;

209 Body

210 Use JavabDat al nput Streans, Bool eans, Threadldentity,
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Pai r I nt eger Threadl denti ty;
Met hods
start-run _ : threadidentity;
start-new |l nputRelay = j avasocket gl obal rel ay
outputrelay integer integer threadidentity;

End- new I nput Rel ay _ : threadidentity;
Pl aces
;; G obal Variables
cl i ent socket _ © javasocket;
gl obal rel ay _ : globalrel ay;
out putrel ay _ : outputrel ay;
stop-transmit _ © integer
stop-connection _ : integer
dat ai nput stream _ : javadat ai nput stream
i nput stream _ : javainputstream
;; Local Variables
el em _ : pair-integerthreadi dentity;
pi11 _ , pl2 _, p13 _, pl4 _, pl5 _, pl6 _ , pl7 _ ,
p21 _ , p22 _, p23 _, p24 _, p25 _, p26 _ , p27 _ ,
p28 _ , p29 _, p210 _ : threadidentity,;
Axi ons

;7 Method new I nput Rel ay
new- | nput Rel ay(cs, gr, or, stop-transnit, stop-connection) Wth

| nput Rel ay. getregi ster(
<[cs,gr,or,stop-transmnit, st op-connecti on]

new | nput Rel ay <cnt t>>)

Sel f.start-new | nput Rel ay(

cs, gr, or,stop-transmt, st op-connection, <cnt t>)

Sel f. End- new | nput Rel ay(<cnt t>)

->

start-new | nput Rel ay(cs, gr, or
stop-transnmit, stop-connection <cnt t>)

-> clientsocket cs, globalrelay gr
outputrelay or, stop-transmit stop-transmt,
st op- connecti on stop-connection
pll <cnt t>;
7, get inputstreamfrom socket
next Wth Counter.get(cntl)
cs.register(<[] getlnputStream<cntl t>>)
pll <cnt t>, clientsocket cs
-> pl2 <cnt t>, clientsocket cs
next Wth cs.getlnputStrean(ln)
pl2 <cnt t>, clientsocket cs
-> pl3 <cnt t>, clientsocket cs,
i nput stream I n;
;; Create an instance of JavaDatal nput Stream usi ng i nputstream
next Wth Counter.get(cntl)
JavabDat al nput Stream regi ster(<lin Create <cntl t>>)
pl3 <cnt t>, inputstreamln
-> pl4 <cnt t>, inputstreamln;
next Wth datain.Create(ln)
pld <cnt t>, inputstreamln
-> pl5 <cnt t>, inputstreamln,
dat ai nput st ream dat ai n
;; Starts itself
next Wth Counter.get(cntl) .
Sel f.register(<[] start <cntl t>>)
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pl5 <cnt t>
-> pl6 <cnt t>;
next Wth Self.start
pl6 <cnt t>
-> pl7 <cnt t>;
End- new | nput Rel ay(<cnt t>)
pl7 <cnt t> ->

;7 Method run()
run Wth Self.start-run(<cnt t>)
cid <[] run <cnt t>> -> ;
start-run(<cnt t>)

-> p21 <cnt t>;
;; waits for an integer fromdatain.
next Wth Counter.get(cntl)
datain.register(<[] readlnt <cntl t>>)
p21 <cnt t>, datainputstream datain,
-> p22 <cnt t>, datainputstream datain;
next Wth datain.readlnt(elem
p22 <cnt t>, datainputstreamdatain
-> p23 <cnt t>, datainputstream datain,
el em <el em <cnt t>>;

DSGAMMA SYSTEM

;; If the received integer is the stop-connection

;; signal then stops
next Wth Counter.get(cntl)

Self.register(<[] stop <cntl t>>)
(el em = stop-connection) = true

=> p23 <cnt t>, elem<elem<cnt t>>,
st op- connecti on st op-connection

-> p24 <cnt t>, elem<elem<cnt t>>,
st op- connecti on stop-connecti on;

next Wth Self.stop
i1 p24 <cnt t>
-> p25 <cnt t>;

;; If the received integer is the stop-transmt signal

;; then forwards the signal to outputrelay
next Wth Counter.get(cntl)

or.register(<true setnotify-End-sending <cntl t>>)

(elem= stop-transmt) = true
=> p23 <cnt t>, elem<elem<cnt t>>,

stop-transnit stop-transmit, outputrelay or

-> p26 <cnt t>, elem<elem<cnt t>>,

stop-transnit stop-transmit, outputrelay or;

next Wth or. End-setnotify-End-sendi ng(true)
. p26 <cnt t>, outputrelay or
-> p21 <cnt t>, outputrelay or;

;; the received integer is not a stop signal,

;; then forward it to gl obal rel ay
next Wth Counter.get(cntl)
gr.register(<elemput <cntl t>>)

((elem = stop-transmit) = false ) and
((el em = stop-connection) = false ) and

=> p23 <cnt t>, elem<elem<cnt t>>,
stop-transnit stop-transmt,
st op- connecti on stop-connecti on,
gl obalrel ay gr

-> p27 <cnt t>, elem<elem<cnt t>>,
stop-transnit stop-transmt,
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st op- connecti on st op-connection
gl obal rel ay gr
next Wth gr.put(elem
. p27 <cnt t>, globalrelay gr
-> p21 <cnt t>, globalrelay gr

;5 close socket
next Wth Counter.get(cntl)
cs.register(<[] close <cntl t>>)
.. p25 <cnt t>, clientsocket cs
-> p28 <cnt t>, clientsocket cs;
next Wth cs.cl ose
p28 <cnt t>, clientsocket cs
-> p29 <cnt t>, clientsocket cs
next Wth Counter.get(cntl)
Self.register(<[] stop <cntl t>>)
p29 <cnt t>
-> p210 <cnt t>;
next Wth Self.stop
p210 <cnt t>

-> '
\Wher e
cS . javasocket;
gr : gl obal rel ay;
or . outputrel ay;
dat ai n : javadat ai nput st ream
In : j avai nput stream
el em . integer;
t . javat hread;
cntl, cnt : integer;
stop-transmit, stop-connection : integer

End | nput Rel ay;

;; G obal Rel ay cl ass

I nherit JavaThreads;
Rename
Thread -> G obal Rel ay;
j avat hread -> gl obal rel ay;

Interface
Use JavaThreads, |ntegers;
Met hods
put _ : integer;
get _ : integer;
Creation
new d obal Rel ay;
Body

Use Threadldentity, JavaVectors, PairlntegerThreadl dentity;
Met hods

start - put _ i nteger threadidentity;
End- put _ t hreadi dentity;
start - get _ : threadidentity;
End- get _ _ : integer threadidentity;
start-new d obal Relay _ : threadidentity;
End- new G obal Relay _ : threadidentity;

Pl aces

;. dobal Variables
buf f er _ : javavector
;; Local Variabl es
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i nput - el em _ : pair-integerthreadidentity;

elemto-relay _ : pair-integerthreadidentity;

p11 _ , pl2 _ , pl3 _ ,

p21 _ , p22 _, p23 _, p24 _ , p25 _

p31 _, p32 _, p33 _, p34 _, p35 _ : threadidentity;
Axi ons

;; Method new G obal Rel ay
new G obal Relay Wth
G obal Rel ay. getregi ster(<cnt t>)
Sel f. start-new d obal Rel ay(<cnt t>)
Sel f. End- new G obal Rel ay(<cnt t>)
S
start-new d obal Rel ay(<cnt t>)
-> pll <cnt t>;
;; Create an instance of JavaVector
next Wth Counter.get(cntl) .
JavaVector.register(<[] Create <cntl t>>)
i1 pll <cnt t>
-> pl2 <cnt t>;
next Wth b.Create
pl2 <cnt t>
-> pl3 <cnt t>, buffer b;
End- new @ obal Rel ay(<cnt t>)
pl3 <cnt t> -> ;

7, Method put (i)
put (i nput-elem) Wth
Sel f.start-put(input-elem<cnt t>)
Sel f. End- put (<cnt t>)
id <input-elemput <cnt t>> ->;

7, put is synchronized !!!
start-put(input-elem<cnt t>)
i1 -> p21 <cnt t>, input-elem<input-elem<cnt t>>;
;; acquires the |ock
next Wth Sel f.lock(t)
i1 p21 <cnt t>
-> p22 <cnt t>;
;; add input-elemat the end of b
next Wth Counter.get(cntl)
b. regi ster(<input-elemaddEl ement <cntl t>>)
p22 <cnt t>, buffer b,
i nput - el em <i nput -el em <cnt t>>
-> p23 <cnt t>, buffer b,
i nput - el em <i nput -el em <cnt t >>;
next Wth b.addEl ement (i nput -el en
p23 <cnt t>, buffer b,
i nput - el em <i nput -el em <cnt t>>
-> p24 <cnt t>, buffer b;
;; releases the |ock
next Wth Sel f.unl ock(t)
p24 <cnt t>
-> p25 <cnt t>;
End- put (<cnt t>)
©1 o p25 <cnt t> ->
7, Method get (i)
get(elemto-relay) Wth
Sel f.start-get(<cnt t>)
Sel f. End-get (el emto-rel ay, <cnt t>)
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444 cid <[] get <cnt t>> ->;

445 7, get is synchronized !!!

446 start-get(<cnt t>)

447 o

448 -> p31l <cnt t>;

449 ;; acquires the |ock

450 next Wth Sel f.lock(t)

451 ;. p31l <cnt t>

452 -> p32 <cnt t>;

453 ;; get first integer fromb

454 next Wth Counter.get(cntl) .

455 b.register(<0 elenentAt <cntl t>>)
456 ;. p32 <cnt t>, buffer b

457 -> p33 <cnt t>, buffer b;

458 next Wth b.elementAt(0,elemto-relay,<cntl t>))
459 ©: p33 <cnt t>, buffer b

460 -> p34 <cnt t>, elemto-relay <elemto-relay <cnt t>> ;
461 ;; releases the |ock

462 next Wth Sel f.unl ock(t)

463 © p34 <cnt t>

464 -> p35 <cnt t>;

465 End-get (el emto-relay, <cnt t>)

466 i1 p35 <cnt t>,

467 elemto-relay <elemto-relay <cnt t>>
468 ->

469 Wher e

470 b . javavector;

471 i nput - el em . integer;

472 elemto-relay : integer;

473 t . javathread,

474 cnt, cntl . integer;

475 End d obal Rel ay;

476

477 ;; QutputRel ay cl ass

478 ,, T T T TS S-S S-S ss-s-s==-

a9 Cl ass Qut put Rel ay;

aso I nherit JavaThreads;

481 Renane

482 Thread -> Qut put Rel ay;

483 javat hread -> outputrel ay;
484 Interface

485 Use JavaThreads, JavaSockets, G obal Rel ay,

486 Bool eans, Integers;

487 Met hods

488 run;

489 setnotify-End-sending _ : bool ean;

490 Creation

491 new QutputRelay _ _ _ : javasocket gl obalrelay

492 i nteger;

493 Body

494 Use JavaDat aQut put Stream Threadl dentity,

495 Pai r I nt eger Threadl denti ty;

496 Met hods

497 start-run _ : threadidentity;

498 start-setnotify-End-sending _ _ : boolean threadidentity
499 End- set noti f y- End- sendi ng _ : threadidentity;

500 st art - new Qut put Rel ay _ _ . javasocket gl obalrelay integer

501 t hreadi dentity;
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End- new Qut put Rel ay _ : threadidentity;
Pl aces
;; G obal Variables
client _ : javasocket;
gl obal rel ay _: gl obalrel ay;
stop-transmit _ : integer
End- sendi ng _© bool ean
dat aout put stream _ : javadat aout put stream
out put st ream _ © javaout put stream
;; Local Variables
el em _ : pair-integerthreadi dentity;
pi11 _ , pl2 _, p13 _, pl4 _, pl5 _, pl6 _ , pl7
p21 _ , p22 _, p23 _, p24 _, p25 _ ,
p31 _ : threadidentity;
Initial
End- sendi ng fal se;
Axi ons

;7 Method new Qut put Rel ay
new Qut put Rel ay(cs, gr, stop-transmit) Wth
Qut put Rel ay. getregi st er (

<[cs, gr,stop-transmit] new Cut putRel ay <cnt t>>)

Sel f. start-new Qut put Rel ay(
CsS, gr,stop-transmt,<cnt t>)

Sel f. End- new Cut put Rel ay(<cnt t>)
->;

start-new Qut put Rel ay(cs, gr, stop-transmt, <cnt t>)

-> pll <cnt t>, client cs, globalrelay gr
stop-transnit stop-transmt;
;; get outputstreamfrom socket
next Wth Counter.get(cntl)
cs.register(<[] getCQutputStream<cntl t>>)
pll <cnt t>, client cs
-> pl2 <cnt t>, client cs
next Wth cs. get Qut put Strean(out)
©: pl2 <cnt t>, client cs
-> pl3 <cnt t>, client cs,
out put st ream out ;
;; Create an instance of DataCutputStream
next Wth Counter.get(cntl)

JavabDat aCut put St r eam regi st er (<out Create<cntl t>>)

pl3 <cnt t>, outputstream out
-> pl4 <cnt t>, outputstream out
next Wth dataout. Create(out)
pl4 <cnt t>, outputstream out
-> pl5 <cnt t>, outputstream out,
dat aout put st r eam dat aout ;
;; Starts itself
next Wth Counter.get(cntl)
Sel f.register(<[] start <cntl t>>)
pl5 <cnt t>
-> pl6 <cnt t>;
next Wth Self.start
i1 plée <cnt t>
-> pl7 <cnt t>;
End- new | nput Rel ay(<cnt t>)
pl7 <cnt t> ->

7 Method run()
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run Wth Self.start-run(<cnt t>)
id <[] run <cnt t>> ->;
start-run(<cnt t>)

> p21 <cnt t>;

;; If stop-transnmit then wite it on dataout and stop
next Wth Counter.get(cntl)
dat aout . regi ster(<stop-transmt witelnt <cntl t>>)
p21 <cnt t>, End-sending true, dataoutputstream dataout,
stop-transnmit stop-transmit
-> p22 <cnt t>, End-sending true, dataoutputstream dataout
stop-transmit stop-transmt;
next Wth dataout.witelnt(stop-transmt)
p22 <cnt t>, dataout putstream dataout,
stop-transnmit stop-transmit
-> p23 <cnt t>, dataout putstream dataout,
stop-transmit stop-transmt;
next Wth Counter.get(cntl)
Sel f.register(<[] stop <cntl t>>)
p23 <cnt t>
-> p24 <cnt t>;
next Wth Self.stop
i1 p24 <cnt t>

->

;; 1f not stop-transmit, then take integer from
;; globalrelay and loop (go to p21)
next Wth Counter.get(cntl)
gr.register(<[] get <cntl t>>)
p21 <cnt t>, End-sending false,
gl obal rel ay gr
-> p25 <cnt t>, End-sending false,
gl obalrel ay gr;
next Wth gr.get(elem
.. p25 <cnt t>, globalrelay gr
-> p21 <cnt t>, globalrelay gr,
el em <el em <cnt t>>;

;; Method setnotify-end-sendi ng()
setnoti fy- End-sendi ng(val ue) Wth
Sel f.start-setnotify-End-sendi ng(val ue, <cnt t>)
Sel f. End- set noti fy- End- sendi ng(<cnt t>)
id <val ue setnotify-End-sending <cnt t>> ->
start-setnotify-End-sendi ng(val ue, <cnt t>)
End- sendi ng ol d-val ue
-> p31 <cnt t>, End-sending val ue;
End- set noti f y- End- sendi ng(<cnt t>)
p31l <cnt t> ->

\Wher e
cs . javasocket;
gr : gl obal rel ay;
stop-transmit . integer;
out . javaout put stream
dat aout : j avadat aout put st r eam
val ue, old-value : nool ean;
t . javat hread;
cntl, cnt . integer;

End Cut put Rel ay;

287
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Client Side

1 ;; DSGammad i ent App d ass

2 1 mmmmmmmmmmmmmmmemeeoaa-

s O ass DSGanmad i ent App;

4 Inherit JavaAppl ets;

5 Renane

6 Appl et -> DSGanmad i ent App;

7 j avaappl et -> dsgamuacl i ent app;

s Interface

9 Use JavaAppl ets, Integers, JavaEvents, Bool eans;

10 Met hods

11 action _ : javaevent javaobject bool ean;
12 ;; extra nethods

13 action-textfield _ : integer;

14 action-result _ : integer;

15 action-stop-button;

16 Body

17 Use Defaults, Takeoffd obal, TakeoffLocal,

18 JavaSocket s, JavaDat al nput Streans, JavaDat aCut put St r eans,
19 Javal nput St reans, JavaQut put Streans,

20 JavaVectors, Threadldentity,

21 Pai r I nt eger Threadl denti ty;

22 Met hods

23 start-action _ _ : javaevent javaobject threadidentity;
24 End- acti on _ : bool ean threadidentity;
25 Pl aces

26 ;; G obal Variables

27 socket _ . javasocket;

28 dat ai nputstream _ : javadat ai nput stream

29 dat aout putstream _ : javadat aout put stream

30 i nput stream _ © javainputstream

31 out put stream __© javaout put stream

32 MBI nt _ : javavector;

33 t akeof f | ocal _ : takeoffl ocal;

34 t akeof f gl obal _ : takeoffglobal;

35

36 port _ i nt eger;

a7 host _ : javastring;

38 stop-transmit _ i nteger;

39 stop-connection _ : integer;

40 ;; Local Variables

41 entering-int _ : pair-integerthreadidentity;
42 result _ : pair-integerthreadidentity;
43 p21 _ , p22 _, p23 _, p24 _, p25 _, p26 _ , p27 _, p28 _ ,
44 p29 _ , p210 _, p211 _, p212 _, p213 _, p214 _ ,
a5 p215 _ , p216 _ ,

46 p31 _, p32 _, p33 _, p34 _, p35 _,

a7 p4l _, p42 _ , p43 _ ,

48 p51_, p52_, p53_, p54_,

49 p6l1 _ , p62 , p63 _ : threadidentity;

50 Initial

51 port PORT;

52 stop-transmit STOP- TRANSM T,

53 st op- connecti on STOP- CONNECTI ON;

54 host REMOT E- HOST,;

55 AXi ons
56 ;; respecify JavaApplet.init
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init Wth Self.start-init(<cnt t>)
Sel f.End-init(<cnt t>)
id <[] <cnt t>>

;; respecify JavaApplet.start-init
start-init(<cnt t>)

->

> p21 <cnt t>;

;; Creates a socket
next Wth Counter.get(cntl)
JavaSocket . regi ster(<[host, port] Create <cntl t>>)
p21 <cnt t>,
host host, port port
-> p22 <cnt t>,
host host, port port;
next Wth s. Create(host, port)
p22 <cnt t>,
host host, port port
-> p22 <cnt t>,
host host, port port, socket s;

;; gets Javal nput Stream associ ated to the socket
next Wth Counter.get(cntl)
s.register(<[] getlnputStream<cntl t>>)
p23 <cnt t>, socket s
-> p24 <cnt t>, socket s;
next Wth s.getlnputStrean{ln)
;. p24 <cnt t>, socket s
-> p25 <cnt t>, socket s, inputstreamln;

;; Creates an instance of JavabDat al nput St ream
next Wth Counter.get(cntl)
JavabDat al nput Stream regi ster(<Iln Create <cntl t>>)
p25 <cnt t>, inputstreamln
-> p26 <cnt t>, inputstreamln;
next Wth datain.Create(ln)
p26 <cnt t>, inputstreamln
-> p27 <cnt t>, inputstreamln,
dat ai nput st r eam dat ai n;

;; get JavaQut put Stream associ ated to the socket
next Wth Counter.get(cntl) ..
s.register(<[] getQutputStream<cntl t>>)
p27 <cnt t>, socket s
-> p28 <cnt t>, socket s;
next Wth s.get Qut put Strean{out)
p28 <cnt t>, socket s
-> p29 <cnt t>, socket s, outputstreamout;

;; Creates an instance of JavabDataCut put Stream
next Wth Counter.get(cntl)
JavabDat aCut put St ream regi ster (<out Create <cntl t>>)
p29 <cnt t>, outputstream out
-> p210 <cnt t>, outputstream out;
next Wth dataout. Create(out)
p210 <cnt t>, outputstream out
-> p211 <cnt t>, outputstream out,
dat aout put st r eam dat aout ;

;; Creates an instance of JavaVector
next Wth Counter.get(cntl)
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JavaVector.register(<[] Create <cntl t>>)
i1 p2l1l1 <cnt t>
-> p212 <cnt t>;
next Wth MsInt.Create
11 p212 <cnt t>
-> p213 <cnt t>, MSInt MSInt;

;... Creates an instance of JavaTextFi el d,
;. JavaText Area, and two i nstances of JavaButton

;; Creates an instance of TakeoffLocal
next Wth Counter.get(cntl)
Takeof f Local . regi st er(
<[ dat aout, MSI nt, t ext ar ea, st op- connecti on]
new Takeof f Local <cntl t>>)

p212 <cnt t>, dataout putstream dataout,
MBI nt MSInt, textarea textarea,
st op- connecti on stop-connection

-> p213 <cnt t>, dataout putstream dat aout,
MBI nt MSInt, textarea textarea,
st op- connecti on stop-connecti on;

next Wth takeoffl ocal . new Takeof f Local (

dat aout, MSI nt, t ext ar ea, st op- connecti on)
p213 <cnt t>, dataoutputstream dataout,
MBI nt MSInt, textarea textarea,
st op- connecti on st op-connection

-> p214 <cnt t>, dataout putstream dat aout,
MSI nt MSInt, textarea textarea,
st op- connecti on st op-connecti on,
t akeof f1 ocal takeoffl ocal;

;; Creates an instance of Takeoffd obal
next Wth Counter.get(cntl)
Takeof f G obal . regi ster(
<[ dat ai n, MSI nt, t ext ar ea, t akeof f | ocal , stop-transmi t]
new Takeof f d obal <cntl t>>)

p214 <cnt t>, datai nputstream dat ain,
MSl nt MsInt, textarea textarea, takeofflocal takeofflocal,
stop-transmt stop-transmt

-> p215 <cnt t>, datai nputstream dat ain,
MSl nt MsInt, textarea textarea, takeofflocal takeofflocal,
stop-transnmit stop-transmt;

next Wth takeoffgl obal.new Takeof f d obal (

dat ai n, M5l nt, t ext ar ea, t akeof fl ocal , stop-transnit)
p215 <cnt t>, datai nputstream dat ai n,
MSl nt MsInt, textarea textarea, takeofflocal takeofflocal,
stop-transmt stop-transmt

-> p216 <cnt t>, datai nputstream dat ain,
MSl nt MsInt, textarea textarea, takeofflocal takeofflocal,
stop-transnit stop-transmt,
t akeof f gl obal takeoffgl obal ;

;; respecify JavaApplet.end-init
End-init(<cnt t>)
11 p216 <cnt t>
-> '
;; respecify JavaApplet.start-stop
start-stop(<cnt t>)
-> p31l <cnt t>;

;; close datai nputstream
next Wth Counter.get(cntl)
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datain.register(<[] close <cntl t>>)
p31 <cnt t>, datainputstream datain
-> p32 <cnt t>, datainputstream datain
next Wth datain.close
p32 <cnt t>, datainputstream datain
-> p33 <cnt t>;

;; close dataout putstream
next Wth Counter.get(cntl)
dat aout . regi ster(<[] close <cntl t>>)
: p33 <cnt t>, dataout putstream dat aout
-> p34 <cnt t>, dataoutputstream dataout;
next Wth dataout.close
:: p34 <cnt t>, dataout putstream dat aout
-> p35 <cnt t>;

;; close socket
next Wth Counter.get(cntl) .
s.register(<[] close <cntl t>>)
p33 <cnt t>, socket s
-> p34 <cnt t>, socket s;
next Wth s.cl ose
:: p34 <cnt t>, socket s
-> p35 <cnt t>;

;; respecify JavaAppl et. end-stop
End- st op(<cnt t>)
i p35 <cnt t> ->

;5 Method action-textfield
action-textfield(i) Wth Counter.get(cntl)
Sel f.register(<[event-textfield,textfield]
action <cntl Sel f>>)
Sel f.action(event-textfield,textfield,Db)
-> entering-int <i <cntl, Sel f>>;

;; Method action-stop-button
action-stop-button Wth Counter.get(cntl)
Sel f.regi ster(<[event-stop-button
stop-button] action <cntl Self>>)
Sel f. acti on(event - st op- button, st op-button, b)
->

;; Method action-result
action-result(i) Wth Counter.get(cntl)
Self.register(<[event-result-button
result-button] action <cntl Self>>)
Sel f.action(event-result-button, result-button,b)
result <i<cntl Self>> ->

;7 Method action

action(e,o,b) Wth
Sel f.start-action(e, o, <cnt t>)
Sel f. End- acti on(b, <cnt t>)

id <[e,0] action <cnt t>>

;; event coming fromtextfield: user enters an integer
start-action(event-textfield,textfield, <cnt t>)

->

> p4l <cnt t>;
;; add new i nteger to MSInt
next Wth Counter.get(cntl)
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MBI nt . regi ster(<i addEl ement <cntl, t>))
p4l <cnt t>, entering-int <i <cnt t>>,
MBI nt MBI nt
-> p42 <cnt t>, entering-int <i <cnt t>>,
MBI nt MBI nt ;
next Wth MsSInt.addEl ement (i)
p42 <cnt t>, entering-int <i <cnt t>>,
MBI nt MBI nt ;
-> p43 <cnt t>, MsInt MSInt;
End- action(true, <cnt t>)
p43 <cnt t> -> ;

DSGAMMA SYSTEM

;; event com ng fromstop-button: user wants to exit
start-action(event-stop-button, stop-button, <cnt t>)

-> p6l <cnt t>;

;; send stop-transmit signal to server
next Wth Counter.get(cntl)

dat aout . regi ster(<stop-transmt witelnt <cntl t>>)

p6l <cnt t>, stop-transmit stop-transmt,

dat aout put st r eam dat aout

-> p62 <cnt t>, stop-transnmit stop-transmt,

dat aout put st r eam dat aout ;
next Wth dataout.witelnt(stop-transmt)

p62 <cnt t>, stop-transmit stop-transmt,

dat aout put st r eam dat aout

-> p63 <cnt t>, stop-transnmit stop-transmt,

dat aout put st r eam dat aout ;
End- action(true, <cnt t>)
p63 <cnt t> ->;

;; event coming fromresult-button: user wants to see result
start-action(event-result-button,result-button, <cnt t>)

-> p51 <cnt t>;
;; reads an integer in NMSInt
next Wth Counter.get(cntl)
MBI nt . register(<0 el enentAt <cntl t>>)
:: p52 <cnt t>, MSInt MSInt
-> p53 <cnt t>, MSInt MSInt;
next Wth MsInt.elenmentAt(0,i)
p53 <cnt t>, MsInt MSInt

-> p54 <cnt t>, MsInt MSInt, result <i <cnt t>>;

End- action(true, <cnt t>)
p54 <cnt t> ->;

\Wher e
t . javat hread;
S . javasocket;
In : javai nput stream
out . javaout put stream
dat ai n : javadat ai nput stream
dat aout : j avadat aout put st r eam
takeof f1 ocal : takeofflocal;

t akeof f gl obal : t akeof f gl obal ;

MBI nt . javavector;
cnt, cntl . integer;
[ . integer;
host : javastring;
port . integer;
b . bool ean;

End DSGammad i ent App;
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;; Takeof f Local cl ass
Cl ass Takeof f Local ;
I nherit JavaThr eads;
Renane
Thread -> Takeof f Local ;
javat hread -> takeoffl ocal;
I nterface
Use JavaThreads, |ntegers, JavaDat aQutput Streans,
JavaVectors, JavaText Areas, Bool eans;

Met hods
run;
set- End-reception _ : bool ean;
Creation
new Takeof fLocal _ _ _ _ : javadat aout putstreamjavavector
j avat ext area i nteger;
Body

Use Random PairlntegerThreadl dentity, Threadldentity;
Met hods

start-run _ : threadidentity;
start-set-End-reception _ _ . boolean threadidentity;
End- set - End-recepti on _ . threadidentity;
start-new TakeofflLocal _ _ _ - : javadataoutputstreamjavavector
javatextarea integer threadidentity;
End_new Takeof f Local _ : threadidentity;
Pl aces
;; G obal Variables
End-reception _: bool ean
dat aout put stream __: javadat aout put stream
MBI nt _ : javavector;
t ext area _ ! javatextarea
st op- connecti on _ . integer
;; Local Variables
random elemto-send _ : pair-integerthreadi dentity;
pl11 |, pl2 _ , pl13 _ ,
p21 _ , p22 _, p23 _, p24 _, p25 _, p26 _ , p27 _ , p28 _ ,
p29 _ , p210 _ , p211 _, p212 _, p213 _, p214 _ ,
p31 __ : threadidentity;
Initial
End-reception false
Axi ons

;; Method new Takeof f Loca
new Takeof f Local (dat aout, MSInt, textarea, stop-connection) Wth
Takeof f Local . getregi ster(
<[ dat aout, MSInt, textarea, stop-connection]
new Takeof f Local <cnt t>>)
Sel f. start-new Takeof f Local (dat aout, MSInt, textarea,
st op-connection, <cnt t>)
Sel f . End- new Takeof f Local (<cnt t>)
o>
start-new Takeof f Local (dat aout, MSI nt,
t ext ar ea, st op- connection, <cnt t>)

-> pll <cnt t>,
dat aout put st ream dat aout, MsInt MSInt,
textarea textarea, stop-connection stop-connection
;; Starts itself
next Wth Counter.get(cntl)
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Sel f.register(<[] start <cntl t>>)
i1 pll <cnt t>
-> pl2 <cnt t>;
next Wth Self.start(<cntl t>)
pl2 <cnt t>
-> pl3 <cnt t>;
End- new Takeof f Local (<cnt t>)
pl3 <cnt t>
->;
;7 Method run()
run Wth Self.start-run(<cnt t>)
id <[] run <cnt t>> ->
start-run(<cnt t>)

> p21 <cnt t>, p29 <cnt t>;

;; the stop signal has been received,
;; then check if MsInt is enmpty
next Wth Counter.get(cntl) .
MBI nt.register(<[] isEnpty <cntl t>>)
p21 <cnt t>
End-reception true, MsInt MSInt
-> p22 <cnt t>, MsInt MSInt;
7, MBInt is enpty
next Wth MInt.isEnpty(true)
I p22 <cnt t>, MSInt MSInt
-> p23 <cnt t>, MsInt MSInt;
;; loops until MSInt is enpty
next Wth MInt.isEnpty(false)
11 p22 <cnt t>, MSInt MSInt
-> p2l <cnt t>, MsSInt MSInt;

;; stop signal has been received and MSInt

;; then send the stop signal to server and ..

next Wth Counter.get(cntl)

dat aout . r egi st er (<st op-connection witelnt <cntl t>>)
p23 <cnt t>, stop-connection stop-connection

dat aout put st r eam dat aout

-> p24 <cnt t>, stop-connection stop-connection

dat aout put st r eam dat aout ;
next Wth dataout.witelnt(stop-connection)
p24 <cnt t>, dataout putstream dataout,
st op- connecti on st op-connection
-> p25 <cnt t>, dataoutputstream dataout,
st op- connecti on st op-connection
;7 .. and flush dataout
next Wth Counter.get(cntl)
dat aout . register(<[] flush <cntl t>>)
p25 <cnt t>,
dat aout put st r eam dat aout
-> p26 <cnt t>,
dat aout put st r eam dat aout ;
next Wth dataout.flush
p26 <cnt t>, dataoutputstream dataout
-> p27 <cnt t>, dataoutputstream dataout;

;7 ... and stops itself
next Wth Counter.get(cntl)
Self.register(<[] stop <cntl t>>)
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p27 <cnt t>

-> p28 <cnt t>;
next Wth Self.stop
i1 p28 <cnt t>

->

;; MBInt has to be enptied
;; gets an integer from MsInt (random position)
next Wth Random get (randon
Count er.get(cntl)
MBI nt . regi ster(<randomel enent At <cntl t>>)
i1 p29 <cnt t>, MsInt MSInt
-> p210 <cnt t>
M5l nt MSI nt, random <random <cnt t >>;
next Wth MsInt.el ement At (randomi)
p210 <cnt t>, MsInt MSInt, random <random <cnt t>>
-> p211 <cnt t>, MsInt MSInt, random <random <cnt t>>,
elemto-send <i <cnt t>>;
next Wth Counter.get(cntl)
MBI nt . regi ster(<randomrenoveEl ement At <cntl t>>)
p211 <cnt t>, MsInt MSInt, random <random <cnt t>>
-> p212 <cnt t>, MsInt MSInt, random <random <cnt t>>;
next Wth MSInt.renoveEl ement At (randon)
11 p212 <cnt t>, MSInt MsInt, random <random <cnt t>>
-> p213 <cnt t>, MsInt MSInt;
;; sends integer to server and |oops until MInt is enpty
next Wth Counter.get(cntl)
dat aout.register(<i witelnt <cntl t>>)
p213 <cnt t>, elemto-send <i <cnt t>>,
dat aout put st r eam dat aout
-> p214 <cnt t>, elemto-send <i <cnt t>>,
dat aout put st r eam dat aout ;
next Wth dataout.witelnt(i)
p214 <cnt t>, elemto-send <i <cnt t>>,
dat aout put st r eam dat aout
-> p29 <cnt t>, dataoutputstream dataout;

;; Method set-end-reception

set - End-reception(value) Wth

Sel f.start-set-End-reception(val ue, <cnt t>)

Sel f. set - End-reception(<cnt t>)

id <val ue set-End-reception <cnt t>> -> ;
start-set-End-reception(val ue, <cnt t>)

End-recepti on ol d-val ue

-> p31 <cnt t>, End-reception val ue;

End- set - End-reception(<cnt t>)

p3l <cnt t> -> ;

\Wher e
val ue, old-value : bool ean;
st op- connecti on . integer;
dat aout : j avadat aout put st r eam
MBI nt . javavector;
t ext area . javat ext area;
t . javat hread;
cnt, cntl . integer;
random . integer;

End Takeof f Local ;

Takeof f A obal cl ass
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Cl ass Takeof f G obal

I nherit JavaThr eads;

Renane
Thread -> Takeof f d obal ;
javat hread -> takeoffgl obal;

APPENDIX B. DSGAMMA SYSTEM

Interface
Use JavaThreads, |ntegers, JavaDatal nput Streans, JavaVectors,
JavaText Areas, TakeoffLocal;
Met hods
run;
Creation

new Takeof f@ obal _ = j avadat ai nput stream j avavect or

j avat ext area takeoffl ocal integer;

Body
Use Bool eans, Random C ock, PairlntegerThreadl dentity,
Threadl dentity;
Met hods
start-run t hreadi dentity;

start - new Takeoff@obal _ = j avadat ai nput stream
javavector javatextarea takeoffl ocal
i nteger threadidentity;

End- new Takeof f A obal t hreadi dentity;

Transitions
tik;
Pl aces
;; G obal Variables
dat ai nput stream j avadat ai nput st r eam
MBI nt j avavector;
t ext area _ ! javatextareas;
t akeof f | ocal t akeof f | ocal ;
stop-transmit i nt eger;
ti meout _ : integer;
;; Local Variables
first, second,
result pair-integerthreadi dentity;
p11 _ , pl2 _, pl3 _, pld4d _ ,
p21 _ , p22 _, p23 _, p24 _, p25 _, p26 _ , p27 _ , p28 _
p29 _ , p210 _, p211 _, p212 _, p213 _ ,
p214 _ , p215 _ : threadidentity,;
Axi ons
7, Method new Takeof f 3 obal
new Takeof f d obal (datai n, MSInt, textarea,
tl,stop-transmit) Wth
Takeof f G obal . getregi ster(
<[ datain, MSInt,textarea,tl,stop-transmt]
new Takeof f A obal <cnt t>>)
Sel f. start-new Takeof f d obal (datain, MSInt, textarea,

tl,stop-transmt, <cnt t>) ..
Sel f. End- new Takeof f G obal (<cnt t>)
S >

start - new Takeof f d obal (datain, MsInt, textarea, tl,
stop-transmt, <cnt t>)

-> pll <cnt t>, datainputstreamdatain, MsInt MsInt,
textarea textarea, takeofflocal tl,
stop-transnit stop-transmt;
;; Starts itself
next Wth Counter.get(cntl)
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Sel f.register(<[] start <cntl t>>)
i1 pll <cnt t>
-> pl2 <cnt t>;
next Wth Self.start(<cntl t>)
pl2 <cnt t>
-> pl3 <cnt t>;
End- new Takeof f 3 obal (<cnt t>)
pl3 <cnt t>
->;
;7 Method run()
run Wth Self.start-run(<cnt t>)
id <[] run <cnt t>> ->;
start-run(<cnt t>)

> p21 <cnt t>;

7, get the first integer
next Wth Counter.get(cntl)
datain.register(<[] readint <cntl t>>)
p21 <cnt t>, datainputstream datain
-> p22 <cnt t>, datainputstream datain;

;; first integer is not a stop signal
next Wth (datain.readlnt(first) ..
Random get (millis) // C. clock(hour))

(first = stop-transnit) = fal se

=> p22 <cnt t>, datai nputstream datain,
stop-transnmit stop-transmit

-> p23 <cnt t>, datainputstream datain,
stop-transmit stop-transmt,
first <first <cnt t>> tinmeout (hour + millis);

;; first integer is a stop signal
next Wth (datain.readlnt(first)

(first = stop-transnit) = true

=> p22 <cnt t>, datainputstream datain,
stop-transnmit stop-transmit

-> p210 <cnt t>, datainputstream dat ain,
stop-transmit stop-transmt,
first <first <cnt t>>;

;; get the second integer
next Wth Counter.get(cntl) .
datain.register(<[] readint <cntl t>>)
p23 <cnt t>, datainputstreamdatain, tineout d
-> p24 <cnt t>, datainputstream datain;

;; second integer is not a stop signal
next Wth datain. readl nt(second)

(second = stop-transnit) = fal se

=> p24 <cnt t>, datai nputstream datain,
stop-transnmit stop-transmit

-> p25 <cnt t>, datainputstream datain,
stop-transmit stop-transmt,
second <second <cnt t>>;

;; add first+second to MSInt
next Wth Counter.get(cntl) .
MSI nt.register(<first + second addEl ement <cntl t>>)
p25 <cnt t>, MsInt MSInt,
first <first <cnt t>>,
second <second <cnt t>>

297
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-> p26 <cnt t>, MsInt MSInt,
first <first <cnt t>>,
second <second <cnt t>>;

next Wth MSInt. addEl enent (first + second)

p26 <cnt t>, MsInt MSInt,
first <first <cnt t>>,
second <second <cnt t>>

-> p27 <cnt t>, MsInt MSInt;

;; second integer is a stop signa
next Wth datain. readlnt(second)
(second = stop-transmit) = true
=> p24 <cnt t>, datainputstreamdatain
stop-transmt stop-transmt
-> p28 <cnt t>, datainputstreamdatain
stop-transnit stop-transmt;

;; add only first integer to MsInt
next Wth Counter.get(cntl)
MBI nt . register(<first addEl ement <cntl t>>)
p28 <cnt t>, MsInt MSInt,
first <first <cnt t>>
-> p29 <cnt t>, MsInt MSInt,
first <first <cnt t>>;
next Wth MsSInt.addEl ement (first)
i1 p29 <cnt t>, MsInt MSInt,
first <first <cnt t>>
-> p210 <cnt t>, MSInt MSInt;

7, prevent deadl ock when no sufficient integers.
;; tik adds only first to MSInt and | oops for new integers.
tik Wth C. cl ock(hour)
(hour > d) = true
=> p23 <cnt t>, tinmeout d
-> p214 <cnt t>;
;; adds only first to MsSInt
next Wth Counter.get(cntl)
MBI nt . register(<first addEl ement <cntl t>>)
p214 <cnt t>, MSInt MSInt,
first <first <cnt t>>
-> p215 <cnt t>, MSInt MSInt,
first <first <cnt t>>;
next Wth MsSInt.addEl ement (first)
p215 <cnt t>, MSInt MSInt,
first <first <cnt t>>
-> p2l <cnt t>, MSInt MSInt;

;; a stop signal has been received, then
;; forward it to tl ...
next Wth Counter.get(cntl)
tl.register(<true set-End-reception <cntl t>>)
p210 <cnt t>, takeofflocal tl
-> p211 <cnt t>, takeofflocal tl;
next Wth tl.set-End-reception(true)
p211 <cnt t>, takeofflocal tl
-> p212 <cnt t>, takeofflocal tl,

7y, ... and stops
next Wth Counter.get(cntl)
Self.register(<[] stop <cntl t>>)
p212 <cnt t>
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634 -> p213 <cnt t>;

635 next Wth Self.stop

636 i1 p213 <cnt t>

637 ->

638 Wher e

639 dat ai n . javadat ai nput st ream
640 MBI nt . javavector;
641 t ext area . javat ext ar ea;
642 tl . takeofflocal;
643 t . javat hread;
644 cntl, cnt . integer

645 stop-transmit . integer;

646 first, second . integer;

647 hour, mllis, d: integer;

e64¢ End Takeof f A obal ;

B.5 CO-OPN/2 Specifications of Java Basics Classes

JVM d ass
G ass JWM
Interface
Use JavaStrings, JavaArrayStrings;
Met hod
java _ _ : javastring java-arraystring;
Qoj ect JVM: jvm
Type jvm
Body
Use JavaObj ect,
Pai r JavaQbj ect ArrayStri ng, Counter;
Pl ace
Store _ : pair-javaobjectarraystring;
Transition
begi n;
Axi ons
j ava(C assNane, ar gs)
:: -> Store <C assNanme args>;
begin with Counter.get(cnt)
Cl assNane. regi ster(<args main <cnt G assNane>>)
Cl assNane. mai n( ar gs)
Store <O assName args> -> ;

[ L= T S S U VE R SR

[ T T T T T S TSy S ey Sy
W W = O © K N Ltk W N = O

\Wher e
cnt : integer;
args: java-arraystring
End JWM

[N I I
BN A N

28
29 ;; Java (bject C ass

a1 Class Javabj ect;
2 Interface

33 Use Integers, RegisterParaneters;
34 Type j avaobj ect;

35 Met hods

36 wai t, notify;

a7 register _ © registerparaneter;



getregister _ : reg
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i sterparaneter;

hj ect Javahj ect: javaobject;

Body

Use Threadl dentity, Bl ackTockens, Counter,

Pai r Lockl dentity,

Met hods

start-notify

end-notify

start-wait

end- wai t _

lock _, unlock _
Transitions

next ;
Pl aces

Pai r Thr eadl nt eger;

t hreadi dentity;
t hreadi dentity;
t hreadi dentity;
t hreadi dentity;
j avat hr ead,;

;; A obal Variables
;; set of threads waiting on the current object

wai t - set . pai

riockidentity;

;; set of threads resunmed by a notify

resumed-set _ : pa

riockidentity;

;; the Thread who is currently possessing

;; the object’s

;; the nunber o

;; possesses on
| ocker _ ! pa

| ock, together with

f current Integer locks it
t he object.

rt hreadi nt eger;

| ocked . bl ackt ocken

;; stores the nethod calls

id _ . reg

;; execution fl

p11 _ , pl2 _ , pl3

p21 _ , p22 _ , p23
Axi ons

;; Method regis

regi ster(regpar)
:1 ->1id regpar
;5 Rempve cal
getregi ster(regpar)
id (regpar)

;. Method wait

i sterparaneter;

ow

: . threadidentity;

ter: put call into id place

fromid (for dynamic creations only)

->

wait with self.start-wait(<cnt t>)

sel f. end-wa
id <[] wait

->
start-wait(<cnt t>)
-> pll <cnt t>;

;. it is necess
;; Object in or

t(<cnt t>)
<cnt t>>

ary to have a |l ock on the
der to continue and

:; to release all the |ocks

next
i1 pll <cnt t>,
-> pl2 <cnt t>,

| ocker <t i>
| ocked @ wait-set <<t i> <cnt t>>;

reacquires all the |l ocks on the object

next with self.lock
i1 pl2 <cnt t>,
-> pl2 <cnt t>,

end-wai t (<cnt t>)

(t)
resuned-set <<t j+1> <cnt t>>
resuned- set <<t j><cnt t>>
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98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

pl2 <cnt t>, resuned-set <<tO><cnt t>>

->

;; Method notify
notify with self.start-notify(<cnt t>)
self.end-notify(<cnt t>)
id <[] notify <cnt t>>
->;

start-notify(<cntl t1>)

-> p21 <cntl t1>;
;; 1t is necessary to have a |l ock on the
;; Object in order to continue

next
:: p21l <cntl t1>, locker <tl i>
-> p22 <cntl t1>, locker <tl i>
;; resunme a thread that is in the wait-set

next
11 p22 <cntl t1> wait-set <<t i> ,<cnt t>>
-> p23 <cntl t1>, resuned-set <<t i> <cnt t>>

end-notify(<cntl t1>)

p23 <cntl t1>

->

;. Method | ock
;; the current |ocker increments the |ock
l ock(t)
| ocker <t i>
-> | ocker <t i+1>;
;; no current |ocker, acquisition of the [ock
l ock(t)
| ocked @
-> | ocker <t 1>

;; Method unl ock

;; the current | ocker decrenents the | ock
unl ock(t)

;. locker <t i+1>

-> | ocker <t i>;

;; the current | ocker rel eases the | ock

unl ock(t)
:: locker <t 1>
-> | ocked @
\Wher e
t, t1 . javaobj ect;
cntl, cnt : integer;
[ . integer;
regpar . registerparaneter;

End JavaObj ect;

Cl ass Counter;
Interface
Use | nteger;
Type counter;
Met hods
get _ : integer;

301
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156 bj ect Counter;

157 Body

158 Pl aces

159 counters : integer;
160 Initial

161 counters 1;

162 AXi ons

163 get(cnt) :: counters cnt -> counters succ (cnt);
164 Vher e

165 cnt : integer;

166 End Counter;

167

16s ;; Java Thread cl ass

169 ,, === =" --=------------—---
170 Ol ass JavaThr eads;

171 I nherit JavaQbj ect;

172 Renanme

173 Javahj ect -> Thread,;

174 j avaobj ect -> javat hread;
175 I nterface

176 Use JavaObj ect;

177 Subt ype javat hread -> javaobject;
178 Met hods

179 run, start;

180 Body

181 Use Threadl dentity;

182 Met hods

183 start-run _ : threadidentity;

184 start-start _ : threadidentity;

185 end-start _ : threadidentity;

186

187 pli _ , pl2 _ , p13 _, pl4 _ , pl5 _ : threadidentity,;
188 AXi ons

189 :: Method run

190 run with start-run(<cnt t>)

191 ©:id <[] run <cnt t>>

192 ->

193 ;; enpty (to be redefined by sub-cl asses)
194 start-run(<cnt t>)

195 L=

196

197 ;5 Method start

198 start with start-start(<cnt t>)

199 end-start(<cnt t>)

200 i id <[] start <cnt t>>

201 ->

202 ;; start is a synchronized net hod
203 start-start(<cnt t>)

204 -

205 -> pll <cnt t>;

206 next with self.lock(t)

207 :: pll <cnt t>

208 -> pl2 <cnt t>;

209 ;; start causes run

210 next with Counter.get(cntl) ..

211 self.register(<[] run <cntl self>>)
212 i pl2 <cnt t>

213 -> pl3 <cnt t>;

214 next with self.run
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215 i1 pl3 <cnt t>

216 -> pl4d <cnt t>;

217 ;; 1t is a new execution flow, thus there is no need
218 ;; towait for the end of the run nethod
219 next with self.unlock(t)

220 ©: pld <cnt t>

221 -> pl5 <cnt t>;

222 end-start(<cnt t>)

223 i1 pl5 <cnt t>

224 ->

225 Wher e

226 t . javat hread;

227 cnt, cntl : integer;

228 End JavaThr eads;

B.6 Implementation: The Java Program

Here is the Java program described in Section 9.6.

Server Side

1 package RelayServer;

2 import java.io.*;

3 import java.net.*;

4 import java.util.*;

5

6 /**Create several socket connections with several clients.

7 Act as a random relay between all the clients.

8 Data sent along the socket must be of type int.

9 */

10 public class RandomRelayServer extends Thread {

11 /** default value for the server port is 6090 */

12 public final static int DEFAULT_PORT=6090;

13 public final static int STOP_TRANSMIT=-2;

14 public final static int STOP_CONNECTION=-1;

15

16 int port;

17

18 ServerSocket listen_socket;

19 GlobalRelay globalrelay;

20

21 /** Create a ServerSocket to listen for connections on a given port.
22 Initialize the thread GlobalRelay which will realize the random relay
23 between all clients. <br>

24 Starts itself.

25 */

26 public RandomRelayServer(int port){

27 if (port == 0) port=DEFAULT_PORT;

28 this.port = port;

29 try { listen_socket = new ServerSocket(port); }

30 catch(IDException e) {

31 System.out.println("Exception creating server socket'+e);
32 ¥

33 System.out.println("RandomRelayServer: listening on port '"+port);
34 globalrelay = new GlobalRelay();

35 this.start();
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38 /**Body of the server thread. Loop forever, listening for and

39 accepting connections from clients. For each connection, initialize two threads
40 InputRelay, and OutputRelay, handling respectively incoming and outgoing
41 communication from/to clients.

42 */

43 public void run(){

44 try{

45 while(true){

46 Socket client_socket = listen_socket.accept();

47 System.out.println("A client wants a connection\n");

48 OutputRelay outputrelay = new OutputRelay(client_socket,globalrelay,
49 STOP_TRANSMIT) ;

50 InputRelay inputrelay = new InputRelay(client_socket, globalrelay,
51 outputrelay, STOP_TRANSMIT,
52 STOP_CONNECTION) ;

o4 ¥

99 ¥

56 catch(IOException e) {

57 System.out.println("Exception while listening for connections '"+e);

58 ¥

61 /**Start the server up, listening on an optionally specified port. <br>
62 Default port is 6090.

63 */

64 public static void main(String[] args){

65 int port =0;

66 if (args.length == 1){

67 try {port = Integer.parselnt(args[0]);}

68 catch (HumberFormatException e) {port = 0;}
69 }

70 new RandomRelayServer(port);

71 }

73 3} //end of RandomRelayServer class

77 /** Handle all incoming communication from a dedicated client using Socket.

78 Relay this data to GlobalRelay. Notifies OutputRelay if the stop_transmit signal
79 is received from client. Stops itself it the stop_connection signal is received
80 from client.

81 */

82 class InputRelay extends Thread{

83 Socket client;

84 GlobalRelay globalrelay;
85 DataInputStream in;

86 OutputRelay outputrelay;
87 int stop_transmit;

88 int stop_connection;

91 /** Initialize DatalnputStream and starts itself

92 */

93 public InputRelay(Socket client_socket, GlobalRelay globalrelay,
94 OutputRelay outputrelay, int stop_transmit,
95 int stop_connection){

96 this.client = client_socket;

97 this.globalrelay = globalrelay;

98 this.outputrelay = outputrelay;

99 this.stop_transmit = stop_transmit;

100 this.stop_connection = stop_connection;

101

102 try{in = new DatalnputStream(client_socket.getInputStream());}
103 catch(I0Exception e){

104 try {client.close();}
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catch(I0Exception e2){

System.out.println("Exception while getting socket streams:'+e2);};
System.out.println("Exception while getting socket streams:'+e);

return; //to RandomRelayServer

¥
this.start();
¥

/**Body of InputRelay.<br>
Read data from DatalnputStream of client.
Put data to GlobalRelay

*/
public void run(){
int elem;
try{
for(;;){
// Read a data from DatalnputStream of client
try{
elem = in.readInt();
if (elem == stop_connection) {
//client has no more to send
System.out.println("InputRelay "+this.getName()+
" Exit DSGamma done.\n");
break; // to finally
}
if (elem == stop_transmit) {
//client wants no more on its input (our output)
System.out.println("InputRelay "+this.getName()+
" Exit DSGamma: stop sending
received from client\n");
outputrelay.setnotify_end_sending(true);
}
else {
// Relay data to GlobalRelay thread.
System.out.println("InputRelay before put'+this.getName()+" '+elem);
globalrelay.put(elem);
System.out.println("InputRelay after put'+this.getName()+" "+elem);
}
}
catch(I0Exception e) {
System.out.println("Input Relay "+this.getName()+
" not possible: "+e+"\n");
break; // to finally
}
}
}
finally {

try {client.close();client = null; }
catch(I0Exception e2) {

System.out.println("Exception closing client: "+e2+"\n");

}
finally{stop();}
}
}

} // end of InputRelay

/** Handle all outgoing communication to a dedicated client.

Relay a data from GlobalRelay thread to the dedicated client.

*/

class OutputRelay extends Thread{
Socket client;
GlobalRelay globalrelay;

305
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173 DataOutputStream out;
174 int stop_transmit;

175

176 boolean end_sending= false;

177

178 /** Initialize DatalOutputStream and starts itself

179 %/

180 public OutputRelay(Socket client_socket, GlobalRelay globalrelay,
181 int stop_transmit){

182

183 this.client = client_socket;

184 this.globalrelay = globalrelay;

185 this.stop_transmit = stop_transmit;

186

187 try{out = new DatalutputStream(client_socket.getOutputStream());}
188 catch(I0Exception e){

189 try {client.close();}

190 catch(I0Exception e2){

191 System.out.println("Exception while getting socket streams:'+e2);
192 }

193 System.out.println("Exception while getting socket streams:'+e);
194 return; //to RandomRelayServer

195 }

196 this.start();

197 3

198

199  /+* Body of OutputRelay.<br>

200 Get data from GlobalRelay <br>

201 Relay data to DataOutputStream of client.

202 */

203  public void run({
204 int elem;

205

206 try{

207 for(;;){

208 if (end_sending){

209 System.out.println("OutputRelay "+this.getName()+

210 " Exit DSGamma: stop sending received\n');
211 //notifies the client that the stop_transmit signal has been received
212 try{

213 out.writeInt(stop_transmit);

214 out.flush();

215 }

216 catch(IDException e) {

217 System.out.println("OutputRelay "+this.getName()+" not possible\n'+te);
218 }

219 finally{break;} //to stop

220 }

221

222

223 // Wait for data from GlobalRelay

224 System.out.println("OutputRelay before get'+this.getName());

225 elem = globalrelay.get();

226 System.out.println("OutputRelay after get'+this.getName()+" "+elem);
227

228 // Relay data to DatalutputStream of client.

229 try{

230 out.writeInt(elem);

231 out.flush();

232 System.out.println("OutputRelay "+this.getName (O+" '+elem) ;

233 }

234 catch(I0Exception e) {

235 System.out.println("OutputRelay '"+this.getName()+" not possible\n''+e);
236

237 //Save value

238 globalrelay.put(elem);

239 break; // to finally

240 }



B.6.

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

IMPLEMENTATION: THE JAVA PROGRAM 307

}
}
finally{
System.out.println("'Output relay "+this.getName()+
" Exit DSGamma: stop sending done\n");
stop();
}

}

/** Set end_sending to value <br>
It is used as an asynchronous flag to notify OutputRelay to stop sending
data to a client.
*/

public void setnotify_end_sending(boolean value){
end_sending = value;

}

} // end of OutputRelay

/** Act as a FIFO buffer.
*/

class GlobalRelay extends Thread{
Vector buffer;

/** Initializes the FIFO buffer to empty and Starts itself */
public GlobalRelay(){

buffer = new Vector();

this.start();
}

/**Incoming data is stored at the end of the FIFO buffer
*/

synchronized public void put(int input_elem){

//prevent two consecutive put, without intermediary get
System.out.println("GlobalRelay rcvd "+input_elem);
buffer.addElement(new Integer(input_elem));
notify();

}

/**First data stored in buffer is returned and removed from the FIFO buffer.
This method blocks until a data to relay is available.
*/

synchronized public int get(){
int elem_to_relay;

while (buffer.isEmpty()) {

try {wait();}

catch (InterruptedException e) {

System.out.println("Error while get GlobalRelay is waiting '+e);

}
}
elem_to_relay = ((Integer) buffer.elementAt(0)).intValue();
System.out.println("GlobalRelay has relayed '"+elem_to_relay);
buffer.removeElementAt(0);
return elem_to_relay;

} //end of GlobalRelay

Client Side

package Gamma;



308 APPENDIX B. DSGAMMA SYSTEM

import java.applet.*;
import java.awt.*;
import java.io.*;
import java.net.*;
import java.util.*;
import MyUtils.*;

10 7+
11 Distributed Gamma-like addition of integers

12 */

Nelo ol Farie, FE UL )

14 /** Distributed Gamma-like addition of integers

15 DSGammaClientApp Applets allows a user to enter several integers.

16 This local multiset (Vector MSInt) of integers will be part of a global distributed
17 multiset of integers, that obtained by the union of all the other local multisets of
18 integers provided by all the other users using the same applet.

19 DSGammaClientApp is responsible for: <br>

20 a) establishing connection with a server, <br>

21 b) entering the DSGamma system (the set of all these applets running), <br>

22 c) managing integers entered by user and those received by the server, <br>

23 d) properly quitting the DSGamma system (empty the local

24 MSInt of integers, stop the threads and closing socket)

25 */

26 public class DSGammaClientApp extends Applet{
27 public final static int PORT=6090;

28 public final static int STOP_TRANSMIT=-2;
29 public final static int STOP_CONNECTION=-1;

31 Socket s;

32 DataInputStream in;

33 DatalutputStream out;

34 TextField textfield;

35 TextArea textarea;

36 Button stop_button;

37 Button result_button;

38

39 TakeoffGlobal takeoffglobal;

40 TakeoffLocal takeofflocal;

41

42 Vector MSInt;

43

44 /** Create a socket to communicate with a server on port 6090

45 of the host that the applet’s code is on. Create streams to use

46 with the socket. Then create a TextField for user input, a TextArea
47 for output, and a Button for exitting the DSGamma system.

48 MSInt stores the integers entered by the local users, and those received by the
49 server. Finally, create two threads for interaction with

50 the server.

51 */
52 public void init(){

H4 try{

55 s=new Socket(this.getCodeBase().getHost(),PORT);
56 in=new DatalnputStream(s.getInputStream());

57 out=new DataOutputStream(s.getOutputStream());
58

59 textfield = new TextField();

60 textarea = new TextArea();

61 stop_button = new Button("Exit DSGamma System");
62 result_button = new Button("Result");

63 textarea.setEditable(false);

64 MSInt = new Vector();

67 setLayout(new BorderLayout());
68 add("North",textfield) ;
69 add("Center" ,textarea) ;
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add ("South",stop_button);
add("East'" ,result_button);

//Initializes takeofflocal and takeoffglobal threads

takeofflocal = new TakeoffLocal(out, MSInt, textarea, STOP_CONNECTION) ;

takeoffglobal = new TakeoffGlobal(in, MSInt, textarea,takeofflocal,
STOP_TRANSMIT) ;

showStatus (""Connected to "
+ s.getInetAddress() .getHostName ()
+ "+ s.getPort(O+"\n");

SO~ UTH=WN— O

}
catch (IOException e) {
showStatus ("Exception while creating socket: '+e);

00000 -I~I~I~]~I~]~]~]~I~]
LD —

84 try{if (s!=null) {s.close();}}

85 catch (I0Exception e2) {

86 showStatus("Exception while closing socket: '"+e2);
87 }

88 stop();

89 }

90

91 }

92 /** Close the socket and the input, output streams

93 */

94 public void stop(){

95

96 try{

97 if (in'=null) {in.close(); in = null;}

98 if (out!=null) {out.close(); out = null;}

99 if (s'=null) {s.close(); s = null;}

100 }

101 catch (I0Exception e2) {

102 showStatus("Exception while closing socket: '"+e2);
103 }

104

105 showStatus ("'ByeBye\n");

106 3

107

108 /** Capture events on the TextField or Button Components of the interface
109+

110  public boolean action(Event event, Object what){

111

112 //User types a line in textfield, convert it to a Vector of Integer
113 if (event.target == textfield){

114 // Convert String into Vector of Integers (MSInt)
115 Convert.StringtoInteger(textfield.getText(),MSInt);
116 textfield.setText("");

117 showStatus("'User entered some integers\n");

118

119 //Hotifies takeofflocal, because MSInt is no more empty
120 synchronized (takeofflocal) {takeofflocal.notify();}
121

122 return true;

123 }

124

125

126 //User wants to exit the DSGamma system

127 if (event.target == stop_button){

128 //Hotifies the server that the user wants to stop
129 try{

130 out.writeInt(STOP_TRANSMIT);

131 textarea.appendText ("Exit DSGamma requested\n');
132 ¥

133 catch(I0Exception e) {

134 System.out.println(''Client can’t write on socket: "+e);
135 }

136 return true;

137 ¥
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er wants to see a result

event.target == result_button){

extarea.appendText ("Result:'+ MSInt.elementAt(0).toString());
turn true;

return false;

¥
} // end

/] -==--

/** Ran

*/

of DSGammaClientApp

domly removes one integer from local multiset (Vector MSInt) of integers.

class TakeoffLocal extends Thread{
DatalutputStream out;
Vector MSInt;
TextArea textarea;

int st

op_connection;

boolean end_reception = false;

public

this.
this.
this.
this.

this

TakeoffLocal (DatalutputStream out, Vector MSInt, TextArea textarea,
int stop_connection){

out = out;

MSInt = MSInt;

textarea = textarea;
stop_connection = stop_connection;
.start();

/**Body of TakeoffLocal.

Wait
If n
befo
*/
public
for

1/
1/
1/
if

//
//
//
tr

for MSInt to be not empty, the send the content of MSInt to server.
o more integers will be received from server, MSInt is emptied a last time,
re stopping.

synchronized void run(){

G A

Check if TakeoffGlobal has finished received integers (end_reception = true).
In this case no more integers will be added in MSInt, and TakeoffLocal empties
MSInt a last time and stops.

(end_reception) {
textarea.appendText("Emptying local multiset for the last time\n");

//free MSInt
doReactions();

//send stop_connection signal to server
try{
out.writeInt (stop_connection);
out.flush();
}
catch(I0Exception e) {
System.out.println(*'Client can’t write on socket: "+e);
}
//TakeoffLocal can stop
finally{break;} //to stop()

TakeoffGlobal is still receiving integers from server.

TakeoffLocal waits for user or for TakeoffGlobal to enter integer numbers
i.e. wait for MSInt to be not empty.

y{waitO;}

catch(InterruptedException e) {

}

textarea.appendText("Exception while waiting: "+e);
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206 finally{

207 //Free MSInt

208 doReactions();

209 }

210 }

211

212 textarea.appendText("Exit DSGamma system done\n");

213 stop();

214 3

215

216 /**Randomly chooses one integer in Vector MSInt, and sends it to the Server,
217 till MSInt is not empty.

218 */

219  public void doReactions(){

220 int i;

221

222 while (!MSInt.isEmpty()){

223

224 //Show the user the new state of Vector

225 textarea.appendText("\n");

226 for (i=0; i<MSInt.size();i++){

227 textarea.appendText (MSInt.elementAt(i).toString()+" ");
228 ¥

229 textarea.appendText("\n");

230

231 //Choose an index

232 i = (int) (Math.random() * MSInt.size()) % MSInt.size() ;
233

234 //Send the chosen integer to the server

235 try{

236 out.writeInt(((Integer) MSInt.elementAt(i)).intValue());
237 //Remove the integer from Vector MSInt

238 MSInt.removeElementAt(i);

239 }

240 catch (IDException e) {

241 System.out.println("'Client can’t write on socket: '+e);
242 stop();

243 }

244 ¥

245 //Ensure the sending of integers to server

246 try{

247 out.flush();

248 textarea.appendText ("'\nEmpty\n") ;

249 }

250 catch(IOException e) {

251 System.out.println("'Client can’t write on socket: '+e);
252 stop();}

253

254 3

255

256 //TakeoffGlobal set end_reception to true when it has finished receiving
257  //integers from server.
258 /**Set variable end_reception to value. <br>

259 It is used as an asyncronous flag to notify TakeoffLocal that nothing
260 more will be received from server.

261

262 public void set_end_reception(boolean value){
263 end_reception = value;

264 3

265

266

267 }// end of TakeoffLocal

268

269

270 /7 =mmmmmmm

271 /#x Wait for output (2 integers) from the server on the specified stream, adds
272  them and puts the result in its local Vector of integers.

273w/
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274 class TakeoffGlobal extends Thread{
275 DataInputStream in;

276 TextArea textarea;

277 Vector MSInt;

278 TakeoffLocal takeofflocal;

279 int stop_transmit;

280

281 int result;

282

283

284 public TakeoffGlobal(DatalnputStream in, Vector MSInt, TextArea textarea,
285 TakeoffLocal takeofflocal, int stop_transmit){
286 this.in = in;

287 this.textarea = textarea;

288 this.MSInt = MSInt;

289 this.takeofflocal = takeofflocal;

290 this.stop_transmit = stop_transmit;

291 this.start();

292 3

293

294 //Body of TakeoffGlobal.
295  public synchronized void run(){

296 doReactions();

297 takeofflocal.set_end_reception(true);

298 synchronized (takeofflocal) {takeofflocal.notify();}

299 textarea.appendText ("Exit DSGamma: stop receiving integers\n");

300 stop();

301 3

302

303

304 /** Read two integers from server and add their sum to MSInt

305 If the second integer does not come sufficiently soon, the first one
306 is added to MSInt. This is useful when the number of integers in the global multiset
307 is less than the number of current users.

308 If the second integer is the STOP_TRANSMIT signal, then TakeoffGlobal adds
309 the first one to MSInt and then stops.

310 If the first integer is the STOP_TRANSMIT signal, then doReactions
311 returns immediately.

312 */

313  public void doReactions(){

314 int tmp = O;

315 int i;

316

317 //Wait for two integer, add their sum to MSInt

318 //until the stop signal arrives

319 while(tmp !'= stop_transmit) {

320 try{

321 result = in.readInt();

322 if (result == stop_transmit) {

323 //the first integer is the stop signal, it is time to return
324 break; //to return

325 }

326 if (in.available() > 0) {

327 //A second integer is available, check for the stop signal and
328 //add them if necessary

329 tmp = in.readInt();

330 if (tmp !'= stop_transmit) {

331 result +=tmp;

332 ¥

333 ¥

334 // A second integer is not available immediately

335 else {

336 // Sleep a random amount of millis before checking a second time
337 // for available data from server.

338 i = (int) (Math.random() *2000);

339 try{sleep(i);}

340 catch(InterruptedException e) {

341 textarea.appendText ("Exception while sleeping: '+e);return;
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342 ¥

343 finally{

344 if (in.available() > 0) {

345 //A second integer is available after sleeping, check of the stop signal
346 //and add the first and the second if necessary

347 tmp = in.readInt();

348 if (tmp!= stop_transmit) {

349 result +=tmp;

350 ¥

351 ¥

352 // if no second integer is availabe, the first one is reinjected
353 // in Vector, instead of the sum.

354 ¥

355 ¥

356

357 // Add either the first integer received from server, or the sum of

358 // two integers received from server.

359 MSInt.addElement(new Integer(result));

360

361 // Hotifies TakeoffLocal that a new integer has arrived in MSInt, this is
362 // necessary if MSInt was empty.

363 synchronized (takeofflocal) {takeofflocal.notify();}

364
365 ¥

366 catch(IOException e) {
367 textarea.appendText ("'Connection closed by server");
368 break; //to return

369 ¥

370 ¥

371 return; //to run()
372 %

373 }// end of TakeoffGlobal

Utils

package MyUtils;

import java.awt.*;
import java.io.*;

import java.net.*;
import java.util.*;

/** Set of functions useful for some conversions.
*/
10 public final class Convert{

OO~IDHT=WN —

12 /** Converts a String into a Vector of Integers.

13 Ex: String (12 34) becomes Vector of two Integers 12 and 34.
14 The current implementation does not consider ill-formed strings.
15 */

16 public static void StringtoInteger(String s, Vector v){

17

18 int beginIndex =0;

19 int endIndex;

20

21 // extraction of substring from a string

22 BI: while(beginIndex < s.length()){

23

24 //search for a new integer

25 while(Character.isSpace(s.charAt(beginIndex))) {

26 beginIndex++;

27 if (beginIndex == s.length()) break BI;

28 ¥

29 endIndex = beginIndex+1;

30 if (endIndex < s.length()) {
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while(!Character.isSpace(s.charAt(endIndex))) {
endIndex++;
if (endIndex == s.length()) break;
}
}

// add the new integer to the Vector
v.addElement (Integer.valueOf(s.substring(beginIndex,endIndex)));
beginIndex = endIndex;

} // end of BI
}// end of Stringtolnteger
}
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