Engineering Emergent Behaviour: A Vision

Giovanna Di Marzo Serugendo

Centre Universitaire d’Informatique, University of Geneva
24, rue Général-Dufour
CH-1211 Geneva 4, Switzerland
Giovanna.Dimarzo@cui.unige.ch

Abstract. Today’s application tend to be more and more decentralised,
pervasive, made of autonomous entities or agents, and have to run in dy-
namic environments. Applications tend to be social in the sense that they
enter into communication as human people, and engage into discovery,
negotiation, and transactions processes; autonomous programs run their
own process, interact with other programs when necessary, but each pro-
gram lives its life, and a global behaviour emerges from their interactions,
similarly to what can be observed in natural life (physical, biological
or social systems). Tomorrow’s applications are more and more driven
by social interactions, autonomy, and emergence, therefore tomorrow’s
engineering methods have to take into account these new dimensions.
Traditional software engineering will not be adapted to this new kind of
applications: they do not scale, they do not enable the definition of lo-
cal behaviours and drawing of conclusions about global behaviours. The
scope of this paper is to determine today’s and tomorrow’s application
domains, where such a sociological behaviour can be observed. Starting
from the observation of natural life (natural mechanisms used for self-
organisation, for anonymous communication, etc), we then discuss how
these natural mechanisms can be translated (or have an artificial coun-
terpart) into electronic applications. We also consider software engineer-
ing issues, and discuss some preliminary solutions to the engineering of
emergent behaviour.

Keywords: Self-organisation, emergent behaviour, swarm intelligence,
software engineering.

1 Introduction

The applications of today, such as the WWW, P2P systems, or those based on
spontaneous or wireless networks, have the characteristic to be decentralized,
pervasive, and composed of a large number of autonomous entities such as per-
sonal assistants, and agents. They run in highly dynamic environment, where
content, network topologies and loads are continuously changing. In addition,
they comprise a social dimension, i.e., the entities engage interactions, discover
themselves, negotiate, and perform transactions.

These characteristics are also those which one finds in the self-organising
systems we can see in nature, such as physical, biological and social systems. In-
deed, self-organising systems have the characteristic to function without central



control, and through contextual local interactions. Each component carries out
a simple task, but as a whole they are able to carry out complex tasks emerg-
ing in a coherent way through the local interactions of the various components.
These systems are particularly robust, because they adapt to the environmental
changes, and are able to ensure their own maintenance or repair.

The majority of the applications of today then have certain characteristics
of the self-organisation, to begin with the WWW itself, but also the Grids, P2P
storage systems, e-purses, or ad-hoc routing. In certain cases, the complexity of
the application is such, e.g. world scale, that no centralized or hierarchical control
is possible. In other cases, it is the unforeseeable context, in which the application
evolves or moves, which makes any supervision difficult. Among the applications
of tomorrow, much of them will be biologically inspired: self-organising sensors
networks, allowing the control of aerospace vehicles, or of dangerous zones; but
also storage facilities, or operating systems facilities, which, like the human ner-
vous system, controls in a transparent way significant functionalities [8].

There is currently an awakening that modern applications can gain (in ro-
bustness, and simplicity) if they are developed by following the principles of
self-organisation which one finds in nature. To simulate and imitate nature in
the electronic world constitute a first step. However, it is necessary to go beyond
a simple translation of the natural paradigms. Mechanisms of interaction spe-
cific to the (electronic) applications have to be defined, as well as development
methods making it possible to design components having their own local goal
and whose interaction will make emerge the desired global result.

The challenges to take up in this field relate to the design, and the develop-
ment of applications which ”work by themselves”: how to define a global goal;
how to design the components and their local functionality knowing that the
global goal is not a local sum of functionality; which will be the interactions be-
tween components, and how to check that the desired result will emerge during
the execution. The traditional software engineering techniques are insufficient,
since they are based on interfaces fixed at design time, or well established ontol-
ogy. As for current methodologies, they only make it possible to define a global
behaviour when it is a function of the behaviour of the various parts.

We present first self-organising systems taken from natural life, then we re-
view some emerging self-organising electronic systems, finally we give an insight
on how such applications can be engineered.

2 Self-Organising Systems

Self-organising systems are made of many interconnected parts whose
local interactions, within a given environment, give rise to emer-
gent properties, or behaviour, observable at the level of the global system
only.

The particularity is that the emergent properties do not arise out of the
description of an individual component; or that the emergent global behaviour



is not encoded in the local behaviour of entities. Other characteristics of self-
organisation include: no central control, the system is composed of several parts
acting as peers, i.e., there is no top-down control, or top-down description; the
system evolves dynamically with time; the system interacts with its environment,
it modifies it and is consequently affected by its modification. More generally, the
field of complex systems studies emergent phenomenon, and self-organisation [2].

Domains of natural life where we can find emerging behaviour include phys-
ical, biological and social systems.

2.1 Physical Systems

A thermodynamic system such as a gas of particles has emergent properties,
temperature and pressure, that do not derive from the description of an indi-
vidual particle, defined by its position and velocity. Similarly, chemical reactions
create new molecules that have properties that none of the atoms exhibit before
the reaction takes place [2].

2.2 Biological Systems

In biology, the human nervous system, or the immune system transparently
manages vital functions, such as blood pressure, digestion, or antibodies cre-
ation. The immune system defends the body from attacks by undesired (foreign)
organisms. It is made of many different kinds of cells that circulate the body
looking for foreign substances. The immune system cells recognise and respond
to substances called antigens: “self” antigens are part of the body, while infec-
tious agents, recognised as “non-self” have to be eliminated?.

2.3 Social Systems

Social insects organise themselves to perform activities such as food foraging
or nests building. Cooperation among insects is realised through an indirect
communication mechanisms, called stigmergy, and by interacting through their
environment. Insects, such as ants, termites, or bees, mark their environment
using a chemical volatile substance, called the pheromone, e.g., as do ants to
mark a food trail. Insects have a simple behaviour, and none of them alone
“knows” how to find food, but their interaction gives rise to an organised society
able to explore their environment, find food, and efficiently inform the rest of the
colony. The pheromonal information deposited by insects constitutes an indirect
communication means through their environment.

Human societies use direct communication, they engage negotiation, build
whole economies, and organise stock markets. Another interesting point is related
to the structure of connectivity between individual human beings, also called
social networks, where one can reach anyone else through a very small number
of connections [12].

! National Institute of Allergy and Infectious Diseases,
http://www.niaid.nih.gov/publications/



3 Self-Organising Applications

Nature provides examples of emergence, and self-organisation. Likewise, appli-
cations of a near future, as well as current distributed applications, by their
heterogeneity, scale, dynamism, absence of central control, gain to be designed
so that they organise themselves autonomously.

3.1 Self-Organising Sensor Networks

Self-organising wireless sensor networks are used for civil and military applica-
tions, such as volcanoes, earthquakes monitoring, or chemical pollution checking.
Sensor networks consist of self-organised nodes, which dynamically need to set
up (maybe several times) an ad-hoc P2P network, once they are deployed in a
given area. They need as well to calibrate themselves in order to adapt to their
environment [13]. Sensor networks benefit of recent technology enabling integra-
tion of a complete sensor system into small-size packages, as for instance the
millimeter-scaled motes provided by the SmartDust project?.

3.2 Smart Materials

Maintenance or security systems can now be part of clothes, walls, or carpets.
Such electronic textile contain intertwined sensor chips or LEDs that form a
self-learning and self-organising network. Applications of such smart materials
include intruders detection (by pressure on a carpet); visitors guidance through

a trail of LEDs; or identification of escape routes in emergency situations®.

3.3 Autonomic Computing

Based on the human nervous system metaphor, IBM Autonomic computing ini-
tiative considers systems that manage themselves transparently wrt the applica-
tions. Such systems will then be able to self-configure, self-optimize, self-repair,
and protect themselves against malicious attacks [8].

3.4 Ambient Intelligence

Ambient intelligence envisions seamless delivery of services and applications,
based on ubiquitous computing and communication. Invisible intelligent tech-
nology will be made available in clothes, walls, or cars, and people can freely use
it for virtual shopping, social learning, micro-payment using e-purses, electronic
visas, or traffic guidance system [4]. Ambient intelligence requires low-cost and
low-power designs for computation running in embedded devices or chips, as
well as self-testing and self-organising software components for robustness and
dependability.

? http://robotics.eecs.berkeley.edu/ pister/SmartDust/
3 http://www.infineon.com



4 Engineering Emergent Behaviour

The central question related to the software engineering of self-organising appli-
cations is: how to program single agents so that, when taken as a whole, they
self-organise. The engineering of self-organising applications needs means to de-
fine a global goal, and to design local behaviours so that the global behaviour
emerges. This is difficult, because the global goal is not predictable as the sum
or a function of the local goals. Consequently, the verification task turns out to
be an arduous exercise, if not realised through simulation.

Traditional practice in multi-agent systems introduce basic techniques for
autonomously interacting or retrieving information, such as agents coordina-
tion, service description, or ontology. However, these techniques rely on pre-
progammed interaction patterns, preventing adaptation to unexpected envi-
ronmental changes. Current engineering practices, which directly address self-
organisation, consist in designing distributed algorithms according to the social
insect metaphor (e.g., digital pheromone) [3]. More recently, specific electronic
interaction mechanisms are being defined, and middleware technology devel-
oped, that will help the development of self-organising applications. However,
verification and whole engineering methods remain open issues.

4.1 Coordination and Control using Stigmergy

Analogies with natural life have been used and direct translation of natural
mechanisms into the electronic world have already been implemented. For in-
trusion detection and response in computer networks [5], the immune system
serves as a metaphor for detecting intruders, and the stigmery paradigm is used
for responding to the attack. Mobile agents permanently roam the network in
order to locate abnormal patterns of recognition. Once an attack is detected, a
digital pheromone is released so that the source of attack can be located, and a
response to the attack can be given.

The stigmergy paradigm serves also for manufacturing control [7]. Agents
coordinate their behaviour through a digital pheromone. In order to fulfill man-
ufacturing orders, they use mobile agents that roam the environment, and lay
down pheromonal information.

4.2 Interaction Models

In addition to the digital pheromone, which is the artificial counterpart of the
natural pheromone used by the ants, it is necessary to establish new electronic
mechanisms directly adapted to the applications. They can be based on tags, a
mechanism from simulation models. Tags are markings attached to each entity
composing the self-organising application [6]. These markings comprise certain
information on the entity (functionality, behaviour, etc.) and are observed by
the other entities.

Alternatively, the Co-Fields model drives agents behaviour as would do ab-
stract force fields. Agents and their environment create and spread such fields



in the environment. A field is a data structure composed of a value (magnitude
of field), and a propagation rule. An agent then moves by following the coordi-
nation field, which is the combination of all fields perceived by the agent. The
agents moves modify the fields, which in turn modify the agents behaviour [10].

4.3 Middleware Approaches to Self-Organisation

Acting as middleware layers, coordination spaces provide uncoupled interaction
mechanisms among autonomous entities, which input data into a common tuple
space, and may retrieve data provided by other entities. On top of the basic coor-
dination environment, several enhancements have been realised in order to sup-
port self-organisation. The TOTA environment (Tuples On The Air) propagates
tuples, according to a propagation rule, expressing the scope of propagation, and
possible content change [9].

Anthill is a framework for P2P systems development based on agents, evo-
lutionary programming, and derived from the ant colony metaphor. An Anthill
distributed system is composed of several interconnected nests (a peer entity).
Communication among nests is assured by ants, i.e., mobile agents travel among
nests to satisfy requests. Ants observe their environment, and are able to perform
simple computations [1].

4.4 Verification

Non-linear systems are difficult to understand because they cannot be described
analytically, using equations that can help predict the system behaviour. Gen-
erally, the system is simulated through a model, and some results are obtained
from the execution of the simulation.

Simulation is an essential tool to anticipate the results and to determine
parameters. However, it is not sufficient to guarantee a correct result when a
whole system is built using self-organising principles. Self-organisation itself en-
sures robustness and adaptability. In addition, one can give to the components
the means of avoiding situations who could harm their correct execution. For
instance, the concept of tags, explained higher, could vehicle a proof [11] and
a specification, of the correct operation of a peer entity, that could be checked
before interactions take place.

5 Conclusion

This paper advocates that modern and future distributed applications gain to
be considered and engineered as self-organising applications. Traditional soft-
ware engineering methodologies are no longer adapted to this new kind of soft-
ware, which is running in highly dynamic environments, pervasive, large-scale,
resource-constrained, and heterogeneous. In addition to interaction techniques,
or middleware favoring self-organising behaviour, we need software engineering
techniques for design, test, and verification, based on mathematical theory en-
abling the establishment of local goals, given the expected global behaviour [8].



6

Acknowledgements

This research is supported by Swiss NSF grant 21-68026.02.

References

1.

10.

11.

12.

13.

O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for the develop-
ment of agent-based peer-to-peer systems. In Proceedings of the 22th International
Conference on Distributed Computing Systems (ICDCS ’02), July 2002.

Y. Bar-Yam. Dynamics of Complex Systems. Perseus Books, Cambridge, MA,
1997.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity.
Oxford University Press, 1999.

. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgelman. Sce-

narios for Ambient Intelligence in 2010. Technical report, Institute for Prospective
Technological Studies, 2001.

N. Foukia, S. Hassas, S. Fenet, and P. Albuquerque. Combining immune systems
and social insect metaphors: a paradigm for distributed intrusion detection and
response systems. In 5th International Workshop on Mobile Agents for Telecom-
munication Applications (MATA’08), LNCS, 2003. to appear.

D. Hales and B. Edmonds. Evolving Social Rationality for MAS using ”Tags”. In
J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Second
International Joint Conference on Autonomous Agents and MultiAgent Systems,
pages 495-503. ACM Press, 2003.

H. Karuna, P. Valckenaers, C. B. Zamfirescu, H. Van Brussel, B. Saint Germain,
T. Holvoet, and E. Steegmans. Self-organising in multi-agent coordination and
control using stigmergy. In G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, editors, First Workshop on Engineering Self-Organising Appli-
cations (ESOA’03), 2003.

J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. Computer,
36(1):41-50, January 2003.

M. Mamei and F. Zambonelli. Self-Organization in MultiAgent Systems: a Mid-
dleware approach. In G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and
F. Zambonelli, editors, First Workshop on Engineering Self-Organising Applica-
tions (ESOA’03), 2003.

M. Mamei, F. Zambonelli, and L. Leonardi. Co-fields: Towards a unifying approach
to the engineering of swarm intelligent systems. In 3rd International Workshop on
Engineering Societies in the Agents World (ESAW), number 2577 in LNCS, pages
68-81. Springer-Verlag, 2003.

G. C. Necula and P. Lee. Safe, Untrusted Agents using Proof-Carrying Code. In
G. Vigna, editor, Mobile Agents and Security, volume 1419 of LNCS, pages 61-91.
Springer-Verlag, 1998.

D. J. Watts and S. H. Strogatz. Collective dynamics of small worlds networks.
Nature, 393(6):440-442, 1998.

I. Wokoma, L. Sacks, and I. Marshall. Biologically inspired models for sensor
network design. In London Communications Symposium, 2002.



