
To be published in the proceedings of ICC’95 workshop on Intelligent Computer Communication

The Messenger Paradigm and its Implications on Distributed Systems
�

Giovanna Di Marzo, Murhimanya Muhugusa, Christian Tschudin
Jürgen Harms

Centre Universitaire d’Informatique, University of Geneva

24, rue Général Dufour, CH-1211 Genève 4
Phone: +41 22 705 76 43, Fax: +41 22 705 77 80

e-mail: dimarzo@cui.unige.ch

Abstract

Most distributed systems are built on top of a message ex-
change infrastructure. Processes coordinate their execu-
tion by exchanging messages which are interpreted accord-
ing to a pre-established set of protocols. We present in
this paper a novel way of communicating which does not
require the preconfiguration of protocol entities. The host
initiating the communication has the ability to instruct the
other host “how” the data exchange has to take place. We
call this “communication by messengers”. The host that
initiates the data exchange sends to the recipient a pro-
gram called “messenger” which contains all or parts of the
protocol logic. After it has been received by the recipient,
the messenger is executed and can, if necessary, deliver its
payload. Communication by messengers will change the
way distributed systems are built. This paper discusses the
impact of the messenger paradigm in various fields such
as communication protocols, distributed operating systems
and intelligent agents.
Keywords: communication by messengers, distributed op-
erating systems, intelligent agents, protocol design and im-
plementation.

1 Introduction

The classical architecture of distributed systems relies on
computer communication protocols. The main components
of a distributed system are protocol entities that reside in
different hosts and which exchange messages following a
well defined communication protocol.

This architecture has some drawbacks:

� The different parts of a distributed system (or applica-
tion) must be pre-installed and well configured before

�
This work is supported by Swiss National Fund for Scientific Re-

search (FNSRS) grant 20-40631.94

the application can be run. Surely this poses a prob-
lem for software installation, testing and debugging.
On one side, some distributed applications require an
important deployment for testing and debugging; on
the other side, users are not interested to use a soft-
ware if it has not been thoroughly tested and is not
largely deployed;

� Distributed operating systems use the exchange of
special purpose messages for implementing non-local
services. This imposes that a minimal set of protocols
be explicitly wired into the kernel. These specialized
protocols restrict the kernel’s genericity and adapt-
ability;

� Distributed applications usually have two parts: one
that is responsible for communication management
i.e, implementing a protocol for moving data between
the different hosts; the other part uses the communi-
cation facilities provided by the first one in order to
implement the actual distributed algorithm.

� Extending the above argument, we can argue that for
the application programmer, developing a distributed
application requires a different methodology from that
of a centralized application. When developing a dis-
tributed application, the programmer must explicitly
handle efficiently the data exchange in the system and
its processing whereas for a centralized application,
only data processing is considered. We can thus ar-
gue that developing distributed applications that way
is error prone; this is exacerbated by the difficulty to
implement “correct” computer communication proto-
cols. The ideal situation for the programmer would
be to implement distributed applications the same way
he/she implements centralized applications;

We present in this paper a new paradigm for performing
computer communication, which we call “communication



by messengers”.� When two hosts communicate using this
paradigm, they exchange programs called “messengers”.
The messenger contains the appropriate code to instruct the
recipient “what” it has to do next. A messenger contains
both the data and the rules necessary to perform a given
protocol.

This way of performing protocols does not require pro-
tocol entities be preconfigured in the communicating hosts.
It is the source host which completely determines which
protocol is to be used for the data exchange; the desti-
nation host is not required to “know” the protocol being
used. When used as the basis for distributed applications,
the communication by messengers paradigm brings more
flexibility. It becomes possible for an application to ex-
plore the network and spread itself instead of having to rely
on pre-configuration and installation of application specific
software.

Another view of a messenger is that of a thread created
in a remote host on behalf of the source host. From a pro-
grammer’s viewpoint, sending a messenger to a remote host
is similar to the creation of a local thread. This offers a uni-
form way for programming both centralized and distributed
applications. Moreover, the communication by messengers
paradigm can be used as a simple way to extend the remote
procedure call paradigm.

Section 2 presents in more details the messenger
paradigm, the following section 3 discusses its impact on
the implementation of computer protocols. Section 4 shows
how messengers can be used as the basis for distributed op-
erating systems and section 5 discusses the impact of this
paradigm on intelligent agents. Finally, we conclude this
paper in section 6.

2 The Messenger Paradigm

The messenger paradigm is born from a new way of think-
ing computer communications. Instead of the classical
sender/receiver model based on protocol entities that ex-
change and interpret protocol specific messages, Tschudin
proposed in [13] a communication model based on the
exchange of protocol unspecific programs, called the mes-
sengers. Hosts receiving messengers will then execute the
messengers code instead of interpreting them as messages.

2.1 The Messenger Platform

All hosts involved in a messenger based communication
share a common representation of the messengers and pro-
vide a local execution environment, the messenger platform.
A messenger is executed sequentially, but several messen-
gers may execute in parallel inside the platform. Platforms

arriving
messengers

~

...
~

x

y

123

’abc’

process
queues

channels

dictionary

messenger execution platform

msgr threads:

Figure 1: Messenger platform

are connected through unreliable channels through which
messengers are sent as simple messages or data packets.

Figure 1 shows the basic elements of a messenger plat-
form:

� A set of channels enables a messenger platform to ex-
change messengers with other platforms. The chan-
nels provide an unreliable datagram service which
enables messengers either to reach entirely and cor-
rectly the neighboring platform or to be discarded or
lost;

� Integrally arriving messengers are turned into inde-
pendent messenger processes or threads of execution,
also called messengers for simplicity. The platform
does not interfere with their execution except for pro-
gramming errors or unavailable resources. Also do
other messengers have no means to stop or kill an-
other messenger process without its consent;

� The executing threads are able to share common data
inside a given platform by the means of a dictionary
which contains pairs of keys and data values;

� Process queues are the low-level mechanism offered
by a platform in order to allow messengers to im-
plement basic concurrency control functionality such
as synchronization of threads, mutual exclusion, etc.
Process queues are FIFO queues of messenger pro-
cesses. All threads of the queue are blocked except
the thread at the head of the queue.

Platforms share (1) a common messenger programming
language, used to express messenger behavior; and (2) a
common external representation of the messenger, used for
the physical exchange messengers.



2.2 Primitives
�

of a Messenger Programming Lan-
guage

Messengers are exchanged between two platforms as simple
messages, using a common external representation. Arriv-
ing messengers are turned into threads of execution by the
corresponding platforms. A messenger is then a sequence
of instructions expressed in a messenger programming lan-
guage common to all platforms. Beside general purpose
instructions (arithmetic operations, logical operations, etc),
a messenger programming language must offer a set of spe-
cialized primitives. Here we present an example of such a
set of primitives:

� Process queues, channels as well as global variables
in the dictionary of a given platform are accessed by
a key. Keys are either generated by the platform (e.g.,
name of a channel) or can be constructed/chosen by
the messenger processes using the key() primitive.

� Global variables in the dictionary are accessed
through their key using the get(k:key) and
set(k:key, v:value) primitives;

� A messenger is sent through a channel to another plat-
form by the submit(k:key, m:msgr descr)
primitive. It is also possible to create a new local mes-
senger process by submitting a messenger to a special
“loop-back” channel – the new process is completely
independent of its launching process;

� A messenger is able to replace its behavior by an-
other behavior with the chain(m:msgr descr)
primitive;

� Process queues play a central role in the synchroniza-
tion of messenger processes. Primitives for handling
process queues are: enter(q:key) which enables
a messenger process to enter a queue, such a process
will then be blocked until it reaches the head of the
queue; leave which enables the messenger process
at the head of the queue to remove itself from the
queue; stop(q:key) which stops the queue so that
when the messenger process at the head of the queue
leaves the queue, the next messenger process coming
at the head of the queue will remain blocked; and
start(q:key) which resumes a queue previously
stopped by the stop primitive. A referenced queue
that does not yet exist is automatically created by the
platform.

By the use of the submit and chain primitives, mes-
sengers are able to act as mobile entities that can propel
themselves across the network to search for a given in-
formation or to perform a given task in a remote place.

Alternatively, a messenger can continue its task in the lo-
cal platform while the messengers it sent out will execute
remotely before returning with the result of some sub-task.

The possibility for a messenger process to replace its be-
havior with the chain primitive can be compared with the
change of behavior of actors in the actor model of Agha [1].
The difference resides in the fact that the behavior change
is a fundamental part of the actor model: actors are seen as
abstract machines dedicated to process one incoming com-
munication. Actors always change explicitly or not their
behavior before processing the next communication. On
the other side, messengers are mobile entities that perform
given tasks, which are not necessarily reactions to incoming
communications.

2.3 Two Messenger Platform Implementations

We built two prototype implementations of messenger plat-
forms that allowed us to make first experienceswith tangible
messengers and to study in more details the basic elements
of such platforms. Three elements have to be distinguished:

Messenger data format: In order to exchange messen-
gers, two platforms must agree about the allowed
“channels” as well as the data format used to express
the messenger. This channel must offer a datagram
service, thus relies on a datagram delimitation mech-
anism. For practical reasons there will be more in-
formation inside a messenger than just the instruction
sequence: version number, possibly a checksum and,
for convenience, an arbitrary data field etc.

Messenger language and execution model: After having
agreed upon the placement of the instruction se-
quence(s) inside a messenger datagram, two platforms
also must “speak the same language”. The messenger
languages will probably be interpreted ones, but mes-
sengers may also contain or consist of native CPU code
(machine language code).

Conventions about local data resources:
Finally, we stress the importance of conventions re-
quired across all messenger platforms understanding
a given messenger language: because each platform
will offer varying services (number and type of chan-
nels, file system and other data bases, code libraries
etc.), it is important to have conventions about the
naming of such resources as well as the mechanism
used to discover and access them. Such an infrastruc-
ture resembles very much type systems e.g., the one
found in the distributed object execution environment
CORBA [2].

In the following, we briefly describe our two messenger
platforms.



2.3.1 The
�

MØ messenger Platform

The MØ (M-Zero) project started in december 1993; a first
version of the MØ platform that runs on various UNIX sys-
tems and that contains a full interpreter of the MØ language
was distributed in June 1994 [12] and can be fetched by
FTP at cui.unige.ch under pub/m0. The MØ language
is ASCII-based and closely resembles POSTSCRIPT although
it does not contain any graphics related operators. Op-
erators usually have single–character names, thus making
messenger programs very compact. The platform’s com-
mon variable space is represented as a dictionary, enabling
messenger processes to persistently deposit and fetch data
values. The implemented messenger channels are based on
raw ETHERNET and UDP.

Different major types of protocols have been imple-
mented in the MØ environment: network exploration using
ETHERNET broadcasts (“wave protocol”), alternating bit and
Stenning’s sliding window protocols, self–fragmentation
and defragmentation as well as a “remote console”. Some
of these protocols were implemented in variants e.g., using
code downloading techniques.

Although useful for exploring messenger programming
styles and techniques, the MØ platform is currently incom-
plete insofar as it has very limited links to the world of ap-
plications and other operating system services. Thus, more
work on the third element, the “conventions”, is needed,
as well as the integration of standard services (window-
ing environment, file system) into MØ. Still under study
are strategies for managing inside MØ the various resources
offered by the platform (CPU time, memory, transmission
bandwidth etc.)

2.3.2 A SCHEME-based Messenger Platform

A case study was made on a functional messenger language,
namely one that would be based on SCHEME. It resulted in
a SCHEME interpreter named MSGR-S [15] that supports par-
allel interpreter processes. The new functions setglob
and getglob enable the access to the common variable
space, the function exist? can be used to check if a name
already is in use. Most notable is the way new messengers
are generated and submitted. While in MØ the programmer
can refer to a special convert-to-messenger opera-
tor in order to build a messenger datagram from an arbitrary
(code) string, this step is hidden by the MSGR-S interpreter:
only a closure can be submitted i.e., a lambda expression
that has no parameters. Hence, the submit operator takes
such a closure, (re-)constructs an “equivalent” ASCII string
and sends it inside a datagram through the requested chan-
nel. This string is simply a SCHEME lambda expression that,
after reception at the destination platform, is evaluated in
order to obtain the function to start.

We think that basing messengers on a LISP-like lan-
guage is for some programmers an essential asset, espe-
cially when messengers are used to implement intelligent
agents in the context of AI. Although elegant, this implicit
back-transformation of an internal closure to an equivalent
ASCII-string has its price: on one side in terms of comput-
ing time and the problem of limited datagram length, on the
other side in terms of expressiveness, possibly excluding
the implementation of some classes of protocols within this
environment.

Both environments, MØ and MSGR-S, have shown to us
the importance and necessity of a new programming style.
The first time we started to code messengers we found it
difficult to “overcome” the thinking in terms of static exe-
cution flows. Later on, however, once one is more familiar
with the (possibly unreliably) spreading execution flows of
messengers, it is fun to express communication tasks with
messengers. We already see specialized “interaction tech-
niques” poping up which will form the basic elements of a
new communications programming style.

3 Protocol Implementation with Messen-
gers

The most fascinating property of the messenger paradigm
is the ability to “run” protocols without requiring the re-
mote communication partner to know it. The sender has,
within the limits of the receiver’s resources, the complete
freedom in choosing (a) the protocol and (b) the way it is
implemented. In this section we discuss the relation be-
tween messengers, classical PDU-exchange based protocols
and the corresponding implementations.

3.1 Messengers for PDU-exchange Based Protocols

The central part of a protocol is the definition of the inter-
action sequences that are necessary for realizing the wanted
communication service. These interactions i.e., the ex-
change of protocol data units, have been carefully analyzed
in order to verify that the sender and receiver side will not
enter a deadlock or can not make any progress. All this
work should be preserved and one would like to know if
and how known protocols, although expressed in terms of
PDU exchange, can be realized with messengers.

The first time you try to setup messengers that adhere to
a given protocol, you realize that the usual way of express-
ing the protocol’s logic e.g., a procedural description of the
protocol entities or their finite state machine equivalents, is
not very useful because you can not assume the presence of
such entities. More appropriate is a change of viewpoint:
instead of looking at the protocol entities, we focus on the
PDUs. More precisely, one has to imagine the “journey” a



PDU makes� and one has to attach to it the actions that are
triggered by its reception.

As an example take the alternating bit protocol and con-
sider the journey of a user data unit presented to the ABP

service access point: first, the current flag value of the
sender has to be fetched, a PDU is assembled which then is
sent out. On reception we have to check the receiver’s flag
value and possibly have to return an acknowledge. The ac-
knowledge PDU just unblocks the sender thread that waited
for a timeout or an ack message. This description is the
starting point of the ABP implementation with messengers:
one messenger is used to forward the payload, another mes-
senger must acknowledge the arrival of the former one.

The general philosophy for implementing a protocol ex-
pressed in terms of PDU exchanges between static protocol
entities is therefore to define for each PDU type a corre-
sponding messenger type. Based on this structure one has
to find all data and control paths through the protocol en-
tities and assign the related instructions to the messenger
types. This decomposition of the protocol’s logic is related
to a software structuring technique called “upcalls”: this
technique is not new, but it is not always intuitive to pro-
duce [3]. Thus, at long term it would be interesting to have
automated tools that take a PDU-based protocol as input and
produce a set of “equivalent” messengers.

To close this section on protocol implementation we
emphasize that one can speak about a “protocol being per-
formed” although there are no protocol entities installed.
Nevertheless do protocol entities exist, when messengers
were constructed along the mentioned recipe: their func-
tionality is provided by transient messengers processes and
not by the usual statically configured execution flows. In
other words: only abstract protocol entities are present and
the messengers become a “strange” way of coding of the
PDUs.

3.2 Messenger Modes of Operation

It can be a waste of bandwidth to send with each messenger
the complete logic necessary to treat its payload. This full
messenger mode is nevertheless indicated in the case we
choose a very specialized way of performing a protocol,
but usually, more efficient methods exist.

A first improvement consists in sending the code once
and to install it on the remote system. The platforms global
variable space can be used for this, allowing subsequent
messengers to carry only the lookup instructions necessary
to find and execute the downloaded instructions.

Another mode of performing protocols with messengers
is to emulate the classical PDU model. A first messenger is
sent to the remote platform and “installs” itself i.e., waits
for follow-up messengers. These follow-up messengers

mainly carry the classical PDU as defined by the protocol
to implement. Once arrived, these messengers deliver their
payload to the first messenger process that will treat the
received PDU like an ordinary protocol entity.

The previous model can also be called PDU tunneling,
because messenger are used to create a PDU channel across
two messenger platforms. This model does not require
other messengers than the PDU carriers. In fact, one can
imagine that two standard protocol stacks are linked into
a messenger platform such that sending a PDU at the stack
bottom results in the creation of a local messenger. It’s sole
task is to forward the PDU to the remote platform, where
it is delivered to the remote stack’s reception point. The
stacks will not be aware of the tunneling of their PDU. For
the messengers, it looks like linking two services that are
local to the involved platforms.

What has been shown in this section is that messen-
gers can be used in many different ways, even in ways
that are not inspired by the “communication by instruc-
tion” paradigm. In fact, we see messengers as one pole
of a spectrum, the other being the exchange of predefined
message types (PDUs) and in between many variants or hy-
brid forms. Putting all communications functions on in-
structions is probably not economic - using only predefined
messages is too rigid: which technique is more suitable
depends on the problem setting.

4 Messengers and Distributed Operating
Systems

An operating system is a piece of software which adds an
“abstraction” and a “management” layer on top of a bare ma-
chine. Current operating systems offer to the user, among
others, the abstractions of process and virtual address space.
The management aspect has lead to the concept of multipro-
gramming and recently to that of distributed systems which
can be seen as an extension of multiprogramming. With
the advent of distributed systems were born the distributed
operating systems whose management task spans multiple
machines connected by a network.

Distributed operating systems try to create the impres-
sion of a virtual machine (a single system image) out from
a set of hosts interconnected by a network. They rely on an
efficient communication mechanism between the different
hosts to achieve their goal. Communication by messengers
being a new way of performing computer communications,
it is natural to see whether it can be used as a basis for dis-
tributed operating systems and what can be its implications
on such systems. That is what is discussed in this section.



4.1 Modern
�

Operating Systems

Most operating systems [11] are designed as a monolithic
piece of software structured in modules or layers, each mod-
ule being responsible for a well defined service. Examples
for the services offered are process management and mem-
ory management. With the advent of computer networks,
more functionality was to be added in operating systems
which grew bigger and became more difficult to debug and
maintain. Moreover, management decisions and policies
were directly “hard wired” in the heart of the system mak-
ing it difficult to evolve.

To overcome the drawbacks of this monolithic archi-
tecture, modern operating systems e.g., Amoeba [10] and
Chorus [9] use a micro-kernel architecture. Only a minimal
set of services is confined in the kernel, other services are
provided by special processes external to the kernel called
servers. With this approach, management decisions and
policies are shifted from the kernel to the servers. Adding
functionality to the system is done by adding server pro-
cesses without recompiling the whole system. The most
important impact of this approach is perhaps the possibil-
ity of coexistence of multiple servers for the same kind of
resources, each server implementing its own policy for man-
aging its resources (e.g., two independent file store servers).

Distributed operating systems must provide local but
also remote services. Some of these non-local services
are still implemented in the micro-kernel. The different
hosts of the system cooperate to offer non-local services.
This is done by letting them exchange information using a
message passing mechanism. This means that the differ-
ent hosts must agree on a protocol or a set of protocols to
interpret the different messages. These different protocols
are still “hard-wired” in the kernel. As a consequence of
this, changing a protocol (for example the message format)
requires recompiling all the system. Moreover, each oper-
ating system uses its own set of protocols for data exchange
between different hosts, thus interoperability between dif-
ferent operating systems is difficult to achieve.

Let us consider a process A running in host X that wishes
to send a message to process B running in the remote host Y.
Because each exchanged message must be handled by some
entity, (in this case process B), the sending process must
“identify” in an non-ambiguous way the destination process.
This implies that there must exist between all the hosts a
uniform way of identifying individual processes. Clearly,
this is an example of a non-local service that must be offered
by the micro-kernel to achieve interprocess communication.

Non-local services implemented in the micro-kernel
considerably restrict the micro-kernel genericity. The key
solution to truly generic micro-kernel is to remove “hard-
wired” protocols from the micro-kernel. The messenger

paradigm allows computer communications to be realized
without preconfiguration of any kind of entity i.e., without
any form of agreement on a protocol to be used by the com-
municating parties except the messenger platform. Using
messengers it becomes possible to build micro-kernels for
distributed operating systems without protocols wired in,
and eventually to have truly generic micro-kernels.

4.2 Messenger Based Distributed Operating Systems

A messenger based distributed operating system should use
the micro-kernel approach. The messenger paradigm al-
lows to remove from the kernel all non-local services. The
architecture of such an operating system consists of three
layers. At the first layer resides the messenger platform to-
gether with the hardware: they offer to the concurrent mes-
senger processes a virtual machine which understand the
messenger language. All the hosts must implement a mes-
senger platform. The second layer is populated with mes-
sengers which control the use of the platform’s resources.
The third layer, finally, corresponds to the classic process
abstraction: at this place we will find the server and user
processes. Figure 2 shows the architecture of a messenger
based distributed operating system.

user, server and
kernel threads

network of msgr
platforms linked

by msgr channels
(the substrate)

messenger
threads

networked
hardware

objects of activity

OS (micro-)
kernel services

single
system
image

views/interfaces

Figure 2: The relations between objects of activity and the
service interfaces

At bootstrap time, a first messenger is injected in the
network of platforms. It will create other messengers to
populate the network and will collaborate to realize the op-
erating system. One can even imagine an extreme case
where different messengers are injected in the system at
start-up. Each messenger will gain control of some hosts;
this will partition the system in groups of hosts using dif-
ferent operating systems. However, as all these operating
systems are messenger based, they will be able to interact.
More precisely this means that a group of hosts will im-
plement “its own” memory management, “its own” process



management� which can be completely different from what
is used by other groups of hosts.

The controlling messenger will now ask the platform
to execute some piece of native code belonging to a third-
level (user) process. Thus, the execution of each (user)
process is controlled by a messenger which puts itself into
“native mode”, a mode where it executes native CPU-code
instead of messenger instructions. Whenever the process
being controlled issues a system call or needs to interact for
some reason with the system, the controlling messenger is
brought back to the normal mode. The interpreted code of
the messenger will regain control and can decide what to
do. All interactions of the process with the system and all
unusual conditions such as interrupts and exceptions which
occur while the process is being “executed” will thus be
“trapped” by the messenger. The messenger will eventually
ask its platform to execute another piece of native CPU-
code to handle the process’ service request or the unusual
condition that arose. The key idea here is that most of
the time the messengers will be executing their process in
“native mode”.

Controlling the execution of a process by different mes-
sengers can lead to different results. Indeed, each messen-
ger will decide according to its own code what to do with
the process being controlled. We can view the messengers
as forming a powerful, flexible and programmable inter-
face between processes and the system. We need such an
interface because systems become more and more complex
and must evolve to adapt themselves to new conditions.
Our messenger interface provides the technical base for
truly configurable operating systems. We can make here
a parallel with the area of communication protocol archi-
tecture. One topic of interest in this area is the config-
uration of flexible protocol stacks which also requires an
interpreted language and some kind of “platform” (see e.g.,
COMSCRIPT [8].

As messengers can move freely from platform to plat-
form without the need of protocols between hosts, a micro-
kernel for a distributed operating system can be protocol-
free. This is possible because there is no longer the abstrac-
tion of “data exchange” in a messenger based operating
system. In fact, the “data exchange” abstraction has been
shifted from the lowest level of the system to the messenger
level. The key advantage of basing micro-kernel on the
messenger principle is the possibility to build “protocol-
free” micro-kernels which enable the implementation of
more flexible and more robust distributed operating sys-
tems.

We are currently implementing a first prototype of a
messenger based operating system where a currency mech-
anism is investigated to be used as a unified approach for
controlling all system resources [14].

5 Messengers for Intelligent Agents

Intelligent Agents, being at the heart of Artificial Intelli-
gence (AI), are now widely used in several others domains
like human computer interactions, robotics, knowledge rep-
resentation, etc. Agents are autonomous mobile entities
able to interact with other agents and to react to their en-
vironment. Intelligent agents are then agents whose be-
haviors can be compared with those of humans [17]. The
specific criteria applied above to agents can also be applied
to messengers. However, messengers are not necessarily
agents, but they may be used to implement them. Poten-
tially, the messenger paradigm offers alternatives and new
opportunities in the way of thinking high-level distributed
applications using intelligent agents. This section aims to
discuss different models of society of agents from a mes-
senger point of view.

5.1 Actor Systems

One of the earliest models for distributed systems is the
Actor model, where an actor is a computational agent which
has a mail address and a behavior. Actors communicate
by message-passing, also called communication or task,
and carry out their actions concurrently. The behavior of
an actor consists in processing a communication, which
can result in the creation of new actors, new tasks and a
replacement behavior enabling the current actor to process
the next communication [1].

An actor, in a given configuration, can work with ex-
ternal actors, but an actor always waits for an incoming
communication and interprets this message according to
its current behavior. Actually, messengers are very close
to actors, messengers are able to reproduce the behavior
of actors, since they are able to create new messengers
(submit), they can communicate through data values in
the dictionary in order to mimic message-passing and they
can change their own behavior (chain).

On the other hand, in the universe of actors, messages
are themselves actors, hence it is possible to perform an
exchange of programs between two actors.

The fundamental difference between actors and mes-
sengers seems to lie in the mailbox concept and the fact
that actors are specially dedicated to process one incoming
communication without control and knowledge over the lo-
cation of the mailbox. Once the communication has been
processed, the current actor vanishes and is replaced by an-
other actor (by the replacement behavior). On the contrary,
messengers are not waiting for communications to handle,
they are simple mobile threads of execution, whose first
scope is to actuate a code execution locally or remotely.
Moreover, messengers are entities able to have a larger
scope: messengers can have an eye not only in a restricted



area as a platform but also to extend their influence to a
whole net of platforms.

5.2 Intelligent Agents

Agent-based software engineering makes it easier to cre-
ate interoperable software. Following this approach, the
software components, which are called software agents,
communicate by the means of an agent communication lan-
guage. There are basically two approaches for agent com-
munication languages: (1) the procedural approach where
the communication between software agents is modeled as
the exchange of entire programs that are directly executable;
(2) the declarative approach where the communication is
modeled as the exchange of data together with the com-
mands useful for interpreting the data [6].

In our opinion, the messenger paradigm sits at a lower
level with respect to these two approaches. Indeed, mes-
sengers clearly are able to exchange programs: a messenger
a can deposit a communication messenger (the code of a
messenger) c in the dictionary, messenger b is then able
to retrieve the code c from the dictionary and to execute
it. Messengers are also able to exchange data and their in-
terpreting command. Two messengers not belonging to the
same platform communicate in the same manner, with the
difference that a messenger has been submitted across the
network.

The messenger paradigm can also be seen with a com-
pletely inversed view. In the two mentioned procedural
and declarative approaches, software agents seem to wait
for incoming communications. If a software agent needs
some information to perform a given task, it has to send
a request to another agent and wait for the response. In
contrast to this “ask and wait” function performed by the
software agents, a messenger doesn’t wait for anything, it
is able to search for the available information, either itself
or by the means of other messengers. Indeed, a messen-
ger can move from one platform to another, can search for
the information, then take it and finally come back to its
original platform. With the messenger paradigm there is
no more travel of information from one location to another;
instead, there is a travel of code pursuing and retrieving the
information where it resides.

5.3 Multi-agent Architectures

Different architectures realize software interoperation: (1)
a direct communication between software agents, where
agents handle themselves their own collaboration; (2) an
indirect communication where agents communicate with
intermediary and local system programs, the facilitators,
which in turn communicate with one another [6].

The messenger paradigm provides a homogeneous
framework for realizing the direct as well as the indirect
communication. As we said before, messengers are com-
pletely responsible for their coordination inside a platform.
This is also true for a set of messengers executing in dif-
ferent platforms. However, messengers can be dedicated to
the coordination of the work and the interoperation of the
other messengers. These coordination messengers can have
a local effect i.e., they are responsible for the interoperation
of messengers in a given platform, or an across-the-network
scope by realizing coordination and communication of mes-
sengers lying in different platforms. Although the indirect
communication using facilitators can be exactly reproduced
in a messenger-based architecture, the messenger paradigm
offers a new way of thinking interoperation: a coordination
messenger is not necessarily local to a platform, as it is the
case for the facilitators. Instead, a coordination messenger
can extend its ramifications spider-like and thus extend its
control over a whole set of platforms.

5.4 Applications and Related Work

Intelligent agents are used to build,among others, intelligent
interfaces for email, news filtering or meeting scheduling;
software robots interacting with an external (software) en-
vironment; or electronic marketplace applications relying
on mobile agents. This section presents approaches realiz-
ing the above mentioned applications based on intelligent
agents and which are very close to the messenger paradigm.

Autonomous Agents for Intelligent Interfaces

Autonomous agents are used as personal assistants used to
collaborate with the user in order to ease the interaction
between a given environment and the user. Maes proposes
an alternative approach to the knowledge-based approach
where the agents are provided with a background knowledge
concerning the user and the application [7]. Her approach
relies on machine-learning techniques and consists in giving
the interface agents the minimum knowledge: the agents
will then learn their appropriate behavior from other agents
and from the user.

Softbots

Softbots, or software robots, are robots acting in the world
of software or virtual world (by contrast to robots acting in
the real world). Robots (software or not) take actions in
response to incoming communications. Softbots are agents
interacting with a software environment by issuing com-
mands and interpreting the environment’s feedback. They
interact with the environment either by the means of ef-
fectors i.e., commands used to change the external environ-



ment’s state� and sensors or commands providing the softbot
with information about the environment [5], [4].

Telescript

In the TELESCRIPT technology, agents occupy virtual loca-
tions, called places. They are mobile processes able to
communicate (exchange messages) with one another and to
move from one place to another. The moving of agents is
realized by sending their program to another place where it
is executed. In electronic marketplace applications, agents
are providers and consumers of goods [16], [17].

6 Conclusion

The messenger paradigm is a communication model re-
lying on instruction-passing instead of message-passing.
Messengers are mobile threads of execution that can travel
across a network. The basic requirements needed to achieve
the messenger paradigm are: (1) all hosts involved in the
communication must be provided with the messenger plat-
form, (2) all platforms are able to interpret the same mes-
senger language; and (3) unreliable messenger “channels”
link the different platforms.

Distributed systems are built on top of a communication
mechanism. The proposed communication by messenger
paradigm is a low-level communication mechanism, which
can be used at different levels of abstraction. We have
shown that all kind of protocols can be implemented us-
ing this new paradigm: functionality of classical protocols,
based on entities exchanging PDUs, can be realized without
entities and without PDU exchange, using messengers. Dis-
tributed operating systems, which depend on communica-
tion protocols, can then be implemented using messengers.
We have proposed a three layer architecture populated at
the second layer with messengers; this layer constitutes a
control interface between processes sitting at the third layer
and the messenger platform. This architecture allows the
building of more generic micro-kernels, by removing from
them any hard-wired protocol. Finally, at the highest level,
the messenger paradigm seems to be suited for the imple-
mentation of multi-agent applications.

Going further, the classical view of data traveling the
network to be exchanged is no longer available according to
the messenger paradigm where it is the code which travels
the network to search for the data. Following these ideas, the
well-known models of server/client and sender/receiver are
no longer available, since a messenger based client will ask
no request to a server, but goes itself to take the information
and a messenger based server will not know which clients
are taking informations. Implementing distributed appli-
cations with messengers implies a new way of thinking:

distributed applications will no more be seen as composed
of static entities exchanging data, but as a set of mobile
threads which can propel themselves across the network to
look for resources.

References
[1] G. Agha. Actors: A model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986.

[2] M. Betz. Omg’s corba. Dr. Dobb’s Special Report, (225):8–12,
Winter 1994/1995.

[3] D. Clark. The structuring of systems using upcalls. In Tenth
ACM Symposium on Operating Systems Principles, pages 171–
180. SigOps, December 1985.

[4] O. Etzioni, N. Lesh, and R. Segal. Building sofbots for unix.
Technical report, University of Washington, 1993.

[5] O. Etzioni and D. Weld. A softbot-based interface to the internet.
CACM, 37(7):72–76, July 1994.

[6] M. R. Genesereth and S. P. Ketchpel. Software agents. CACM,
37(7):48–53, July 1994.

[7] P. Maes. Agents that reduce work and information overload.CACM,
37(7):30–40, July 1994.

[8] M. Muhugusa, G. Di Marzo, C. Tschudin, E. Solana, and J. Harms.
Comscript: An environment for the implementation of protocol
stacks and their dynamic reconfiguration. In International Sympo-
sium on Applied Corporate Computing ISACC9́4. ITESM Monter-
rey and Texas A&M University, 1994.

[9] M. Rozier, V Abrossimov,F. Armand, I. Boule, M. Gien, M. Guille-
mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, and
W. Neuhauser. Overview of the chorus distributed operating sys-
tems. Technical Report CS/TR-90-25, Chorus Systèmes, 1990.

[10] A. S. Tanenbaum, , M. F. Kaashoek, R. van Renesse, and H. Bal.
The amoeba distributed operating system-a status report. Computer
Communications, 14:324–335, July/August 1991.

[11] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[12] C. Tschudin. An introduction to the m0 messenger language. Tech-
nical Report No 86 (Cahier du CUI), University of Geneva, 1994.

[13] C. F. Tschudin. On the Structuring of Computer Communications.
PhD thesis, Université de Genève, 1993. Thèse No 2632.

[14] C. F. Tschudin, G. Di Marzo, M. Muhugusa, and J. Harms.
Messenger-based operating systems. Technical Report No 90
(Cahier du CUI), University of Geneva, 1994.

[15] R. Lino Valverde. Msgr-s: Un environnement d’exécution de mes-
sagers basé sur un interpréteur scheme parallèle. Diploma thesis,
University of Geneva, 1994.

[16] J. E. White. Telescript technology: The foundation for the elec-
tronic marketplace. White paper, General Magic, Inc., 2465 Latham
Stree, Mountain View, CA 94040, 1994.

[17] M. Wooldridge and N. R. Jennings. Agent theories, architectures,
and languages: A survey. In Jennings Wooldridge, editor, Intelli-
gent Agents, ECAI-94, workshop on Agent theories, Architectures,
and Languages, LNAI 890, pages 1–39. Springer-Verlag, August
1994.


