
A Distributed Micro–Kernel for Communications Messengers

Christian F. Tschudin, Giovanna Di Marzo, Murhimanya Muhugusa and Jürgen Harms
University of Geneva, e-mail: <tschudin@cui.unige.ch>

June 15, 1995

Abstract

Mobile software agents require a distributed exe-
cution environment in which they can command
the use of many resources like memory, CPU time
and bandwidth. While current research seems to
concentrate on roaming agents at the application
level and tries to define suitable high–level envi-
ronments, we think that such an execution environ-
ment must be rooted at a very low–level. We argue
that these environments have very in common with
distributed micro–kernels, and that therefore one
should position them even below current operating
systems. In this paper we report on the implemen-
tation of such a micro–kernel built for communi-
cations messengers (messengers are autonomous
threads of control that can travel through the net-
work: they are the low–level elements from which
higher–level agents can be built). We present our
viewpoint and describe the current state and some
implementation considerations of our Messenger
Operating System prototype MOS.
Keywords: communications messengers, operat-
ing systems, mobile software agents, distributed
computing.

1 Introduction

At the same time as the client/server programming
model becomes more and more accepted in the
industrial domain, a new metaphor is lively dis-
cussed in research on computer science: mobile,
roaming or itinerant software agents promise el-
egant and efficient ways for implementing a new
generation of distributed applications. The pos-
sibility to send code (i.e., an agent) to a remote
side that will execute it, could be understood as
just a smart way of doing remote procedure calls:
instead of doing several queries across the net-
work, this set of queries is packed into an agent,
send once, executed remotely and the results are

retrieved later or brought back by the returning
agent. Reduced latency and less network traffic
are just two advantages of such a solution.

However, one realizes that agents have a far
bigger potential than just a RPC replacement. New
types of applications become imaginable e.g., in-
telligent forms that collect information among a set
of persons and forward themselves to the next des-
tination, or electronic markets where agents can be
sent to watch stock market prices and, if they drop
below a certain level, become active buyers. The
intriguing aspect of agents is that the application
is not built into the system but can be defined at
run time by the end user launching the agents.

Agents require en execution support i.e., hosts
that are ready to receive and execute agent code.
Several proposals for such environment are cur-
rently discussed which focus on the capabilities of
agents and the instruction set as well as the envi-
ronment required for their programming. But not
many ideas have been proposed how the comput-
ing resources should be managed in such a volatile
environment. Agents with bugs can stray forever
in a agent network if there are not rigorous damp-
ing mechanisms.

Building such a network and managing its re-
sources resembles in many ways the problems of
setting up distributed operating systems. In this
paper we propose to look more closely at the lower
layers of current distributed application architec-
tures and to imagine a network of platforms for
very simple agents on top of which applications,
but also distributed operating systems, are imple-
mented. Our goal is to deal with resource alloca-
tion at the lowest possible level instead of having
to implement it at operating system, network and
again at application level.

In section 2 we introduce communication mes-
sengers as very simple and prototypic agents and
discuss the concept of messenger–based operat-
ing systems. In the same section we try to isolate

1

some basic assumptions of the messenger–oriented
view on distributed applications and look at related
work. Section 3 reports on our prototype messen-
ger operating system and some of the resource
management techniques we rely on. A brief sum-
mary closes this article.

2 Operating Systems for Roaming
Software Agents

When designing an execution environment for mo-
bile software agents one should stress one crite-
ria: In order to host a maximum of application
types built with agents, the environment should be
generic and minimal. In a first place we present
messengers as a guarantor for genericity regarding
protocols and communication services. It turns
out that messengers are at the same time proto-
typical mobile agents and therefore represent the
ideal level for positioning resource management
problems.

2.1 Communications Messengers

Messengers were introduced in the domain of com-
puter communications [9] as a generic replacement
of protocol–specific messages also called proto-
col data units (PDU). Hosts exchange instructions
packets (communications messengers) instead of
PDUs that carry with them the full or parts of the
protocol’s logic. The instruction set in place is
such that messengers can command the submission
of other messengers, locally as well as remotely,
and that only an unreliable datagram service is
needed between hosts. Higher–level protocols like
reliable transfer, routing etc. can be implemented
solely with messengers, thus, messengers form a
protocol–unspecific support for computer commu-
nications in general.

At a conceptual level, messengers are au-
tonomous flows of control that can travel across
the network. Their functioning is based on the
presence of execution platforms that receive mes-
sengers and execute them unconditionally. Prin-
cipally, such a platform must provide concurrent
threads of execution, shared memory and some
means for thread synchronization as well as the
channels through which messenger threads can
send new messengers to neighboring hosts (fig-
ure 1). Note that two messenger threads can inter-
act only when they agree in a rencontre and that
messenger threads are not addressable (and can

thread
queues

arriving
messengers

y

x ~

~

123

’abc’

...

messenger execution platform

threads: dictionary

channels

Figure 1: A schematic view of a messenger exe-
cution platform.

therefore not be stopped or killed by other mes-
sengers).

2.2 Agents

When compared with “agents” (no consensus ex-
ists on a definition of this term), messengers are
rather low–level. Agents require more than just a
network of bare execution environments. Usually,
agents know a lot about the environment in which
they execute e.g., in the sense that they depend
on specific configurations of data in the shared
memory area. Especially when object–oriented
programming is applied to agents one must install
class hierarchies in all execution platforms. More-
over should agents be capable of complex (object–
) interactions between them while messengers are
rather “autistic” and cannot be addressed directly.

However, messengers can be used to imple-
ment (carry) the behavior of agents. The sim-
ple concepts of the messenger execution platform
presented above are sufficient to realize different
styles of agent interactions, thus to implement a
high–level agent by one or more low–level mes-
senger. In [7] we proposed an architecture where
messengers form a kind of “control plane” that is
responsible for all aspects of mobility and resource
consumption and a native code plane where the re-
maining agent’s functionality is implemented (fig-
ure 2). Because co–resident messengers can enter
into contact by shared memory, it is even possible
to support direct method invocations for agent–
level communications (“meeting”). These tech-
niques are discussed in section 3.2 after having
presented the principle of messenger–based oper-
ating systems.

2

native code

t
r
a
p

messenger
control plane

 resources)
(mobility,

compiler
OO-agent

r
u
n

Figure 2: A (messenger) control plane for dis-
tributed applications.

2.3 Messenger–based operating systems

Current micro–kernels like MACH or CHORUS con-
fine a minimum of OS functionality in the kernel
and let standard OS functionality like file system,
process management etc. be handled by indepen-
dent processes outside the kernel. These micro–
kernels also offer additional services like location
transparency for interprocess communication (IPC)
and new services like group communications. This
allows processes to send messages without having
to care about the physical location of the desti-
nation process(es) and forms a basis for building
distributed operating systems.

We think that current micro–kernels are not min-
imal enough. The fact that a micro–kernel offers
cross–node services (like transparent IPC) means
that it has an internal kernel–to–kernel protocol for
providing this functionality that must be respected
by all nodes. Changing or replacing this protocol
usually means that the software has to be changed
on all nodes. This is especially true when some
limitations are hardwired into the protocol (CHO-
RUS had to change its capability format because
the range of 10 bits reserved for addressing the
destination node turned out to be too small – now
14 bits are built into the protocol, limiting CHORUS’
configurability to systems with 8096 nodes). The
goal of messenger–based operating systems was
to remove from the micro–kernel the protocol–
dependency and to exploit the messenger’s prop-
erty to be a generic protocol execution support [8]:
At the end we would have a protocol–free micro–
kernel.

Hence, what is needed is a messenger platform
(which is devised to be protocol–free) that can
serve as a micro–kernel. The ensemble of inter-
connected messenger platforms constitute a (po-
tentially world–wide) distributed micro–kernel. It
is a distributed kernel because although there are
no real cross–node services offered by such a

micro–kernel we have the “unreliable remote exe-
cution” service that is mediated by messengers. In
consequence, every other distributed service like
transparent message exchange must be built on
top of this single and generic interaction method.
In which (technical) way the messenger platform
model has to be extended in order to become a
micro–kernel for other operating systems is dis-
cussed in section 3. Beforehand we stress some
other points of view in which we depart from com-
mon believes found not only in the domain of
micro–kernels but also in distributed object sys-
tems and roaming agent execution environments.

Against transparency: The absence of cross–
node services is not the consequence of our
micro–kernel design but its starting point and
working hypothesis. Thus, we think that
transparency, although very convenient, is an
insufficient base for distributed programming
(see also [11]). A distributed application must
be able to “sense” its physical distribution
if it wants to handle typical problems (node
crashes, link failures etc) of distribution itself.
Moreover is the roaming software agents de-
velopment a trend that goes in the quite oppo-
site direction of (location) transparency. Our
conclusion is therefore: provide local ser-
vices only.

Build security with messengers: One of
the most prominent cross–node services (that
event roaming agent environments provide)
is security. The goal is to tag agents (mes-
sengers) with security–relevant information
in order to validate their origin and to de-
duce their access rights. Agents that do not
pass this validation are simply rejected by the
platforms in the hope that the validated ones
will not break the platform’s functioning or
obtain access to sensitive data. In fact, this
represents a very special “filter” for agents
which requires an important certification in-
frastructure in parallel to the agent network.
Our believe is that one should not be afraid of
the virus and worm like appearance of mes-
sengers but that one should explore means to
let messengers handle security issues them-
selves in the same way as unsecure message
exchange is used to implement security proto-
cols. First steps in this direction are presented
farther below.

3

2.4 Related work

The research work we reference here is either in
the domain of mobile application–level agents or
low–level distributed micro–kernels. These two
domains are not so disparate as they seem. We
are convinced that the application–layer work will
more and more concentrate on problems that are
since long known to the low–level operating sys-
tem issues (resource management, deadlocks etc).

TeleScript, Java and Python: These languages
are a new generation of “virtual machine in-
terpreters” similar to the old UCSD Pascal P-
code. The definition of the TELESCRIPT lan-
guage is, probably for commercial reasons,
still not made public. As far as was legible
through overview articles [13, 2], it seems
to be close to FORTH and also includes a
higher–level language that can be compiled
into low–level TELESCRIPT. Although Hot-
JAVA was announced as an environment for
downloading interactive code into a WWW

browser [6], it is clear that the JAVA language
(which offers concurrent threads) is a very
good candidate for a more symmetric envi-
ronment where code (i.e., agents) also travels
in the client to network direction. Like TELE-
SCRIPT it comes with a code authentication
mechanism.

Tcl: The Tool Command Language Tcl [3] is
often cited as an attractive candidate for mo-
bile agents. In fact, its ability to execute Tcl
script remotely seems sufficient for agents,
but the execution environment has severe
drawbacks. On one side it is not rich enough
(concurrent execution of scripts, synchro-
nization etc), on the other side the environ-
ment is too powerful (uncontrolled direct ac-
cess to the underlying operating system) and
currently provides (except for CPU time re-
strictions) no resource control mechanisms.
There are proposals for Tcl extensions and
restrictions, and future will tell if Tcl can be
retrofitted for a satisfying agent environment.

Micro–Kernels: Micro–kernels have a long tra-
dition in operating systems research and there
is a consensus that they are a key technol-
ogy for distributed operating systems. Vicar-
ious for classical references to MACH, CHO-
RUS or AMOEBA etc., we point to a recent

paper [1] that also has a more complete ref-
erence list. An interesting point of this paper
is that their

�����
micro–kernel fits into less

than 150 kbytes and that this quantity of bi-
nary code can easily be placed in a PROM.
We expect that our micro–kernel, including
the messenger language interpreter, will fit
into a similarly small area. Thus, computers
can be shipped directly with a micro–kernel
built into (instead of the BIOS of PCs as we
have it today). Genericity is important in this
case. Once such a machine with a messen-
ger micro–kernel is connected to the network,
it immediately becomes available for roam-
ing messengers and extends the “substrate” in
which messengers can live. From the domain
of operating systems we also mention Shoch’s
early experiments with distributed computing
based on worm programs [4].

3 A Messenger Micro–Kernel

In this section we report on our implementation of
an operating system for messengers, the messen-
ger operating system MOS. First we describe the
language that underlies our messengers, show how
this interpreted language makes native code execu-
tion available and discuss our approach of manag-
ing resource allocation. Finally we describe how
this execution environment is “populated” with (or
“booted” by) messengers.

3.1 The messenger language MØ

The MØ (M-zero) language was designed and im-
plemented as an experimental language for mes-
sengers in 1994 [10]. It’s structure resembles very
much POSTSCRIPT, from which it inherits its stack
orientation and the dictionary concept for resolv-
ing references by name, but without any graph-
ics related operators. Most standard operators
have self-delimited one–letter keywords which re-
sults in a very compact coding (e.g., the complete
alternating–bit–protocol (ABP) messenger has less
than 75 bytes). Two details of the language shall be
presented at this place: the new data typekey, and
the implementation of the shared memory space of
an MØ execution environment.

4

3.1.1 Shared memory area and the key data
type

In MØ, shared memory is the only way of exchang-
ing data between messenger threads. It is repre-
sented in form of dictionaries: all messengers have
access to them and can define there arbitrary data
pairs (the first element of this pair will usually be
an identifier). Messengers can furthermore lookup
already defined entries and can also remove them.
Currently there are two such global dictionaries de-
fined: globaldict and servicedict. The
difference lies in the ability to be browsed: while it
is possible for a messenger to loop over all entries
defined in servicedict, this is not possible in
globaldict. This restriction forces messen-
gers to know the exact identifier that was used to
deposit some data in globaldict.

This alone cannot guarantee that nobody but the
holder of the exact identifier can remove an entry,
but it already provides considerable privacy when
used in conjunction with randomly chosen identi-
fiers (see below). If an entry should be readable
but at the same time protected from being removed,
there is a special “secret define” operator: instead
of using the plain identifier for the data pair, the
MØ platform computes a new identifier by apply-
ing a one–way hash function. The resulting value
will become the visible first part of the data pair.
Entries defined this way can only be removed by
giving the original (secret) identifier.

“Keys” are a new data type introduced in MØ for
various usages. Key values are arrays of 64 bits
which – in most cases – are randomly chosen.
Their main usage is for generating “unique” iden-
tifiers. For instance: during the processing of the
ABP protocol, a flag has to be left at the remote side
telling if the next messenger is in sequence or just
a duplicate. In order to avoid name clashes due to
several concurrent applications all using the same
ABP messenger code, each application generates a
random key and uses it remotely as an identifier for
the flag. Keys have to be used as identifiers for the
above–mentioned “secret-define” operator. But
keys can also be used as true “secret keys” for the
DES routines (data encryption standard) which are
also built into the MØ language. Finally we men-
tion the currency defined in MØwhere “cheques”
are also referenced by keys: internal tables are
used to prevent that a cheque can be cashed more
than once.

3.1.2 Secure publishing of services

Given the public and unprotected nature of the
shared dictionaries, how can service procedures
by “published” without having antagonistic mes-
sengers wipe out all traces of them?

Based on the servicedict and the key data
type, messengers can advertise their services at a
“well–known” place and in a secure way. For

servicedict(r/w/x)

k ~ "shared semaphore" (r)2

1k

globaldict (r/w)

semadict (r/x)k ~ dict2
up

down ~ proc (x)

~ proc (x)

shared memory area

msgr

Figure 3: Secure public service definition in a
messenger platform.

this, they choose a random key � 1 and make a “se-
cret define” in the servicedict of a character
string identifying the offered service (the one–way
function returns the visible key � 2, see figure 3).
The service messenger then uses the same operator
and key � 1 for adding in globaldict an entry
with the “service access point” e.g., a read–only
dictionary with execute–only procedures. Poten-
tial clients can browseservicedict and find all
visible keys that match the required service. These
keys are used in the unbrowsable globaldict
for finding the access procedures. To sum up: The
browsable servicedict allows clients to find
the offerings, the use of the “secret–define” oper-
ator in globaldict prevents that the associated
entries can be removed although the dictionary has
read/write rights for everybody. Thus, by provid-
ing very simple primitives in MØ, messengers can
protect their vital data and even make portion of
their code accessible to other messengers in a con-
trolled way.

3.2 Controlling native code execution

Native code execution is essential for building a
micro–kernel that should be a competitive alter-
native to run standard operating systems. The
main idea of messenger–based operating systems
is that native code execution shall be governed

5

by (interpreted) messengers and that messengers
intervene only when communications or resource
control tasks have to be handled. The access to
the hardware had to be made accessible through
the MØ language.

3.2.1 The run instruction

Most prominent is the run instructions which
“jumps” into native code and returns at well–
defined moments (figure 2). These are: end–of–
timeslice, supervisory (system) call and traps due
to illegal instructions. The parameters for the run
instruction (register values, content of address
space etc) are implicitly taken from the state of the
calling messenger: set-processing-unit
selects the native instruction set that the messen-
ger will execute (e.g., an MØ platform can offer
various emulations and modes of native code exe-
cution),set-registers is used to initialize the
selected CPU’s registers and set-page-map de-
clares the (possibly virtual) address space in which
native code execution should take place. All these
values can be retrieved and are available to the
messenger in form of standard MØ data types (in-
tegers, strings etc). Note that address spaces can
be shared between messenger threads, permitting
thus the implementation of multi–threaded native
applications.

0x5000

0x1000
0x0000

registers

current
cpu

current
pagemap

registers

current
pagemap

current
cpu M0/

0 ~ page

5 ~ page

1 ~ page

shared pagemap

...

dictionary

li
ne

ar
 a

dd
re

ss
 s

pa
ce

na
ti

ve
 c

od
e

en
vi

ro
n.

Figure 4: Sharing the virtual address space for
native execution.

At the return from a run, the messenger must
decide which action to take. In case of an end–
of–timeslice it could simply do a run again, or in
case of a “system call” try to satisfy it before jump-
ing back to native code execution. In both cases,

messengers find themselves in a position that in
standard operating systems like UNIX is occupied
by the kernel (which usually takes these decisions).
However, with MØ it is not necessary that all these
decision procedures be written in the interpreted
language. More probably is that a second mes-
senger controls the native execution of the “kernel
code” of a classical operating system. Thus, all
the first messenger has to do is to pass the “sys-
tem call” on to the other messenger which would
give it “to its native code”. Messengers intercept
interactions between native threads and have the
power to redirect these interactions locally as well
as across several MØ platforms.

3.3 Resource control

For the Messenger Operating System we followed
a market model at the lowest level possible. In
principle, all resources are, if available, accessible
to all messengers without restrictions (there is no
security system built into the MOS). However,
the usage of resources is controlled by a charging
mechanism. Currently we apply this model for the
CPU and memory resources, bandwidth will be the
next candidate to look at.

3.3.1 Charging of messengers and their rev-
enue

Each messenger has its own account from which
charges are deduced on a per–usage basis (fig-
ure 5). Messengers can withdraw money from

charge

transfer

(account
 decreases)

(account
 increases)accountcheque

(funding) (worker)messenger

periodic revenue from the system

Figure 5: Charging messengers for their resource
consumption.

their account in form of cheques that can be passed
to other messengers of the same platform. Messen-
gers can also share an account, enabling this way
a division of labor (one messenger concentrates
on the principal work to do, another messenger
asserts the required funding). The prices for re-
source consumption varies according to the offer

6

(hardware limits) and demand (messengers).
Messengers obtain an initial amount of money

when they start. Moreover, they receive at regular
intervals a revenue that depends on the degree of
competition among the messenger threads inside
the platform. Less money will be given back to
the messengers in times of heavy load than what
would be necessary for the competing messengers
to continue their “lifestyle”. Thus, the systems
gives incentives for releasing (or selling) memory,
reduce the CPU share etc, but the platform does not
implement or enforce a resource allocation policy
for the messengers. Messengers with no money
left on their account are silently removed.

3.3.2 Lottery scheduling

The CPU resource management is based on lottery
scheduling [12] instead of round–robin schedul-
ing: At the end of each timeslice a lottery is
held for determining the next messenger to exe-
cute. Messengers can increase or decrease their
chance to obtain the timeslice by buying or releas-
ing “tickets”. This system has the nice property
that buying more tickets automatically adjusts the
relative CPU shares of the other messengers (sell-
ing actual timeslots in advance is not very fair and
is an invitation for speculation). Once a messenger
has won the lottery, it obtains the CPU for the full
timeslice and is charged according to the number
of tickets it had put into the lottery. To figures are
used to adjust the prices for tickets: There is the
default number of tickets for each messenger and
a system target load (e.g., four times the default
number of tickets). If the total number of issued
tickets exceeds the system target load, prices are
progressively increased so that messengers with
more tickets than the default number have very
high charges and, at long term, will run out of
money.

3.3.3 Memory sponsoring

Memory resources are also charged on a per–usage
basis. This principle applies to all local variables
and state information of messengers. However,
another mechanism had to be put in place for the
shared memory area because data items at this
place belong in some sense “to everybody” (it
is possible that the messengers which added a
memory–intensive entry into the globaldict
disappeared). For this we decided that global
memory has to be “sponsored” (figure 6). If

messenger shared data items

system revenue

cheque

accounts

Figure 6: The “sponsoring” of shared data.

there is no sponsoring, a global item will ei-
ther disappear (is automatically removed from
globaldict) or, if it is still referenced, its con-
tent is set to zero. Sponsoring is implemented by
letting messengers attach an account to a shared
data item. In contrast to messengers which pos-
sess only one account, global data items may have
several of them. In this way it is possible that new
sponsors can show up in a non–exclusive way (oth-
erwise one could “attack” shared data items by
putting them on an empty account which effec-
tively removes them).

3.4 The boot messenger

Confronted with this concept of a bare messenger
world, surprisingly often the question arises on
where the first messenger comes from that should
populate the platform(s). At long term we imagine
that there could be a network of messenger plat-
forms where it is virtually impossible to have no
active messengers left (remember the pains of re-
moving the internet worm [5]). Thus, we suppose
that a freshly booted platform with network con-
nectivity is very quickly discovered and populated
by the messenger community.

Considering stand–alone platforms, we need a
first messenger that, like init under UNIX, starts
the desired activities. This first messenger will
probably be read in from harddisk or any other
non–volatile storage space. Currently we compile
the boot messenger into the micro–kernel code.
All it does at this time is to start two console mes-
sengers and connects them to the screen device:
the (human) user can then interactively type in MØ
code and explore this way the shared dictionaries
or start up messengers whose code is defined by
the interpreter’s startup code. More complex in-
teractions with the platform involving many com-
mands are currently done via the network from a
UNIX workstation using messengers to download

7

the necessary code and to start it remotely.

3.5 Current state and future work

At the time of writing we have a first version of
our messenger micro–kernel running. We used the
public MØ interpreter that is multi-threading safe
(debugging was done under a standard UNIX sys-
tem) and has tight memory usage control for MØ
data values (no memory leaks). The micro–kernel
runs now on a i386-PC and has ethernet connec-
tivity, it is developed under the LINUX operating
system. We already mentioned the lottery schedul-
ing (tickets) in place as well as the possibility to
run native code (the i386 is configured for a linear
address space with one identical code and data seg-
ment). Accounting is now done for CPU time and
local memory, the sponsoring concept for shared
data items is under implementation.

Only few experiments were conducted in order
to calibrate the charging and money redistribution
mechanism. Thus, beside trying to run a UNIX shell
binary under messenger control and to go towards
emulation of a standard operating system,we focus
on operational questions of the resource market
model and hope to find simple local pricing rules
such that when several platforms are put together
we can observe smooth global resource allocation.

4 Summary

Messengers were introduced in this paper for two
reasons: first they are very simple mobile soft-
ware agents, and second they guarantee the max-
imal genericity for communication services. We
presented the conceptual elements needed in exe-
cution platforms and showed how these platforms
can be extended in order to become micro–kernels
on top of which ordinary operating systems can be
run. The central point is that messengers become
responsible for native code execution. We also
reported on our prototype implementation of such
a micro–kernel and some of the algorithms used
for setting up a resource management system that
relies solely on rules that are local to a single plat-
form. More practical experiences are needed to
verify whether all desired services and properties
(including security and execution guarantees) can
be realized with this simple messenger platform
structure.

References

[1] David K. Cheriton and Kenneth J. Duda. A
caching model of operating system kernel func-
tionality. In First Symposium on Operating Sys-
tem Design and Implementation (OSDI), USENIX

Association, pages 179–193, 1994.

[2] Tom R. Halfhill and Andy Reinhardt. Just like
magic? BYTE, pages 22–23, February 1994.

[3] John K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[4] John F. Shoch and Jon A. Hupp. The “worm”
programs – early experience with a distributed
computation. Communications of the ACM,
25(3):172–180, March 1982.

[5] Eugene H. Spafford. The internet worm program:
An analysis. ACM SIGCOMM Computer Com-
munication Review, 19(1):17–59, January 1989.

[6] Sun Microsystems. The HOT-
JAVA browser technology demonstration. URL
http://java.sun.com/, March 1995.

[7] Chr. F. Tschudin. OO-agents and messengers.
Position paper for the ECOOP95 workshop W10
on Objects and Agents, August 1995.

[8] Chr. F. Tschudin, G. Di Marzo, Muhugusa Murhi-
manya, and Jürgen Harms. Messenger–Based
Operating Systems, July 1994. Technical report
90 (Cahier du CUI).

[9] Christian F. Tschudin. On the Structuring of Com-
puter Communications. PhD thesis, Université de
Genève, 1993. Thèse No 2632.

[10] Christian F. Tschudin. M0 - a messenger
execution environment. Usenet newsgroup
comp.sources.unix, Vol 28, Issue 51–62,
June 1994.

[11] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall.
A note on distributed computing. Techni-
cal report, Sun Microsystems Laboratories Inc.,
November 1994.

[12] Carl. A. Waldspurger and William E. Weihl. Lot-
tery scheduling: Flexible proportional–share re-
source management. In First Symposium on
Operating System Design and Implementation
(OSDI), USENIX Association, pages 1–11, 1994.

[13] Peter Wayner. Agents away. BYTE, pages 133–
118, May 1994.

8

