ACccESsSs CONSISTENCY MEMORY MODEL
FOR MESSENGERS!

Murhimanya Muhugusa Giovanna Di Marzo
Christian Tschudin?
Jurgen Harms
Centre Universitaire d’Informatique, University of Geneva
24, rue Général Dufour, CH-1211 Genéve 4
Phone: +41 22 705 76 43, Fax: +41 22 705 77 80

e-mail: muhugusa@cui.unige.ch

Cahier du CUI n° 107

November 15, 1996

!This work is supported by the Swiss National Fund for Scientific Research (FN-
SRS) grant 20-40631.94
Institute fur Informatik, University of Zurich

Abstract

The messenger paradigm is an alternative to computer communication based
on the exchange of programs called messengers which are afterwards executed,
instead of messages that are interpreted. The communication by messenger
paradigm can be used to implement both low level software such as communi-
cation protocols and high level software such as distributed applications. Using
the messenger paradigm for computer communication requires that each host be
“equipped” with a runtime environment called messenger platform that can ez-
ecute messengers that reach the platform. M@ is one such platform. MOS is a
distributed micro-kernel designed for the efficient execution of messengers and
implemented on 1386 machines; it contains a MQ platform. It supports the con-
current execution of messengers on a given node. Messengers running on the
same node can exchange data through a common store. Messenger behavior is
expressed in the M@ messenger language understood by all messenger platforms.
MO is an interpreted language. Messengers see the memory provided by a MOS
as a set of dictionaries where information is stored as pairs consisting of a key
and a value. The key is used to access the value associated to a given infor-
mation. In this paper, we present a memory consistency model, called access
consistency, that is well suited to implement a distributed shared memory to ez-
tend the common store available for messengers running on the same MOS node
to spawn a network of MOS nodes; i.e, to allow messengers to share information
wrrespective of their physical location in the network.

Keywords: memory consistency model, access consistency, messenger, M@, MOS.

Chapter 1

Introduction

Distributed shared memory (DSM) is an attractive model for information shar-
ing between processes or threads that execute on different computers linked
through a network. When a DSM system is used, each process can reference
data located everywhere in the network as if it was local to the node where
the process is running. The memory of the different nodes composing the DSM
is seen as a cache of the shared memory. Like in a caching system, access to
non local data (data not available in the local cache) results in the data being
transferred from a remote node to the local cache. The transfer of data between
the different caches over conventional networks is very costy. Hence, most DSM
systems try to reduce the traffic between the different caches.

One way of reducing traffic between caches (nodes) is by replicating data on
several nodes. Data is then accessed locally on all the nodes where it is repli-
cated. However, the price to pay for data replication is that of maintaining the
coherency of the replicated data. This means that, modifications done on data
have to be applied somehow on all the replicas. As a consequence, maintaining
data coherency generates activity on several nodes and also some amount of
network traffic. In the worst cases, maintaining coherency of replicated data
can generate more network traffic than that necessary to achieve data sharing
without replication.

In fact, the amount of network traffic generated by a DSM system is highly
dependent of the “protocol” (memory consistency model) used by the DSM sys-
tem to maintain the coherency of replicated data. Memory consistency model
is therefore an important issue in designing a DSM system and the choice of a
memory consistency model is one of the critical decisions that have to be taken
by any designer of a DSM system. Many memory consistency models [Mos93]
have been designed for different kinds of DSM systems, but none of them is
suited for all DSM systems. The choice of a memory consistency model de-
pends on a number of parameters, among which we can mention the type of
applications for which the DSM system is designed and the system (hardware
and software) on top of which the DSM system has to be implemented.

In order to understand why a specific memory model is needed for mes-

sengers, we will present first briefly, the messenger paradigm and how memory
is managed in the MOS micro-kernel. Access consistency is designed for im-
plementing DSM with messengers and for messengers running on a network of

MOS nodes.

1.1 The Messenger Paradigm

Messengers [Tsc93] are mobile threads of execution useful for structuring dis-
tributed algorithms [DMMTH95]. The execution of a messenger takes place
in a messenger platform. One such platform is the M@ platform [Tsc94]. Sev-
eral messenger platforms are connected by unreliable channels through which
messengers are sent as simple data packets.

Inside a given platform, messengers are sequential processes executing con-
currently and in parallel. They coordinate their execution by the means of (1)
a shared dictionary, and (2) messenger queues. The dictionary is a shared data
structure accessible to all messengers. A messenger can insert new data, change
or remove old data in/from the dictionary. A messenger is able to insert itself
in a queue, its execution is then stopped until it reaches the head of the queue.
Messengers can create at run-time (1) new data, (2) new messengers in the
platform where they are executing, and they can move themselves or send other
messengers to other platforms.

To summarize, messengers are anonymous and autonomous sequential pro-
cesses, executing in parallel and able to move between platforms and to coordi-
nate their work by the means of shared data structures and messenger queues.

1.2 The MOS Distributed Micro-Kernel

MOS (Messenger based Operating System) [TDMMH94] is a distributed micro-
kernel designed for the efficient execution of messengers and implemented on
1386 architectures. As is the case for every micro-kernel, the main challenge for
MOS is to determine the basic functionality (minimal set of services) to confine
in the micro-kernel in order to get a very small and truly generic micro-kernel.
The driving philosophy of MOS with this respect, is to avoid location trans-
parency at the micro-kernel level. This is practically achieved by providing only
local services at the micro-kernel level and by shifting all inter-node services,
i.e., services requiring cooperation between different nodes at the operating sys-
tem servers level. The main advantage of this approach is that there is no
“hard-wired” protocol inside the micro-kernel.

1.2.1 The Structure of MOS

In fact, in MOS, each micro-kernel is a M messenger execution platform offering
only local services to messengers. Each node contains such a platform; and when
messenger platforms are linked through a network, they constitute a distributed
micro-kernel, even though there does not exist any kind of cooperation between

them. However, as a messenger can create other messengers for execution on
remote messenger platforms and because messengers can be used to implement
arbitrary protocols, messengers are used in MOS to implement inter-node (inter-
platform) services. Cooperation between nodes is achieved in this way at the
messenger level and not at the micro-kernel level.

In MOS, the different platforms are linked through unreliable channels. Mes-
sengers use the channels to move from platform to platform. When a messenger
moves, it is packed by its origin platform which then outputs it on the specified
channel. If the packed messenger reaches its destination platform in whole and
without corruption, it is unpacked and is unconditionally turned into a messen-
ger thread and executed by the platform concurrently with other messengers,
provided there are enough resources to do so.

Actually, three levels of abstraction exist in MOS (see figure 1.1). The first

user and OS
7 < processes

messenger
threads

\
o
&

networked
platforms

<--—= indirect interaction of processes on the same platform through their messengers
<——= direct interaction of messengers on the same platform, with their platform
and with the processes they control

Figure 1.1: The three levels of abstraction in MOS.

level corresponds to the distributed micro-kernel described above as a set of
messenger platforms linked through a network. Messenger platforms offer basic
services for messengers which occupy the second level of abstraction. Messen-
ger platforms, together with the hardware where they execute supply a virtual
machine that understands the messenger language. Messengers are concurrent
threads of execution written in the messenger language; they are interpreted by
the virtual machine provided by messenger platforms. At the level of messen-
gers, sits the real operating system, i.e., the necessary servers that implement
OS functionality; therefore, OS servers are implemented in MOS by messen-
gers. However, for efficiency reasons, OS servers should not be completely im-
plemented in an interpreted language. For this reason, and for the need to
execute user programs compiled in native CPU-code, MOS allows the execu-

tion of native code. Hence, the third level of abstraction corresponds to the
classic abstraction of process. At this level we have processes executing native
CPU-code under the control of messengers. A messenger can control the ex-
ecution of only one process, but it is possible to have a messenger without a
process under its control. As is shown in figure 1.1, messengers executing on
the same platform can interact directly. A messenger can interact also with the
process under its control and with its platform. Two processes executing on
the same platform cannot interact directly, their controlling messengers must
mediate their interaction (e.g. achieve interprocess communication).

At bootstrap time, a first messenger is injected into the network of messenger
platforms. This messenger will create other messengers that will finally populate
all the platforms. All these messengers will collaborate to offer the services
of the operating system. One can imagine in an extreme case, that different
initial messengers implementing different operating systems are injected into the
network of platforms. Each of them may get control of a subset of platforms;
this will result in the partioning of the system into disjoint sets of nodes that
run different operating systems. For example, each set of nodes can implement
its “own” process and memory management policies. What is unusual is that,
even in this extreme case, messengers running on nodes belonging to different
sets are still able to interact. Moreover, messengers can move between nodes
running different operating systems.

1.2.2 Services offered by the MOS Micro-Kernel

As mentioned above, the MOS micro-kernel presents to messengers a virtual
machine offering only local basic services. The MOS micro-kernel does not
contain policies, it only offers mechanisms that can be used by messengers to
implement and enforce various kinds of policies. The following principles are
applied to all services provided by the MOS micro-kernel:

e A key mechanism is used for controlling access to data objects in memory:a
messenger cannot access an object for which it does not have the right
key. Keys can be seen as capabilities. They are used to locate objects
in memory and to specify the operations allowed on them. When an
object is stored in memory, its creator must associate to it at leat one key.
Then the object creator must publish the key to the other messengers that
need to access the data. An object creator or owner can grant selectively
access rights on the object to different messengers. Indeed, if the object
creator associates multiple capabilities specifying different access rights
to the object, and if it publishes selectively the capabilities to different
messengers, these messengers will be grant different access rights on the
object.

e A currency mechanism is used for uniform resource management: messen-
gers pay for all the resources they consume for their execution; namely,
CPU time, memory and network bandwidth. When a messenger is no
more able to pay for the resources it consumes, it is silently removed from

the system. The price of different resources are dynamically adjusted ac-
cording to the demand from messengers. By adjusting the credit given
to different messengers, it is possible to enforce various kinds of priori-
ties. Practically, each messenger has an account from which the system
deduces charges resulting from the execution of the messenger. A mes-
senger can transfer money to another messenger executing on the same
platform. This is done by letting the first messenger withdraw money from
its account and deposit it in the account of the other messenger. Finally,
a number of messengers can share an account; this is desired when the
messengers cooperate to achieve a common task. Their common account
is used to pay for the resources they consume to accomplish the task. Of
course, the MOS micro-kernel ensures that this currency mechanism is
not forgeable; i.e., a messenger cannot increase its assets fraudulently or
cannot withdraw money from another messenger’s account.

Even though all the services provided by the MOS micro-kernel are highly
intertwined, we group them in (a) thread management services, (b) memory
management services, (c) execution of native code and (d) other services.

Thread management includes (a) the execution and the scheduling of messen-
gers, (b) the creation of messengers, and (c) the synchronization of messengers.
In the next section, we detail the memory management service in the MOS
distributed micro-kernel.

1.3 Memory Management in MOS

The MOS micro-kernel provides only a basic memory management service for
messengers running on the local node. Messengers request memory to the micro-
kernel by creating and storing data structures into memory. No virtual memory
services are provided by the MOS micro-kernel. A messenger can request that
a data structure be stored in a private memory region for the messenger, or in a
region of memory shared with other messengers. Also, messengers are charged
for memory they consume for their execution. This done by requesting that
each data structure be funded. A data structure that is no longer funded is
removed from the memory. For data structures stored in the private memory
of a messenger, the messenger account is used to fund the data. Shared data
structures are funded differently: a messenger can attach an account to a shared
data item, and a number of such accounts can be attached to a data item.
These different accounts are then used to fund the data item. In this way each
messenger that needs the data can decide to sponsor it independently of other
messengers. Also this ensures that a data item is not removed from the memory
if a misbehaved or ill-intentioned messenger attaches an empty account to the
data if other non empty accounts are attached to the data.

In MOS, messengers and processes have different views of the memory inside
which they are executing. On one hand, a messenger sees the memory of the
platform on which it is executing as a set of three dictionaries. One of these

dictionaries is private to the messenger.! It is used by the messenger to store
information—data and code—that is not shared with other messengers. The
other two remaining dictionaries? are accessible to all messengers running on
the same platform and are used for information exchange between messengers.
Information is stored in dictionaries in pairs consisting of a key and an associated
value. We will note such a pair (k,v) where k is the key and v the value
associated to it. Both & and v can be arbitrary data objects® supported by the
underlying messenger language. Normally messengers access information stored
in memory (one of the three dictionaries), by proving its associated key. One
operator is used to create a new pair (k,v) in memory or to change the value
of v if the pair already exists in memory. A second operator allows a messenger
to access the value v if it provides the right key k associated to it. And a last
operator is used to remove a known pair from a dictionary.* One can see the
address space of a messenger as a collection of data items—portions of memory—
disseminated into three dictionaries (see figure 1.2). Indeed, even if each of
the two shared dictionaries is potentially entirely accessible, the messenger has
effectively access only to parts of them, namely those containing information
for which the messenger knows the associated key. What is unusual here is
that there is no notion of “address”. Information stored in memory is accessed
indirectly via its associated capabilities. In fact, one part of the information is
used to access the remaining part.

On the other hand, processes have a rather traditional view of memory, i.e.,
a flat space of addressable memory words subdivided into three regions: a read-
only region for the code, a read-write region for data and another read-write
region for the heap and the stack. Contrary to the messenger case, the address
space of a process is linear and completely private. A priori, two processes will
have completely unrelated address spaces protected each from the other and
therefore will have access to different objects in memory. Also, the address space
of a messenger is protected to the process under the control of the messenger.
A process cannot access objects lying in the address space of its controlling
messenger. However, a messenger can access memory regions mapped in the
address of the process under its control. The main reason for this, is to allow
a messenger initialize the address space of its associated process with the right
information such as code, data, and other state information before launching
theexecution of the process.

To enforce the two views of memory described above, two distinct mech-
anisms are used to achieve protection. On one hand, in the messenger space
(the second level of abstraction), address space protection is carried out by the
messenger platform.The messenger platform detects any attempt from a mes-
senger to access information not lying in the messenger’s address space—when

In MO, the private messenger dictionary is calledlocaldict.

2Called respectively globaldict and servicedict in M.

3In M@, k is usually a name or a key object.

4M@ provides the define, get and undef operators. They all take a dictionary and the
object to use as the key k for the data item being defined, accessed or destroyed. The define
operator takes a third parameter specifying the value v to associate with the key k.

7 (.
7
I N]
/
, .
/
/
K -]
dictionary o~ ¢ dictionary
msgr 2
\\
\
—— \ '/ ——
————— \\ [L
————— A | s— 5
private : = : private
dictionary |- ,: . dictionary

———= data items addressable by msgr 1

---= dataitems addressable by msgr 2

Figure 1.2: Two messengers and their “address spaces”.

the messenger does not provide the right key to access the information—and
generates an “error condition”. If the faulting messenger is not prepared to
handle such a condition, it is aborted.

On the other hand, MOS uses the facilities provided by the memory manage-
ment unit (MMU) to achieve protection at the process level. However, address
space protection and management at the process level is not done by the MOS
micro-kernel. It is the responsibility of messengers controlling the execution of
processes. The MOS micro-kernel provides the basic services to allow messen-
gers to do the job as they need. Indeed, a messenger can create an object called
a page map to represent the address space of the process executing under its
control. Afterwards, the messenger can add objects called pages in the page
map. The page map and the pages it contains define the portions of the address
space of the process that are mapped into main memory.

A messenger can dynamically change the address space mapping of the pro-
cess under its controls. Furthermore, page maps and pages can be shared be-
tween messengers as is the case for all other objects. In this way, messengers
can realize sharing between processes running under their control, either at the
address space level(sharing address spaces) or at the physical level (sharing phys-
ical pages). Sharing at the address space level is achieved between two processes
when their address spaces are mapped identically into main memory. In this
case, their address spaces contain exactly the same pages, and these pages are
mapped to the same physical frames. On the contrary, sharing at the physical
level is achieved when two processes share a number of physical frames. It is not

messenger level

Oﬁ 0 ~ pagel e@

msgrl msgr2

pagemapl pagemap2

process level

0x5000

address space
processl
address space
process2

0x1000
0x0000
physical level
0x5000
0x2000 ,”gﬁx
0x1000 <
physical
memory

Figure 1.3: Sharing an address space.

necessary that the shared physical frames be the mapping of the same pages.
For example page P; of one process and page Ps of the second process can be
mapped on the same physical page. In the notation used here, the subscript
indicates the page number in the process address space.’

Figure 1.3 illustrates how messengers can realize sharing of the address
spaces of the processes under their control. The two messengers share the same
page map object which is used to represent the address space of both processes.
Consequently, the two processes share physical pages. Correspondig addresses
in address spaces of the two processes reference the same objects. This shar-
ing scheme can be used to implement multi-threading. The two native code
processes can be seen as different flows of control of the same process. Finally
figure 1.4 shows how messengers achieve sharing of physical pages for processes
under their control. The two processes have distinct address spaces described
by two distinct page maps. For the first process, only pages 0,1 and 5 of its
address space are mapped into physical memory. They are respectively mapped
on physical frames 1, 5 and 2. And the second process has pages 5, 8 and 9 of its

5In the M@ messenger platform, page maps are created with the createpagemap operator,
and pages with the createpage operator. Page maps are handled as dictionary; the operators
for handling dictionaries are used to add /remove pages in/form page maps. Only integer values
can be used as keys to add pages in a page map. The setpagemap installs the specified page
map to represent the address space of the process under the control of the calling messenger,
and the getpagemap operator returns the page map describing the address space of the process
under the control of the calling messenger.

pagemapl pagemap2

messenger level

process level

0x9000
0x8000

0x5000 0x5000

address space
processl

address space
process2

0x1000
0x0000
physical level !
i ¢ 0x6000 <t
P> 0x5000 :
i -->0x2000 <o
B> 0x1000 Bm——ee
0x0000
physical
memory

Figure 1.4: Sharing physical pages.

address space mapped respectively on physical frames 0, 6 and 2. Hence physi-
cal frame 2 is shared by the two processes. However, objects lying on physical
frame 2 are not referenced by the same addresses in the two processes. In the
two cases of sharing illustrated above, processes executing native code are not
aware that they are sharing a number of physical pages or their whole address
space. All happens transparently to the two processes. Therefore, the processes
have no means to ensure consistency of the information they are sharing. More
precisely, without any additional protection means, the processes cannot detect
situations of racing. However, the two sharing schemes are sufficient for the
sharing of read-only information for processes running on the same messenger
platform.

1.4 Memory Consistency Models

In a uniprocessor system, each write access to memory is instantaneously visi-
ble to all running threads. In a multiprocessor system with distributed shared
memory or in a multicomputer system, this is no longer true. There is a “some-
what long” delay between a write access to shared memory at one processor and
the time this write access becomes visible to other processors. Moreover, in a
uniprocessor system, all write accesses to memory are totally ordered and are

therefore seen in the same order by all threads. This is difficult and costly to
achieve in a multiprocessor system. And depending on how local write accesses
to shared memory are made visible to remote processors, these writes can be
seen indifferent order by remote processors. For example, a write from processor
P; at location x can be seen at processor F; before a write from processor Py
at the same location, while the write from Py is seen before the write from F;
at processor P;.

It is impossible for a programmer to write programs that execute correctly
on a system if the memory behavior as determined by the memory consistency
model® is not known a priori. Tanenbaum gives in [Tan95] the following defi-
nition: A memory consistency model is essentially a contract between the soft-
ware and the memory. If the software agrees to obey certain rules, the memory
promises to work correctly.

Defining a memory consistency model is essentially fixing the order under
which the different processors see memory accesses, i.e., fixing the different se-
quences allowed to be observed by the processors. Two memory consistency
models will differ in the sequences of memory accesses they allow the differ-
ent processors to observe. Consistency models which impose more restrictions
on the memory access sequences’ will allow the programmer to express easier
correct programs than models that impose less restrictions. On the other end,
less restrictive memory models exhibit better performance than more restrictive
models. Therefore designing a memory model is making a trade-off between the
desired memory performance and the desired easy of programming.

memory model determines the performance of the DSM system, how easy a
programmer can express a correct program . ..

Different memory consistency models have been defined [Mos93, KNA93].
We present some of them in the following sections. In [Mos93], Mosberger
discusses memory consistency models and their influence on software in the
context of parallel machines and focuses on the influence that weakened con-
sistency models have on language, compiler and runtime system design. Some
researchers [Mis86, ABJT93, MRZ95] are interested in formalizing memory con-
sistency models in order to compare the various models and to devise efficient
implementations.

Sequential Consistency (SC)

Contrary to strict consistency which allows only one sequence of memory ac-
cesses, and therefore does not allow indeterminism, all other consistency models
allow multiple sequences of memory accesses. Lamport [Lam79] defined a SC
memory to be a memory that allows as the result of the execution of a (mul-

The memory behavior determines precisely the different sequences of memory accesses
visible by the different processors.

“Memory model M is said to be more restrictive or stronger that model My if the set
of allowed memory access sequences under M; is a subset of the memory access sequences
allowed under Mjy. If M is stronger than My, My is said to be less restrictive or weaker than
M.

10

tiprocess) program, any valid interleaving of the memory operations specified
by each process. More precisely, a memory is SC if it satisfies the following
condition:

The result of any execution is the same as if the operations of all
processes (processors) were evecuted in some sequential order, and
the operations of each individual processor appear in this sequence
in the order specified by its program.

The behavior of a SC is that observed when a multiprocess program is ex-
ecuted on a uniprocessor system. Therefore, SC can be seen as a model that
allows a distributed shared memory system to hide the distributed nature of the
shared memory.

SC is considered to be the ideal memory model that has to be provided by a
distributed shared memory system.® For this reason, most weaker consistency
models that have been defined—because implementations of SCare known to
have bad performance—specify conditions that must be satisfied by a program
in order to get executions that are sequentially consistent. Release consistency
and entry consistency are two such weaker models. They are all based on the
fact that many programs expect to see a consistent memory only at some points
of their execution. As an example, write operations performed by a process
in a critical section need not be seen by other processes waiting to enter that
critical section until they get access on the critical section. It is sufficient that
the waiting processes see these write operations only when they enter in the
critical section.

Weakly consistent systems

Dubois et al. [DSB88] have observed that SC consistency is an overly restrictive
memory model and proposed weak ordering as an alternative to SC. Weakly
consistent systems comprise those memory models that use weak ordering with-
out making distinction between accesses to shared memory. Weakly ordered
systems, presented in the next section, also use weak ordering but make distinc-
tion between accesses to shared memory.

The aim of both weakly consistent systems and weakly order systems is to
improve the performance of shared memory systems by weakening the consis-
tency guarantees provided by the system. This is possible because programs
do not need to see a consistent memory all the time in order to execute cor-
rectly. However, weakening the memory consistency increases the constraints
on program behavior in order to get correct execution. This means that, the
programmer has to deal with the weak guarantees provided by the memory and
to be aware that programming for weakly consistent memory systems can be
error prone. Most programmers are accustomed to SC, making a transition to
a more restrictive memory model is not an easy task.

8Many implementations of parallel and concurrent programs assume a SC memory model.
Programming for a weaker memory model is more difficult and therefore more error prone.

11

Some weakly consistent memory models are Processor Consistency [Goo89,

GLL*90], PRAM Consistency [LS88] and Causal Consistency [LS88].

Weakly ordered systems

Weakly ordered memory systems make synchronization operations explicit to
the memory system, and consistency maintenance is done only at synchroniza-
tion points. They guarantee correct execution for programs that are properly
labeled or data-race-free. If all accesses to shared memory are bracketed inside
synchronization operations, the memory guarantees to provide a SC behavior.
This reduces the burden imposed on programmers since they are expected to
write data-race-free programs.

Many weakly ordered memory systems have been defined. We present in
this section, release consistency, lazy release consistency, entry consistency and
scope consistency. In the presentation below, we will use the following definition
from [DSB86]: An update to a memory location is said to perform with respect
to processor p; at a point in time when a subsequent read of that location by p;
returns the value written by the update.

Release Consistency (RC): Both release consistency and entry consistency
distinguish accesses to shared memory into ordinary accesses and synchro-
nization accesses. A synchronization access is performed on a synchro-
nization vartable and can be either an acquire or a release. An acquire
is performed when entering a critical section and a release is performed
when leaving a critical section. A distributed shared memory is said to be
release consistent if it satisfies three conditions [GLL*90, IDFL96]:

1. Before an ordinary access to a shared variable is performed,
all previous acquires done by the processor must have com-
pleted successfully.

2. Before a release is allowed to be performed, all previous
reads and writes done by the processor must have completed.

3. The acquire and release accesses must be processor consis-
tent.

The first condition states that a processor ensures to get up-to-date val-
ues of shared variables if it performs an acquire before accessing shared
variables. The second condition states that modifications done to shared
variables by a processor may not be made visible to other processors be-
fore the modifying processor has performed a release access. And the last
condition ensures that writes performed to shared variables by any proces-
sor are seen by all other processors in the same order, although two writes
from different processors may be seen by any two processors in a different
order. Hence a RC memory promises a program will get sequential exe-
cutions if all accesses to shared variables are bracketed by acquire/release

12

pairs, i.e., all accesses to shared variables are performed inside critical
sections.

Lazy release consistency (LRC): Lazy release consistency [KCZ92, Kel95]
is a variation® of RC that delays the propagation of modifications to shared
variables done inside a critical section. Instead of propagating those mod-
ifications to all other processors when the modifying processor performs
a release, the modifications are made visible to any processor only when
it tries to access the shared variables, i.e., when it performs an acquire.
Compared to RC, LRC reduces the number of messages exchanged be-
tween processors to maintain memory consistency.

Entry Consistency (EC): Entry consistency has been defined by Bershad et
al. [BZ91, BZS93]. As for RC, EC ensures that a processor has a consistent
view of shared memory only when it enters a critical section. However,
contrary to RC which ensures that a processor gets up-to-date values of
all shared variables when it performs an acquire, EC ensures that only
shared variables accessed inside the critical section are updated. This
is done by associating each shared value to a synchronization variable,
i.e., each critical section is guaranteed to protect only a subset of shared
variables. In this way, a number of critical sections protecting disjoint sets
of shared variables can be executed concurrently by different processors.

To further increase the degree of parallelism between different processors,
EC distinguishes exclusive and non-exclusive accesses to shared variables.
More than one processors can have non-exclusive access to the same set
of shared variables at the same time. But when a processor holds to a
set of shared variables in exclusive mode, no other processor is allowed to
access the same set of variables at the same time either in exclusive mode
or in non-exclusive mode. More formally, given that the synchronization
variable (s) is used to control access to a critical section guarding the set
(Ds) of shared variables, then a memory system is entry consistent if it
satisfies the following three conditions:

1. An acquire access of s is not allowed to perform with respect
to a processor p; until all updates to Ds have been performed
with respect top;.

2. Before an exclusive mode access to s by a processor p; is
allowed to perform with respect to p;, no other processor
may hold s in non-exclusive mode.

3. After an exclusive mode access to s has been performed by
processor p;, any processor’s next non-exclusive mode access

9As far as software is concerned, a LRC memory and a RC memory exhibit the same
behavior, i.e., no modifications are needed to execute a program written for a RC memory on
a LRC memory and vice versa.

13

to s may not be performed until it is performed with respect
to p;.

Some important differences exist between RC and EC. First, RC requires
that all updates to any shared data must be performed before a release is
performed. This includes data not guarded by the just released synchro-
nization variable. On the contrary EC only requires that accesses guarded
by the synchronization variable being released be performed remotely and
only when the variable is next acquired by a remote processor. A release
is therefore used to indicate that a synchronization variable is free and
can be granted to another processor.

Second, RC requires that all previous accesses by a processor for synchro-
nization variables be performed with respect to all other processors before
that processor’s shared access is observed by any other processor. In con-
trast EC only requires that the acquire access for the synchronization
variable which guards the data being accessed be performed.

14

Chapter 2

Process Mobility and
Memory Consistency

Because MOS provides at the messenger level, a view of memory consisting
of data items without explicit address, it is natural to provide at this level a
data-based DSM system. This is a variation of non-page-based DSM systems
that adapts its unit of sharing to correspond to data structures provided by the
programming language. The main advantage is reduced false sharing; however
integration with virtual memory becomes difficult to achieve.

Among the various memory consistency models, entry consistency (EC)
seems to be the best memory model candidate for DSM at the messenger level
because (a) its unit of sharing is based on data structures provided by the pro-
gramming language and therefore matches well the messenger view of memory
and (b) it guarantees that the memory system exhibits a sequentially consistent
behavior for properly labeled or data-race free programs.

Unfortunately, EC and all other weakly ordered systems (RC, RLC and WC)
seem not to work properly in environments where processes can move among
different nodes (processors) as is the case for messengers. As with these systems,
memory is made consistent only at synchronization points, a process acquiring
a lock or any other memory synchronization variable is restricted to execute its
critical section entirely on the node where it acquired the lock or the variable.

To illustrate the behavior of the different weakly ordered memory systems—
the state of the art memory systems—Ilet us consider the following scenario. We
have two nodes N; and N5 and one process p. Each node contains in its local
memory a copy of all shared variables. Process p executes a sequence of instruc-
tions that access two locations # and y in shared memory (see program 2.1).
The moveto instruction has the effect of moving the process to the specified
node, i.e., the instructions following the moveto are executed on the new node.
We assume that s is a synchronization variable that protects the variables and
y. We assume also that memory is consistent when process p starts and that
memory locations and y contain the value 0.

15

1 acquire(s)

2 w(x)5; store 5 in x

3 moveto(N2);

4 a = r(x); store the value of x in register a
5 w(y)(at10); store (a+10) in y

6 release(s)

Program 2.1: Instructions executed by process p.

As far as process p is concerned, access to shared memory occurs properly
inside a critical section. As a consequence, p should expect a sequentially con-
sistent behavior of the memory system inside the critical section. When p leaves
the critical section, it expects to have written the value 5 in memory location z
and the value 15 in memory location y. That would be the case if the sequence
of instructions did not contain the mowveto instruction. Here after, we show that
various weakly ordered DSM systems fail to achieve sequential consistency in
the critical section for process p. Not surprisingly, these memory consistency
models have been designed for implementation in hardware in multiprocessor
systems. Multiprocessor systems are primarily used to boost the performance of
parallel applications. An application is decomposed in as many threads as the
number of available processors. Each thread executes on a dedicated proces-
sor, and the different processors use shared memory for data exchange between
the different threads. The principal aim of relaxed memory consistency models
in this arena is to allow optimizations that violate sequentially consistency in
order to hide memory access latency. Commonly used optimizations relax pro-
gram order to allow execution sequences that are not SC. The situation here
is quite different. The system is composed with a number of general purpose
workstations linked through an unreliable network. Each node (workstation)
can execute concurrently a number of processes. And processes can move from
one node to another. The aim of consistency models here is to offer a shared
memory abstraction in software in an efficient way. Following are the behaviors
of various weakly ordered memory systems with respect to the above scenario.

Firstly for EC, the memory system ensures that process p gets updated
values of x and y when it acquires the lock s. Memory location z is modified on
node N7 and afterwards p moves to node Ny. The next read from location z will
read the value on node N3 (0) which has not been yet updated because node N
has not yet acquired the lock s. For an EC memory system, no synchronization
occurs at this moment at this stage. Thus, the next write will store the value
(0 + 10) in location y. Next the process releases the lock s. At this stage, the
two nodes contain different values in locations # and y. Next if another process
p1 executing, let us say, on node N3, acquires the lock s just after it has been
released by p, the memory system will update the memory locations x and y of
N3 from the node which last acquired the lock s,! i.e., node Ny. The values of

1One can also assume that memory is updated from the node which last released the lock.

16

xz and y are not updated on other nodes. Hence process p; will see completely
different values from what p expected; namely 5 for and 0 for y (see figure 2.1).

N1 N2 N N2 0 N1 N2 N3
= = = x=0 = x=0 x=5
y=0 y=0 =0 y=10 =0 y=10| | y=0
a) when the moveto b) when the release c) after another process
instruction is executed : instruction is executed acquires the lock on N3

Figure 2.1: State of an EC shared memory when p is executed.

Secondly, for an RC memory system, shared memory is updated at release
time. As the release is executed on node N3, we assume that shared memory is
updated from node N5.2 Under RC, all the copies of memory locations z and
y are updated on all the hosts. The state of the memory system for this case is
given in figure 2.2.

N1 N2 N1 N2 N1 N2 N3
= = Xx=5 Xx=0 =0 Xx=0 x=0
y=0||y=0 y=0 y=10 | |y=10||y=10| | y=10

a) when the moveto b) just before the release c) just after the release
instruction is executed : instruction is executed instruction is executed

Figure 2.2: State of an RC shared memory when p is executed

The same scenario shows that the other weakly ordered memory systems—
the state of the art memory systems—also fail to handle properly process mobil-
ity. In other words, a properly labeled program will see a sequentially consistent
behavior from a weakly ordered memory system, only if the program satisfies
a further constraint; namely a process cannot move from one node to another
when it is inside a critical section. We present in the following subsection a
new memory consistency model that we call access consistency and that is well
suited for a messenger environment.

In this case, memory locations z and y would be updated from node N and would contain
respectively 0 and 10, what still is different from what expected.
20ne can also assume that shared memory is updated from the host that last acquired the

lock. In this case, £ and y would be updated from node N; and would contain respectively
the values 5 and O on all the nodes.

17

Chapter 3

Access Consistency

The main idea behind access consistency (AcC) is to update a shared data item
only when a process tries to access it. Only the data item being accessed by
the process is updated. One can observe the similarity with the behavior of
some OSes in regard to memory management. A page belonging to a process is
brought in main memory only when it is requested by the process.

Because an AcC memory system guarantees to update a data item whenever
it is requested by a process, the process does not need to acquire a lock before
accessing the data item in order to ensure that it gets an up-to-date value. As
a consequence, a process will always get the “right” value even if it has moved
to another node (processor).

For any running process, an AcC memory achieves an atomic view of any
individual access to shared memory. However, a process that needs an atomic
view for a sequence of accesses to shared memory must protect that sequence in
a critical section by a means completely decoupled from the memory system, for
example by acquiring the lock protecting the data items that are accessed in the
sequence. This conforms to the memory behavior in a system without shared
memory. In fact, in weakly ordered memory systems, a lock protecting a critical
section is used also to protect the memory locations accessed inside the critical
section. As a consequence, a memory item cannot be updated from another
node inside a critical section, and if the process executing the critical section
moves to another node, the memory fails to achieve sequential consistency inside
the critical section.

More precisely, AcC assumes the following conditions are met:

e accesses to distributed shared memory can be distinguished from other ac-
cesses to memory;

e a read access to shared data can be distinguished from a write access to
shared data.

Then, a memory system is AcC consistent if it satisfies the following condi-
tions:

18

Condition 3.1 For each memory location m, all processors agree on the order
of all operations on m although any two processors can see writes to different
memory locations in a different order.

Condition 3.2 A read operation » from memory location m is not allowed to
perform with respect to processor p; until the most recent write access to m
relative to r has been performed with respect to p;.

Condition 3.3 A write access w to memory location m is not allowed to per-
form with respect to processor p; until all most recent accesses to m relative to
w have been performed with respect to p;.

Condition 3.1 defines a total order on all operations on a given memory
location (more details on this order are provided below). We will use < to note
that order. Thus we will write o* < of® if operation of® on memory location
m occurs before operation 03 effected on the same memory location. Then we
have the following definitions:

Definition 3.1 Two operations of* and o}' on the same memory location m
are concurrent operations if and only if (a) o' and 0§ are read operations from
different processors and (b) there does not exit a write operation w™ such that
(o' < w™ < o or o) < w™ < o).

Definition 3.2 A write operation w™ to memory location m is the most recent
write access to m relative to an operation o™ (read or write) if ¥ operation o}*
such that w™ < 0" < o™ then of* is a read operation.

A read access ™ to memory location m is a most recent read access to m
relative to a write operation w™ if (a) ¥ operation o™ such that r™ < o™ < w™
then o™ is a read operation and (b) ™ and o™ have not been issued by the same
Processor.

A most recent access to memory location m relative to a write operation w™
s etther the most recent write to m relative to w™ or a most recent read to m
relative to w™.

It appears from the preceding definitions that there exists only one most
recent write operation relative to any operation. However, there may exist
more than one most recent read operations relative to a write operation. In
fact, if ¥ is a most recent read operation relative to w™, then any concurrent
read operation to ™ is also a most recent operation relative to w™.

Condition 3.1 states that all accesses to a given location are totally ordered.
The order required for AcC by condition 3.1 is more “weaker” than that specified
by SC. The order required by AcC—we will call it AcC order—must preserve
program order; furthermore, the different processors must agree on the order
of memory accesses on each memory location. However AcC order is somehow

19

“weak” in the sense that two execution sequences' are considered identical even
if they do not preserve the order of concurrent reads. This means that if
and r5* are two concurrent reads, a sequence where r{* appears before rj* is
considered to be identical to a sequence where r3* appears before r* provided
that the order of all other non concurrent operations is preserved. In other
words, if r* and r5* are concurrent we can assume indifferently that r* < ri?
or ry* < ri’.

Actually, AcC does not require each processor to see all the operations on
a memory location m issued by other processors. It is sufficient that each
processor sees from other processors, only operations on memory location m
that are most recent relative to its own operations on m. Therefore updates to
shared data items can be effected on demand from each processor.

Condition 3.2 ensures that each read operation returns the value written
by the most recent write operation at the same location. It also states that
concurrent reads can be performed on a memory location. Finally, condition 3.3
specifies that write operations on a memory location are exclusive, i.e., they
cannot be performed concurrently with any other operation. However, writes
on different memory locations can occur concurrently.

After having defined precisely what an AcC memory system is, let us see
how it behaves when we consider the same scenario described above (see pro-
gram 2.1). AcC does not relate locks to memory operations, therefore, when
process p executes the acquire(s) instruction, nothing special occurs (in terms
of memory operations to ensure consistency). Here, as far as the process p is
concerned, the bracket consisting of the acquire(s)/release(s) pair of in-
structions ensures that execution of the bracketed instructions appears atomic
with respect to accesses to memory locations x and y. As for the weakly ordered
memory systems, memory location z is updated with value 5 on node N; and
then process p moves to node Ny. Next, when process p reads the value of z on
node Ns, z is updated with the value 5 that p stored in that location on node
N; (because no other process has modified? z and AcC ensures that a data item
is updated whenever it is accessed by a process). As a result, p will write the
value (54 10) in memory location y before releasing the lock s. However, the
value of y is updated only on node N,. It will be updated on any other node
whenever a process executing there will try to access y. This results in the SC
behavior expected by process p; the next process to access x will see the value
5; and the next process to access y will get the value 15 (see figure 3.1) because
these are the values written in # and y respectively by the most recent write
operations on those memory locations.

From the above conditions for AcC consistency, it trivially follows that SC is
strictly stronger than AcC, i.e, any SC execution is also AcC, however, an AcC
execution may not be SC. For example, by considering only condition 3.1, one

L An execution sequence is a sequence of accesses to memory as perceived by an individual
processor. The sequence of accesses perceived by any processor P; may be different from that
perceived by another processor P;.

?The acquire(s) ensures that z and y are accessed in a critical section. We also assume
that any access to these variables requires the acquisition of s.

20

N1 N2 N1 N2 N1 N2 N3

x=5 x=5 x=5 Xx=5

<
I
o
<
I
o
<
I
o
1
o

y=15 | |y=0 ||y=15 |y

a) when the moveto b) just before the release c) just after the release
instruction is executed : instruction is executed instruction is executed

Figure 3.1: State of an AcC shared memory when p is executed.

sees that AcC allows execution sequences that are not allowed by SC. Indeed,
AcC allows operations on different memory locations to occur concurrently.
Moreover condition 3.2 makes it possible to execute concurrently read operations
on the same location. This relaxes further the constraints of SC on a memory
system. As a consequence, we can expect AcC to have better performance than
SC.

Both EC and AcC do not rely on a pre-established (fixed) unit of sharing,
on the contrary, they adapt their sharing unit to match the data structures
being accessed. However, some fundamental differences exist between the two
memory models. Firstly, EC distinguishes synchronization variables from other
shared data. Accesses to synchronization variables must be distinguished from
accesses to other variables; programs running on an EC memory system use the
acquire and release operations to access synchronization variables and normal
read and write operations to access other shared data. Moreover, EC guarantees
that only shared data accessed inside critical sections contain coherent informa-
tion. On the contrary, AcC does not provide the notion of synchronization
variable. But AcC requires that (a) accesses to shared data be distinguished
from accesses to other data and (b) among accesses to shared data, read oper-
ations be distinguished from write operations. And AcC ensures that a shared
data item is updated whenever a process accesses it, therefore, a process always
gets an up-to-date value for a shared data item.

Secondly, in an EC memory system, a synchronization variable is used to
protect a set of shared data items. And the association between the protected
data and the synchronization variable is allowed to change dynamically under
the control of the software executing on the memory system. While this flexi-
bility seems a priori appealing, it can however be a source of bugs. AcC ensures
only that each individual access to a shared data item is “atomic” for the process
accessing it. It does not provide any means to protect a set of shared data items
in order to get an atomic behavior for a sequence of accesses to the protected
data. Software must use mechanisms provided by programming languages, the
run time environment or the operating system in order to achieve such atomic
behavior.

21

And finally, we showed through a simple scenario that EC, and the other
weakly ordered memory systems fail to handle process mobility. AcC has been
defined especially to handle process mobility in a messenger environment.3

3.1 Implementing AcC

From the definition of AcC consistency, it follows that both read and write oper-
ations are blocking operations (conditions 3.2 and 3.3). A read operation cannot
return until the most recent write operation has performed, and a write opera-
tion cannot return until all most recent operations are performed. Consequently,
a straight forward implementation of AcC can associate a lock with each shared
data item. Each operation on the data item first acquires the associated lock,
performs the intended operation and next releases the lock.

More precisely, each shared data item (data structure at the language level)
is associated the following information:

e Owner: the owner of a shared data item is the processor that performed
the last write operation on the data item or the processor that created the
data if a write operation has not yet been performed on the data.

e Lock and processor list: a lock on a data item can be held by a proces-
sor either in read-only mode in which case the lock can be shared with
other processes, or in read-write mode in which case the lock is exclusive.
Therefore only the data owner can hold an exclusive lock on the data
item. Furthermore, the data owner maintains a list of processors holding
a read-only lock on the data.

e Request list: the processor will maintain a FIFO list of requests from other
processes to access the data item.

Each processor? services the requests on data items on a first in first out

basis. When a process performs a request, it is blocked (the request is put on the
data FIFO list) until the processor terminates serving the request (the request
is removed from the data FIFO list), upon which the process is unblocked and
can issue another memory access request.

Then when a processor finds a read request in the FIFO associated to a
shared data item, it checks if it holds a lock on the data item. If so, the
processor returns the local value of the data to the process. On the contrary,
the processor cannot be the data owner (a data owner has always either a read-
only or a read-write lock on the data); it performs the following sequence of
operations:

3AcC is well suited for any environment sharing the properties of a messenger environ-
ment, namely: (a) support for process mobility, (b) possibility to distinguish efficiently shared
data accesses from other accesses (this can be done easily in interpreted environments) and
(c) possibility to use efficiently data structures provided by the programming language as the
unit of sharing.

4Here we use the terms node and processor to refer to the shared memory software on the
node.

22

1. the processor locates the data owner;

2. the processor requests a read-only lock on the data to the data owner and
waits for the response. The response will contain also the up-to-date value
of the data item;

3. the processor stores the received value in the local copy of the data item,;

4. the processor returns the received value to the process and the process
resumes execution.

When a processor finds a write operation on a shared data item, it checks
if it holds an exclusive lock on the data (in this case, the processor is the data
owner). If this is the case, the processor updates the local copy of the data and
the process resumes execution. On the contrary:

1. if the processor is not the data owner, it locates the data owner;

2. if the processor is not the data owner, it requests data ownership from
the current data owner and waits from the response. The response will
contain also the list of processors holding a read-only lock on the data;

3. the processor requests each host holding a read-only lock on the data to
release the lock and waits for the response;

4. the processor acquires an exclusive lock on the data;

5. the processor updates the local copy of the data with the value provided
by the process and the process resumes execution.

Each request from one processor to another to acquire a lock on a data
item or to acquire data ownership contains a timestamp (such requests are
addressed only to a data item owner), for example one generated using Lamport
logical clocks []. The data owner maintains a list of those requests and uses
the timestamps to handle the requests by processing first the older requests.
And when ownership is transferred to another processor, the list of remaining
requests is also transferred to the new data owner. Because for each data item,
there is only one data owner, there will be only one list of requests for the
data item. The data owner examines the list of requests after execution of each
memory operation, and executes the oldest request found (provided the list is
not empty). Then the data owner switches back to the execution of the next
memory operation requested by a running process. In this way, all requests on
a given data item are serviced fairly.

On a request from another processor to acquire data ownership for a data
item, the data owner releases the lock it holds on the data and transfers to the
requester (a) the list of processors holding a read-only lock on the data and
(b) the list of requests from other processors remaining to be handled. On a
request from another processor to acquire a read-only lock on a data item, the
data owner adds the requesting processor on the list of hosts holding a read-only

23

lock on the data and sends to the requester a copy of the local data value. Then
the data owner degrades the lock it holds on the data from read-write to read-
only. And finally, if a processor holding a read-only lock on a data item receives
from another processor a request to release the lock, the processor releases the
lock and transfers it (sends an acknowledgement) to the requester.

3.2 The given implementation achieves AcC

In this subsection, we give an informal proof of the fact that the implementation
proposed above actually achieves AcC. Tt is sufficient to consider two cases: (a)
all the processes execute on the same processor and (b) the processes execute
on different processors. For each case we show that the implementation satisfies
the three conditions for AcC (Condition 3.1 through Condition 3.3).

Firstly, for the case where all the processes execute on the same processor,
the FIFO associated to a data item serializes the accesses to the data item and
therefore insures that both processes see all the operations on the data in the
same order. Furthermore, the fact each process is blocked until its requested
memory operation is performed by the processor ensures that the memory sys-
tem preserves program order. As there is only one processor, it will be the
owner of all shared data items. Then conditions 3.2 and 3.3 trivially follow
from the fact that all accesses to a shared data item are serialized by its asso-
ciated FIFO. Indeed, no operation is allowed to be performed on the data item
until the preceding operation (in the FIFO) has been performed.®

Next, for the case where the processes execute on different processors, a
given data item is owned by only one host. The owner is allowed to perform
read and write operations on the data item. To show that condition 3.1 holds, we
construct a global sequence of operations performed on a data item as follows:

e The owner of a data item adds each read operation performed on the data
item on the global sequence of operations: whenever the execution of a
read operation is finished, the read is added on the global sequence of
operations;

e Each host holding a read-only lock on the data item maintains a local
sequence of read operations performed on the data item; the reads are
added in the local sequence of reads in the order they are executed by the
host;

e Before adding a write operation on the global sequence of operations, the
owner data owner collects the partial (local) sequences of reads requests
effected by other processors as follows. The implementation requests that
a processor acquires an exclusive lock on a data item before performing a
write operation on the data. Two cases can arise:

5The implementation is even stricter than AcC which allows concurrent reads to be per-
formed concurrently.

24

1. The processor performing the write operation has already an exclu-
sive lock on the data (and is therefore the data owner): the processor
adds the write operation on the sequence of operations. No other
operation has been performed on the data by another processor.

2. The processor performing the write operation has not yet an exclusive
lock on the data. In this case, the implementation requests that the
processor acquire data ownership before locking the data. At acquire
time, the processor receives from the data owner (if it is not the
data owner), the list of hosts holding a read-only lock on the data
item. Then the processor requests that each processor holding a
read-only lock on the data relinquish it. At this stage, any process
holding such a lock sends an acknowledgement together with its local
sequence of read operations performed on the data item and the
processor reinitializes the local sequence of read operations to an
empty sequence. The processor performing the write operation adds
the received local read sequences on the global sequence of operations
performed on the data item.

In this way, all read operations performed by different processors
between any two consecutive write operations are added on the global
sequence of operations performed on the data. As the reads from
each processor maintain program order, they will maintain program
order in the global sequence of operations performed on the data
item. The processor performing the write operation does not need to
know in which order to add the different local read sequences on the
global sequence of operations because all such reads are concurrent
and are therefore considered to be performed in any order. After
having added all the local read sequences on the global sequence of
operations, the processor proceeds performing the write operation
and adds the write on the global sequence of operations on the data
item.

e Whenever data ownership is transferred to another host, the host trans-
ferring the data ownership transfers also to the new data owner, the global
sequence of operations performed so far on the data item.

The global sequence of operations on a data item built with the above algorithm
preserves program order and is seen by all the processors.

Conditions 3.2 and 3.3 follow from the fact that a node performing a read
operation on a data item must first acquire a read-only lock on the data and a
node performing a write operation must first acquire an exclusive lock on the
data. Indeed, lock acquisitions are serialized by the data owner which handles
the requests one at time. And acquiring an exclusive lock on a data item ensures
that all the previous operations on the data have been performed (because all
read-only locks and the previous read-write lock on the data are discarded and
no operation can be performed if a lock is not held). Similarly, acquiring a
read-only lock on a data item discards the write-only lock held on the data and

25

therefore ensures that the previous write on the data has completed.

3.3 Data Item Ownership

The proposed implementation does not specify how the owner of a data item
is located. Either a centralized or a distributed approach can be used for that
purpose. One centralized approach would be to have one node maintain the list
of data owners and play the role of a server (manager). Each request to acquire
a lock will be addressed to the server that relays the request to the data owner.
The data owner handles the request and addresses the response directly to the
node that requested the lock. Acquisition of data ownership could be handled
as follows: (a) the requester sends the request to the server and waits for the
response, (b) the server forwards the request to the data owner and waits for the
response, (c) the owner handles the request and sends the response to the server
and (d) the server updates ownership information and forwards the response to
the requester which becomes the new data owner.

The problem with the centralized solution is that the server becomes a bot-
tleneck in the system. Furthermore, failure of the server will certainly be costly
to the system in the sense that either all the system will fail (if it is not fault
tolerant) or the recovery process will be very long. A classical approach to relax
the burden imposed on the “one server” is to partition the data and distribute
it among the different nodes, i.e, to have one node be the server for a set of
data items only. In this way, we expect that the load is distributed between the
different servers. Moreover, any failure of a single system should not affect the
whole system and, in a fault tolerant system, the recovery process is expected
to be faster because there is less data to process for any single node.

Another alternative is to modify a little the proposed implementation. In-
stead of having data ownership changing from one node to another, the owner
of a data item would be fixed, for example it would be the node that created the
data item. Now, to perform a write operation on a data item, a processor does
not acquire data ownership on the item, instead it requests only from the data
owner an exclusive read-write lock on the data. Update to the data is performed
only after the lock has been received. And to perform a read operation, a node
requests, as in the proposed implementation, a read-only lock on the data to the
data owner. This approach seems to solve the bottleneck problem present in the
“on server” approach provided that data items are well distributed on different
nodes (if all data items are created by the same node, we have a degenerated
case similar to the one server approach). However, this approach is not well
suited for an up/down implementation in a dynamic environment. Indeed ...

A decentralized approach in locating a data item owner would be to have
each node maintain a record of the data probable owner which is the best guess
for the owner of the data. The probable owner is initialized with the node that
created the data item. Each node addresses each request (lock and ownership
acquisition) for a data item to the data probable owner. And any node that
receives a request for a data item for which it is not the owner, forwards the

26

request to its own probable data owner. Whenever a node transfers ownership
to another node, the former owner updates its probable owner field with the
new data owner. This ensures that a request on a data item follows a chain
of probable owners until it reaches the actual owner of the data. However, the
chain of probable owners may grow with the requests to acquire data ownership.®
In this case, a request has to be forwarded many times to reach the actual data
owner. Given the fact that sending a message in a network of workstations has
a high cost, this scheme may become very costly in large networks.

A simple variation of the probable owner approach is to have the true owner
of a data item send periodically information to other nodes to allow them update
their best guess of the data owner.” This has the benefit of preventing a sequence
of probable owners to grow very long in a large environment. Its drawback is
that the information is sent to a large number of nodes including the hosts
that have the correct guess for the data owner, and therefore requires a big
number of messages to be sent (we assume that the network does not support
broadcasting and multicasting). Moreover, it is not easy to determine the most
appropriate time to send update information to other hosts. Indeed, on one
side, waiting longer than necessary before sending such information may not be
effective because the number of requests that follow a long chain will potentially
be increased. On the other hand, sending the update information earlier than
necessary can have little impact if most nodes have the best guess for the data

5In a network of N nodes, a request has to be forwarded at most N — 2 times. We do
not consider the first message sent by the requester as a forward message. Therefore, in the
worst case, N — 1 messages are sent to reach the data owner. We can consider N/2 to be the
average number of messages sent to reach the data owner.

We have assumed in the above approximations that only one request to acquire data own-
ership for a given data item circulates in the network. When multiple requests to acquire
ownership can be pending, the number of messages needed to reach the data owner in the
worst case can be as much as (N — 1) + (N — 2) = 2N — 3. This is the case when all the
nodes on the chain followed by the request have also requested data ownership. It is then
possible that all the requests reach the data owner and are all queued before the first request
is serviced. If the requests are queued in the reverse order of the nodes forming the chain,
ownership will also be transferred in the reverse order. The request originated from the outer
host (the first host in the chain) will be forwarded until it reaches the host at the end of the
chain. This will necessitate N — 1 messages. The first request is then serviced and ownership
is transferred to the preceding node in the chain, together with the queue of pending requests.
The request originated from the first node in the chain will be forwarded N — 2 times in the
reverse order. Therefore a total of 2N — 3 messages is needed to reach the node that will
handle the request.

It is therefore possible to use the following optimization: a node that receives a request
to transfer data ownership forwards the request to its best guess only if the node itself has
not yet issued a request to acquire data ownership. On the contrary if the node has already
issued a request to acquire data ownership, it queues the received request. This request will
be handled after the node receives data ownership. At that time, either the request is put on
the queue of pending requests if there are pending requests, or it is handled by the new data
owner. To maintain fairness, the timestamps are used to handle first the oldest requests.

"This variation uses the following simple heuristics: the cost of reaching the owner of a
data item increases with time. As time passes, the probability that the owner of a data item
changes, increases and therefore, the chain to reach the data owner becomes longer. Note that
the optimization that consists of not allowing a host to forward a request for a data item for
which it has itself already requested ownership can be applied here.

27

owner. The cost of sending update messages is not amortized.

Another variation of the probable owner approach allows a selective update
of the best guess according to the requests to acquire data ownership. Whenever
a request to acquire data ownership, originated from one node, reaches the data
owner, information to update the best guess for data ownership is sent back
on the reserve path followed by the request.® In this way, all the nodes on the
chain followed by the request will update their best guess for the data owner in
the reverse order in which the request reached them.

3.4 Discussion

From the above implementation, it follows that AcC can be seen as a degener-
ated case of EC where each shared data item is protected by its own synchro-
nization variable and where a synchronization variable cannot protect more that
one shared data item. When a processor accesses a data item, it first acquires
the unique lock associated to the data, then it updates the data as required
and after that, it releases the lock. Acquiring or releasing the data lock is not
requested explicitly by a process, instead, it is performed automatically by the
memory system on each access, in a way completely transparent to the process.

We assumed in the implementation that each shared data item is completely
replicated on all the nodes. This allows read operations to be performed con-
currently and at the same time reduces the cost of read operations while making
write operations more costy. Indeed, the local copy of a data item is usually
used in read operation (when the node performing the read holds already a lock
on the data); for a write operation all read-only locks held on the data by other
nodes have to be discarded. Furthermore, the amount of memory consumed
to represent a shared data item is very high. Beside the amount of memory
needed to represent the data value itself, additional memory is required to rep-
resent the information needed by the memory system to handle operations on
the data item (the data owner, the lock, the list of hosts having read-only locks
on the data, the queue of requests pending on the data, etc). The amount of
memory needed to represent this additional information does not depend on
the size of the shared data item. As a consequence, big shared data items will
have less memory overhead® than smaller shared data items. In order to re-
duce the memory overhead, one can group an number of shared items to create
a bigger data structure. The so created data structure becomes the unit of
sharing for the memory system and not the individual items forming the data
structure.!® However doing so increases the potential of false sharing, especially

8The optimization consisting of not forwarding a request if the node has itself requested
data ownership can be applied in this case also.

9Here memory overhead represents the ratio between the additional amount of memory
needed to represent a data item and the actual amount of data needed to represent the value
of the shared data item. Replicating a shared data item on N nodes multiplies the data
overhead by N. However replicating is an admitted solution when one compares the cost of
memory to the benefit of speeding up shared memory operations.

10Tn M@, the programmer can group a number of unrelated data items in a dictionary and

28

when unrelated items are put together. One looses the principal benefit of a
data-based-shared memory system when the size of shared objects increases,
especially when unrelated data items are put together to form a bigger data
structure.

When a number of processes running on different processors are heavily shar-
ing a data item, and if the proportion of write operations is very high compared
to that of read operations, the data ownership will frequently change from one
processor to another. It is even possible to reach the degraded situation where
each node sits in a loop where it acquires data ownership, performs only one
memory operation on the data item namely an update operation, relinquishes
data ownership and then requests again data ownership to perform the following
memory operation on the data. This situation is similar to the situation which
arises in a weakly ordered memory system when many processes are heavily
contending for acquiring a lock that protects shared data. In order to enhance
the performance of an AcC memory system in this situation of high contention,
it is necessary to group in critical sections as much number of accesses to the
shared data item as possible. This will allow a number of accesses to be per-
formed on the shared data by a node before relinquishing data ownership for
the benefit of another node. However such grouping of memory operations is
not always easy to achieve, it may even be impossible to do.

make the dictionary the shared object.

29

Bibliography

[ABJ+93]

[BZ91]

[BZS93]

[DMMTHY5]

[DSB86]

[DSB8S]

[GLL*90]

[Goo89]

Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli,
and Gil Neiger. The power of processor consistency. Technical
Report GIT-CC-92/34, College of Computing, Georgia Institute
of Technology, March 1993.

Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared
memory parallel programming with entry consistency for dis-
tributed memory multiprocessors. Technical Report CMU-CS-
91-170, Carnegie Mellon University (CMU), September 1991.

Brian N. Bershad, Matthew J. Zekauskas, and W. A. Sawdon.
The midway distributed shared memory system. In Proceedings

of the IEEE COMPCOM Conference, pages 528-537. IEEE, 1993.

Giovanna Di Marzo, Murhimanya Muhugusa, Christian F.
Tschudin, and Jirgen Harms. The Messenger Paradigm and its
Impact on Distributed Systems. In ICC’95 workshop on Intell:-
gent Computer Communication, 1995.

Michel Dubois, Christoph Scheurich, and Fayé A. Briggs. Memory
access buffering in multiprocessors. In Proceedings of the 13th An-
nual International Symposium on Computer Architecture, pages

434-442. ACM, 1986. Weak Consistency.

Michel Dubois, Christoph Scheurich, and Fayé A. Briggs. Syn-
chronization, coherence, and event ordering in multiprocessors.
In IEEE Computer, volume 21, pages 9-21, February 1988.

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip
Gibbons, Anoop Gupta, and John Hennessy. Memory consistency
and event ordering in scalable shared-memory multiprocessors.
In Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 15-26. ACM, 1990.

J. R. Goodman. Cache Consistency and Sequential Consistency.
Technical Report 61, IEEE Scalable Coherent Interface Working
Group, 1989.

30

[IDFLY6]

[KCZ92]

[Kel95]

[KNA93]

[Lam79]

[LS88]

[Mis86]

[Mos93]

[MRZ95]

[Tan95]

[TDMMH94]

[Tsc93]

Liviu Iftode, Cezary Dubnicki, Edward W. Felten, and Kai Li.
Improving Release-Consistent Shared Virtual Memory using Au-
tomatic Update. Proceedings of the 2nd International Symposium
on High-Performance Computer Architecture, February 1996.

Peter Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Re-
lease Consistency. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages 13-21. ACM, 1992.

Peter Keleher. Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Rice University, January 1995.

Prince Kohli, Gil Neiger, and Mustaque Ahamad. A character-
ization of scalable shared memories. Technical Report GIT-CC-
93/04, College of Computing, Georgia Institute of Technology,
Atlanta, January 1993.

Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on
Computers, C-28(9):690-691, September 1979. Sequential consis-
tency.

Richard J. Lipton and Jonathan S. Sandberg. Pram: A scalable
shared memory. Technical Report 180-88, Departement of Com-
puter Science, Princeton University, 1988.

Jayadev Misra. Axioms for memory access in asynchronous hard-
ware systems. ACM Transaction on Programming Languages and

Systems, 8(1):142-153, 1986. Memory Model.

David Mosberger. Memory consistency models. Technical Re-
port TR 93/11, Department of Computer Science, University of
Arizona, 1993.

M. Mizuno, M. Raynal, and J. Z. Zhou. Sequential Consistency
in Distributed Systems: Theory and Implementatio. Technical
Report 2437, INRIA, INRIA Rennes, March 1995.

Andrew S. Tanenbaum. Distributed Operating Systems. Prentice
Hall, 1995.

Christian F. Tschudin, Giovanna Di Marzo, Murhimanya
Muhugusa, and Jirgen Harms. Messenger-based Operating Sys-
tems. Technical Report No 90 (Cahier du CUI), University of
Geneva, 1994.

Christian F. Tschudin. On the Structuring of Computer Com-
munications. PhD thesis, Université de Geneéve, 1993. These No
2632.

31

[Tsc94] Christian F. Tschudin. An Introduction to the MO Messenger
Language. Technical Report No 86 (Cahier du CUI), University
of Geneva, 1994.

32

