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Abstract

ACCESS is a new algebraic specification formalism, which focuses on the fine description of the “true”
concurrency and on a high degree of expressivity.

Systems are specified by a set of local states, whose value changes under the occurrence of events. Both
events and data structure are specified by abstract data types. Static properties, i.e. global constraints
over events and data structure, are described by first order formulae, while dynamic axioms, explaining
the behavior of events, are given by causality rules.

Concurrency can be described in different ways, it can be interleaving or true concurrency. Finally,
expressivity is given by fine descriptions of both static and dynamic properties.

Accgss has been demonstrate to be a natural generalization of a great variety of Petri Nets (as for
example -Algebraic, -Coloured, -With arc extensions Petri Nets). It is also able to capture concepts from
other formalisms as Gamma language or CO-OPN.

This report presents a complete description of ACCESS syntax and semantics, together with an ex-
ample of AccEss specification based on Petri Nets with Arc Extensions. This report also explains how
specifications written in other languages as Petri Nets, Gamma, CO-OPN, are written in ACCESS.
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Chapter 1

Introduction

There exists a great variety of formal languages or formalisms for systems specification, each of them
addressing one or more properties like concurrency, modularity, description of data structure, etc.

We can mention the wide family of Petri Nets, which were firstly intended to describe concurrency
between processes. Some extensions, in different directions, have been provided to the basic Petri Nets.
Petri Nets have been extended with coloured tokens [Jens92], instead of only black tokens, in order to
handle Petri Nets of small sizes, even for wide systems. The whole description of data structure handled
by the system is possible, when we use Petri Nets with algebraic specifications [Reis91]. Another recent
extension made to Petri Net integrates the notions of modularity and hierarchy [Guel94]. Usual properties
of Petri Nets test the minimal value a place must have before a transition is fired. Some more complex
conditions have been introduced by [Jens94], by defining not only input and ouptut arcs between places
and transitions, but also tests and inhibitors arcs for testing special conditions. As a formalism derived
from Pretri Nets, we mention the CO-OPN language [Buchs92], which is heavily based on algebraic petri
nets, integrating notions of object-based as well as synchronization between objects.

Another wide family of formal languages is given by the process algebra, as for example the ACP
language [Baet90], specifying systems by their behaviour. Predefined operators are provided to produce
new behaviours from previous ones, as for example operators for parallelism, sequentiality or non deter-
minism. way. The parallelism defined by ACP corresponds to the interleaving, i.e. two events, a, b, occur
in parallel if there is the following choice: a occurs first and then b occurs, or b occurs first and then a.

While Petri Nets and Process Algebra describe, what we can call “computation” details of how exactly
occurs the parallelism, the Gamma language [Ban93] is attached to the description of a logical parallelism,
with no matter of a further implementation. A Gamma program consists in a collection of reactions able
to occur in any order and at any time, in that way attention focuses only on possible events occuring in
the system. This language is particularly well adapted for specification of reactive systems.

In this short list of examples of formal languages, we observe that most of them are based on algebraic
specifications, extremely useful to describe data structure handled by systems. Concurrency is present in
various forms as the interleaving with predefined operators for algebra of processes, or parallelism given
by Petri Nets, or logical parallelism of Gamma programs. Moreover, modularity and object-oriented
features are also controlled by most languages.

The formalism presented here, ACCESS, tends to be a formalism large enough to capture features of
other languages, in order to offer a generalization of other formal languages. One of the motivations to
have a generalization language, is that a common formalism is useful for the study of properties of the
captured languages, as well as the comparison between generalized languages, e.g. see if models for Petri
Net specifications are equivalent to models for other specification languages.

Another crucial point, addressed by ACCESS, concerns the description of concurrency. Concurrency
is generally predefined, AccEss allows user-defined concurrency, so that in a given system you can have
interleaving, or concurrency of Petri Nets, or some other “true” concurrency, or even a mixing of these
previous concurrencies.



Following the logic of a generalization language, we have provided AccEss with first order formulae
allowing, in that way, the specification of a great variety of more or less complex properties.

Access stands for Algebraic Concurrent Events for System Specification, as a system is specified by
the mean of algebraic specifications for data structures, and by events, changing the state of the system.

Events are described in a double way: firstly events are considered as a static data and thus are defined
with algebraic specifications (as standard data structures), secondly events are seen as dynamic entities
whose behaviour changes the state of the specified system. When events are seen as data, they can be
compound with operators in order to produce more complex events: we can define an operator called //,
for example, that allows the handling of an event, which represents a possibly large set of other events
occurring all in parallel. Events considered as data can also have their static properties be described by
special axioms, called Static Azioms. When events are seen as dynamic entities changing the state of the
system, their behaviour is captured by special axioms, Dynamic Azioms, allowing the description with
all required details of their behaviour.

Section 2 presents an informal overview of AccEss. The basic concepts underlying ACCESS are
presented as well as examples of the way they are used to specify systems. Section 3 gives the whole syntax
of AccEss. This section consists in formally defining ACCESs presentations, which are the mean used in
AcCCESSs to specify systems. Section 4 is dedicated to the semantics attached to ACCESS presentations,
it gives the evaluation of all syntactical elements and defines which structures are considered as models.
Section 5 focuses on examples of ACCESS presentations. It is entirely based on the case of Coloured Petri
Nets (CPN) and the way how CPN specifications are transformed into ACCESS presentations. Section 6
gives the transformation into ACCESS presentations of algebraic petri nets, Gamma programs and CO-
OPN specifications. Finally, section 7 ends this report with some concluding remarks about ACCESS
characteristics.



Chapter 2

Overview of Access

AccEss specifies systems by describing their data structures, and the changes of their state.

Data Structures are basically algebraic specifications. Changes of the system are defined by the mean
of events, an event being responsible for a change occurring in a state of the system. Events actually
change the global state of the system by modifying local states, i.e. parts of the global state. Operators
working about events enable the writing of complex events. Events are defined by the constraints they
have to check, and by their behavior, i.e. by the way they modify the state of the system.

This chapter informally presents the notions of local states, data structures and events. It then de-
scribes the Static Axioms, expressing constraints about sorts and operators; Dynamic axioms, describing
the behavior of events; and Meta-rules, a mechanism to avoid the writing of large sets of Dynamic Axioms.

2.1 Local States

We want to express both the data structure handled by a system and the changes of states occurring in a
system during its life. Changes of states are explained on the basis of Local States, that are smaller parts
of the whole global state of a system. The set of Local States reflects the Global state of the system.

Example 2.1 The system s subdivided in five local states: Lsti, Lsty, Lstz, Lsty, Lsts. The global
state of the system is given by the set of all local states. Fach local state has a data sort and will take
a value in an associated algebra. We see that Lsty, Lsta, Lsts are of the sort nat (for natural numbers),
while Lstg, Lsty are of the sort bool (for booleans). Each Local State has its own value, as 10 for Lsty or
true for Lsts.

Figure 2.1: Local States of System

In AcCCESS this set of local states is defined as a special S-set, called V', where S is the set of available
data sorts. In this example, we have:

Vnat = {LStl,LStQ,LStg}
‘/bool = {LStg, L5t4}



2.2 Data Structures

Data Structures are described with usual Algebraic Specifications, i.e. data sorts, operations on sorts
and conditions.

Example 2.2 The algebraic specification of natural number and booleans is given by a set of sorts names,
S and by a set F' of operations over these sorts.

S ={nat, bool}

F ={ zero: — nat,
pred . nat — nat,
succ: nat — nat,
+: nat nat — nat,
true : — bool,
false : — bool,
- bool — bool,
Vo bool — bool,
A bool — bool }

2.3 Events

Events are also described by Algebraic Specifications. We then have event sorts, operations on events
and the possibility to write conditions over events.

Moreover, it is possible to write any combination of events and to describe the details of the behavior
of this combination.

Example 2.3 The system of ezample 2.1 changes its state under the effect of event evy, or under event
evy, or under the compound event [/(evy,evs). Event evy changes the local states Lsty and Lsty to the
new values 11 for the first one and 7 for the second one. Event evs changes only Lsts to the value false.
The compound event //(evy,evs) changes the three local states simultaneously.

Figure 2.2: Changes of States under events

In AccEss the event sorts are defined in a special set, called EV. Operations over events are part of
the set F', as it is the case for operations over data. The event of our example are all of the same sort



ev, and each ev; is an operation over the events, that returns an event of type ev. Similarly, // is an
operation over the events that takes two events of type ev and returns a new event of type ev.

EV = {ev}

F = { €V . — eV
evy —ev
//: evev —ev}

Remark 2.4 The set of operations F' may also contain operations over data structures and events si-
multaneously.

2.4 Constraints: Static Axioms

Static Azioms are used to express static constraints of the system, they work on either data structures
or events, e.g. the + operator must have 0 as neutral element, or the // operator must be commutative.

Static axioms are first order formula: equational atoms, predicates, or a combination of these two with
the logical connectors =, 3V, =, V, A.

Example 2.5 The examples 2.2 and 2.3 give data sorts, event sorts and operations over these sorts, we
give now some constraints that we can write in ACCESS.

Az ={ —(D(Pred(zero)),pred(succ(n)) = n,n+ zero=mn,...
—(True) = False,True Na =a, ...

//(ev1, eva) = //(eva,evy), ...}

Here =(D(Pred(zero)) is the predicate D(Pred(zero) combined with the connector —; pred(suce(n)) =
n is an equational atom that constraints the pred operator to be the inverse of suce operator.

2.5 Description of Events: Dynamic Axioms

Static axioms about events, explain some constraints an event has to respect when it is seen as a data
structure, but static axioms don’t explain how exactly the event behaves to change the state of the
system. To do that we have introduced: Dynamic Azioms, that explain how the state of the system 1is
changed when an event occurs. Dynamic Axioms are made of State Modification Formula (changing the
value a local state) and of Static Azioms.

Example 2.6 Ezample 2.3 shows that when evy occurs the value of the local state Lsty is increased by
one, while the value of the local state evs is decreased by one. The event evy inverses the value of the
local state Lstz. Dynamic axioms describing these behaviors are:

day =evy: Lsty := suce(Lst) —
—(Lsty = zero) & (Lsty := pred(Lstz))
das =evy: €— Lstg:=(Lsts)

The first dynamic axioms explains that evy firstly changes the local state Lsty by its successor, it then
checks if the local state Lsts 1s different from 0 and then changes this local state by its predecessor.

The second dynamic axiom describes evs, this event simply changes the value of local state Lsts to its
mnverse value.

For the case of the event //(evi,evq) a dynamic aziom could be:

das = //(ev1,evy) :  Lsty := suce(Lsty) & € —
—(Lsty = zero) & (Lstg := pred(Lstz)) &
(Lsts := —(Lsts))



This dynamic aziom is nothing else than the composition of the two previous arioms, we see that
//(ev1, eva) firstly behaves like the first parts of evy and evy and then continues with the second parts of
evy and evs.

The arrow —, appearing in meta-rules, provides a temporal ordering of the precondition (before the
arrow) w.r.t the postcondition (after the arrow).

2.6 Meta-Rules

It is often necessary to write a large number (perhaps infinite) of Dynamic Axioms. Example 2.6) gives
a dynamic axiom concerning the event //(ev1,evs), but there can be also another dynamic axiom for
the event //(evy,//(ev1,evs)), and so on. We see that there are an infinite number of such dynamic
axioms. The notion of Meta-Rules helps the writing of Dynamic Axioms. Meta-Rules are made of two
parts: some premices and an action. The premices, as well as the action, are meta-dynamic axioms. The
premices stand for dynamic axioms (not meta-), and the action explains how a new dynamic axiom is
obtained when the premices are replaced with dynamic axioms. Premices give the structure of dynamic
axioms used to derive new dynamic axioms.

Example 2.7 The following meta-rule describes the behavior of two events occurring in parallel:

€ 13f1_>§1361’23T2_>52 ~ //(Wl,ﬁz)if1&Tz—>?1&§2
where €;, f;, §; are meta-variables, that stands for syntactical elements.

This meta-rule means that when an event is obtained by the // operator over two other events €vy, vy,
the resulting event begins like the first part of the first event followed by the first part of the second event
and ends like the second part of the first event followed by the second part of the second event.

According to this meta-rule, we obtain for the two events evy, evs in place of €v1,€vs, the dynamic
axiom dag of example 2.6. But with this (unique) meta-rule we also obtain the dynamic axiom for

//(ev1, [/ (e, ev2)) by:

day = //(evy, //(evi,eva)) : (Lsty := suce(Lsty)) & (Lsty = suce(Lsty))&e —
—(Lsty = zero) & (Lsty := pred(Lsts)&—(Lsty = zero) &
(Lstg := pred(Lsts)) & (Lsts := —(Lsts))

This new dynamic axiom says that //(ev1,//(ev1, evs)) begins with the precondition part of ev; and
continues with the precondition part of //(evy, evs), it ends with the postcondition of ev; and with the
postcondition of //(ev1, evs). The result is that the local state Lst; is incremented by 2, while Lsts is
decremented by 2 and Lst3 is inversed.



Chapter 3

Syntax of Access

A system is specified in ACCESS by four sets of syntactical elements: the signature, the local states, the
variables and the axioms.

The signature is composed of abstract data types (data sorts and operations on sorts), and of abstract
events types (events sorts and operations on events).

A local state is a part of the whole system, its sort is one of the data sorts of the signature. The set
of all local states gives the global state of the system.

The variables, useful for specifying constraints upon the system, are of different sorts: variables of
data and variables of events.

Finally, the axioms let us explain the adequacy of a model to the system. There are 3 different kinds
of axioms. The static axioms are conditions concerning static properties about the abstract data types
and the events, while dynamic axioms are intended to explain the changes occurring to the system. A
dynamic axiom describes the effect of an event upon the state of the system. Besides these two basic
types of axioms, there is a third one, the meta-rules, that are used to avoid the writing of all the dynamic
axioms.

A system is then specified using abstract data types and events, whose constraints are given by static
and dynamic axioms.

This chapter describes the signature, the local states, the variables, the terms and the axioms writable
in AccEss. It then gives the presentation of a system.

3.1 Signature

The signature is made of abstract data types and of abstract events types. Abstract data types refer to
the data structure the system manipulate, while events are responsible for the system evolution.

Above the sets of data sorts and event sorts, the set of operations lets us construct data with some
other data or events, or lets us construct events with other events or data.

Both data sorts and event sorts are order-sorted sets.

This section firstly presents basic definitions about order-sorted sets, and then gives the signature
definition.

Definition 3.1 A partial order relation over a set E is a binary relation R such that:
RC(Ex E)
and R 1s reflezive, transitive and antisymmetric.

Definition 3.2 Given Ry, Ro two partial order relations over the sets E1, Ey respectively. The extension
of these two orderings to the strings of equal length in (E1 U Eq)*, is the partial ordering R defined by:

(v ... v, v1...vn) € R aff (v, v;) € (R1 U R2)



Definition 3.3 Given R, a relation verifying the antisymmetric property, then R* is the transitive and
reflexive closure of R.

Notation 3.4 We denote by R = {}*, the partial order relation made of the reflexive relations only.

Definition 3.5 A signature is a triple ¥ = (S, EV, I') where:
e S s a partially ordered set of data sorts:
S = {s1,82,83,...}, CsC (S xS), Cs a partial ordering
e EV s a partially ordered set of events sorts:
EV = {evy, evy, evs,...}, CevC (EV x EV) , Cgv a partial ordering
e I is a set of operations over the data and events:

F={op:w—v|we(SUEV) ve (SUEV),op is an operation identifier}
P satisfies the monotonicity condition:
If op w1 — vy, 0p : wy — vy € F and (w1, w2) €C(supv) then (vi,v2) € (Cs U Crv)

Where C(suev) is the extension of Cs and Cgy to the strings of equal length in (SU EV)*.

The signature is made of a partially order-sorted set of data sorts, a partially order-sorted set of events
sorts, and of a set of operations over data and events.

The operations of F', have as parameters sorts, w, a list of either data sorts or events sorts or a
combination of both data and events sorts. These operations have as result sort, v, a unique name of
data or event sort.

The monotonicity condition [Gogu89] over overloaded operations ensures the result sort of an over-
loading function to be a supersort of the result sort of the overloaded function.

When an operation overloads another operation by using supersorts as parameters sorts, then the
result sort must also be a supersort.

Definition 3.6 Given E a set of sorts, and Cg a partial order relation, we say that v' is a subsort and
v is a supersort if (v',v) belongs to Cp.

Notation 3.7 We denote by opy s the operation op : w — v of F'.

Remark 3.8 The use of partial order relations over data sorts (Cg) and event sorts (Cgpv ) eases the
writing of operations of F' and, further, the writing of constraints. The principle is that what is valid for
a given sort is valid for all its included sorts.

Definition 3.9 [Wirs90] Given a set E, an E-set A is a family {A.}everyv of sels indexed by .
Definition 3.10 Given a set F and two E-sets, A, B, the set of all E-morphisms is given by:
{f:A— B|f atotal function, s.t. f(A.) C B.,Ve € E'}
Definition 3.11 Given a set F and two E-sets, A, B, the set of all E-functions is given by:
{f:A— B|f is a partial function, s.t. f(A.) C B.,Ye € E}

Example 3.12 An example of signature is given by the natural numbers, the booleans, the queues of
naturals and the queues of booleans together with events working upon these data sorts.
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Y = (S,EV, F) where:

S = {nat, bool, queue_nat, queue_bool}

EV = {ev_nat,ev_bool, ev}

F ={ zero: — nat,
pred : nat — nat,
succe : nat — nat,
+ : nat nat — nat,
true : — bool,
false : — bool,
- bool — bool,
Vo bool — bool,
A bool — bool,
emptyqueuve_nat : — queue_nat,
add_nat : nat queue_nat  — queue_nat,
remove_nat : queue_nat — queue_nat,
first_nat : queue_nat — nat,
emptyqueue_bool : — queue_bool,
add_bool : bool queue_bool — queue_bool,
remove _bool : queue _bool — queue_bool,
first_bool : queue _bool — bool,
get_nat : nat — ev_nat,
put_nat : nat — ev_nat,
get _bool : bool — ev_bool,
put_bool : bool — ev_bool,
//: ev_nat ev_nat ~ — ev_nat,
//: ev_bool ev_bool — ev_bool,
//: ev ev — ev}

We have Cs={}*, Crv= {(ev_nat, ev), (ev_bool, ev)}*

Data sorts of this signature are nat, bool, queue_nat, queue_bool, and events sorts are ev_nat, ev_bool,
ev. The event sorts, ev_nat, ev_bool, denote events working about natural numbers and booleans respec-
tively, while the sort ev is a more general event sort. There is no order on data sorts. The order on event
sorts states that the ev sort is greater than the other two event sorts.

Operators are either usual operators over natural numbers, booleans and queues (zero,V,...), or
operators producing events from a data only (get_nat, get_bool) or operators producing events from
events (//). In the case of events produced from a data only, we call these events, labelled events and
the data is the parameter of such events. In the case of events produced from other events, they will be
called compound events. For example with // the resulting compound event is an event produced when
two other events occur in parallel. This operator furnishes also an example of overloading, as the same
operation identifier, //, is used over different sorts: ev_nat, ev_bool or ev. The monotonicity condition is
verified as the ev_nat, ev_bool sorts are two subsorts of the ev sort.

Remark 3.13 The use of operations, working on both events and data, is particularly useful to make an
event become a data structure or vice-versa.

3.2 Local States

An entire system is subdivided into local states, each of them reflecting a part of the system. The set of
all local states composes the global state. A local state has a value whose sort is one of the sorts of S.

11



Definition 3.14 V is the S-set of all local states.
The local states have each a name and a data sort.

Example 3.15 For an example of two queues, one of natural numbers and the other one of booleans,
the set of local states is made of one local state of sort queue_nat and another one of sort queue_bool.

V= Vnat ) Vbool ) uneue_nat ) uneue_bool where
Vaat = 0
Viool = 0
uneue_nat = {Nqueue}
uneue_bool = {Bqueue}

In this example, there are only two local states, Nqueue, Bqueue, whose data sorts are queue_nat,
queue_bool respectively.

3.3 Variables

Variables are used to symbolize either data structures or events. Therefore there are different types of
variables, the variables of data sorts and variables of events sorts.

Definition 3.16 X is the (S U EV)-set of all variables:

X = X5 U Xgy where:
Xg 1s the S-set of variables of data
Xgv 1s the EV-set of variables of events

Example 3.17 Ezamples of variables are:

(XS)nat = {m}: (XS)bool = {a: b}
(XS)queue_nat = {S}, (XS)queue_bool = {T}
(XEV)ev_nat = {6'U7’Lt1,6'l)nt2}, (XEV)eU_bool = Q)a (XEV)ev =0

3.4 Terms

The operations, over data and events, let us construct data or events from other data or events. The
terms are all these syntactical constructions.

Definition 3.18 Let ¥ = (S, EV, F) be a signature, X a set of variables, V a set of local states, the set
of terms Tx (X, V) is the least (SU EV)-set such that:

1. (Xs)_gUVS g(TE(X,V))S,SES
. (XEV)ev g (TE(Xa V))evaev € LV
3. 4 eTs(X,V)y,,i€{l,...,n} and
opE Fop:vi...v, = v then = op(ty, - tn) € (T5(X, V)
4. (v,v") €(Cs UCgrv) = (Ix(X, V), C Tu(X,V)')

Terms are either variables or local states, or combination of terms with operations of F'. The partial
orderings, Cgs, Cgy induce all terms of a subsort to be also terms of a supersort.

Example 3.19 For the example of queues of naturals and queues of booleans, some terms can be:

add_nat(m, N queue), add_bool(a V b, Bqueue) € (T=(X,V))ses
get_nat(m), put_nat(m), //(get nat(m), put_nat(m)) € (Ts(X,V))ewverv

See example 3.17 for the types of variables.

12



Terms can be of either data sort or event sort. The data sort terms add_nat(m, Nqueue) and
add_bool(a V b, Bqueue) stand for adding the natural value m, or the boolean value a V b, on the queue
Nqueue or Bqueue respectively. The event sort terms get_nat(m), put_nat(m) stand for two labelled
events having as parameters a natural number m. The last event sort term //(get_nat(m), put_nat(m))
stands for the event being the result of the two events get_nat(m), put_nat(m) occurring in parallel.

3.5 Axioms

Axioms are the part of the system specification that constraints an algebra to stick to the system. These
axioms are of three different natures. First, we have Static Azioms, giving static properties about either
data structures or events. Then we have axioms specially dedicated to the description of events. These
Dynamic Azioms explain how a given event acts upon the system, and changes its state. Finally, special
Axioms, Meta-Rules, are a syntactic mean used to ease the writing of a large set (possibly infinite) of
dynamic axioms.

3.5.1 Static Axioms

Static Axioms can be made of traditional Fquational Atoms about data structures or Predicates about
data structure. But, Static Axioms may also contain Equational Atoms and Predicates about events.
Equational atoms are equalities between terms of the same sort (data or event sort). Predicates are
used to express definition constraints upon the terms. Static axioms are then given by combinations of
Equational Atoms and Predicates with the logical connectors V3=V A =.
Static axioms can be used in a global way or in a local way. A global static axiom must be valid for
all possible states of the system, while a local axiom has to be valid for the current state only.

Definition 3.20 Let ¥ = (S, EV, F) be a signature, X a set of variables, V a set of local states, the set
of Equational Atoms is given by:

EAs(X,V) = Uygsupv)its = ta|t1,t2 € Ts(X, V) }

Definition 3.21 Let ¥ = (S, EV, F) be a signature, X a set of variables, V a set of local states, the set
of Predicates is given by:
Preds(X,V)={D@®)|t € T=(X,V)}

Definition 3.22 Let ¥ = (S, EV, F') be a signature, X a set of variables, V a set of local states, the set
of Static (global) Axioms is the least set recursively defined by:

EAg(X,V)  C SAg(X,V)
Preds(X,V) CSAs(X,V)

sa1 Vsay € SAs(X

sa; Asay € SAs(X

sa, say, saz € SAs(X, V) } _ ] sm = sas € SAs(X,
;EE(XsLJXEv) —8a ESAE(X
Jx.(sa) € SAx(X

Vz.(sa) € SAx(X

Static (global) axioms are first order formula made of equational atoms or predicates combined to-
gether with logical connectors.

The further definition of Dynamic Azioms (see definition 3.27) needs Static Axioms that do not
contain nor Equational Atom nor Predicates about events. We will call Static Axioms appearing inside
Dynamic Axioms, Static local Axioms. The above definition of Static Axioms is actually the definition
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of Static global Axioms. We give now the dual definition of the Static local Axioms. This definition is
essentially the same as those of global axioms excepts that no Equational Atom and Predicates about
events are present.

Definition 3.23 Let ¥ = (S, EV, F') be a signature, X a set of variables, V a set of local states, the set
of Static (local) Axioms is the least set recursively defined by:

FAs(X, VI\(FAs(X,V))everv C SLAs(X,V)
Predg(X, V)\(P?“edg(x, V))evEEV g SLAE (X, \%4

slay Vslas € SLAs(X,V)

slay Aslas € SLAs(X, V)

sla, slay, slas € SLAx (X, V) } N slay = slay € SLAs(X, V)
z € Xg —sa € SLAs(X,V)

Jz.(sla) € SLAs(X,V)

Va.(sla) € SLAs(X,V

Example 3.24 Ezamples of Static global Azioms for the queues of naturals and booleans, are given by:

—(D(pred(zero)))
remove_nat(add_nat(m,s)) = s
remove_bool(add_bool(a,r)) = r
//(evnty, evnts) = //(evnta, evnty)

The Predicate: —~(D(pred(zero))) means that the predecessor of zero is not defined. The Equational
Atoms of queue_nat, queue_bool: remove_nat(add_nat(m,s)) = s and remove_bool(add_bool(a,r)) = r
mean that adding a value to a queue and then removing a value from that queue doesn’t affect the queue.
The Equational Atom of ev_nat: //(evnt;,evnts) = //(evnta, evnt;) means that the operator // over
ev_nat sort is commutative: combining two events of natural in parallel doesn’t depend on the order of
the combination.

3.5.2 Dynamic Axioms

Dynamic Axioms explain how an event modifies the state of the system. They consists of conditions the
system has to meet before, during or after the event takes place, and of description of the system’s state.
A dynamic axiom is made of three parts, the first one is the labelled event that is to be explained by the
axiom. The second and the third part are a collection of Static local Axioms combined with changes of
local states.

The changes of a local state are called State Modification Atoms; the mergence of State Modification
Atoms and Static Local Axioms are called State Modification Formula.

Definition 3.25 Let ¥ = (S, EV, F') be a signature, X a set of variables, V a set of local states, the set
of State Modification Atom is given by:

SMAs(X,V)=Uses{v:=t|veV,te (I=(X,V))s}

A state modification atom (sma) is made of the symbol :=, whose left part is given by a local state
and whose right part is made of a term. The sort of the local state and the term have to be equal. The
sma, v :=1 means that the local state v changes its value to the value of the term ¢.
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Definition 3.26 Let ¥ = (S, EV, F') be a signature, X a set of variables, V a set of local states, the set
of State Modification Formula ¢s the least set recursively defined by:

€€ SMFE(X, V)

SMAs(X,V) CSMFs(X,V)

SLAs(X,V) CSMFy(X,V)

He({elUSMAs(X,V)USLAs(X,V))
fa € SMFs(X,V)

5. fe SxMEF;(SX’ V) } = Ju.(f) € SMPs(X,V)

I

} = fl&fz € SMFE(X, V)

A State Modification Formula (smf) is either empty, ¢, that is to say, there is no action and the state
is not modified, or a State Modification Atom or a Static Local Axiom or a combination of two of these
elements by the special connector &. Finally, a State Modification Formula may be overalled by the 3
quantifier. This is very useful to explicit which smf supports which variables.

The symbol & is a syntactic symbol which doesn’t contain any notion of precedence. It only means
that the elements, connected with the & are involved in the same smf.

Definition 3.27 Let ¥ = (S, EV, F) be a signature, X a set of variables, V a set of local states, the set
of Dynamic Axioms s given by:

DAs(X,V)={evnt : f — g|levnt € (Ts(X,V))everv, f,9 € SMFs(X,V)}

Dynamic axioms are causality rules made of three parts: (1) an event term ewnt, representing the
labelled or compound event, whose behavior is explained by the dynamic axiom; (2) an smf, f, rep-
resenting a precondition, (3) an smf, g, representing a postcondition. The arrow, —, provides a local
temporal ordering as the precondition must occur before the postcondition.

Example 3.28 For the above example, Dynamic Azioms about events are:

get_nat(m) : —(Nqueue = emptyqueue_nat) —
(m = first_nat(Nqueue))& N queue := remove_nat(N queue),
put_nat(m) : € — Nqueue := add_nat(m, N queue)

See example 3.17 for the types of variables.

The expression =( Nqueue = emptyqueue_nat), is a Static Local Axiom, while (m = first_nat(N queue)
is an Equational Atom. The expressions Nqueue := remove_nat(N queue), N queue := add_nat(m, N queue)
are examples of State Modification Formula.

These two Dynamic Axioms describe events of natural, the first one explains how works the event
get_nat(m) and the second one the event put_nat(m). According to these Dynamic Axioms, the event
get_nat(m) removes an element from the Local State Ngqueue, if this local state is not an empty queue,
the element removed from the queue is then stored in the variable m. The event put_nat(m), add the
value m on the local state Nqueue. This event can always occur as there is not preliminary condition to

check.

3.5.3 Meta-Rules

Meta-rules are a mean to avoid the writing of an infinite number of dynamic axioms. The need of meta-
rules follows from the use of operators on events. For example, the // operator on events, operates in
the same way for all events. Without meta-rules, it becomes necessary to explicitly write all the dynamic
axioms, there would be one for //(evl,ev2), another one for //(evl,//(evl,ev2)), and so on.

A Meta-rule gives the skeleton of a dynamic axiom. The actual dynamic axioms are later derived
from the meta-rules and from previous other dynamic axioms.
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A Meta-rule is made of two parts, some Premices: zero, one or more meta-dynamic axioms and an
Action: one meta-dynamic axiom. Premices stands for previous actual dynamic axioms, that are used
to derived the new dynamic axiom. The Action stands for the dynamic axiom to derive. Meta-dynamic
axioms are dynamic axioms where the syntactical elements appearing inside are not fixed: meta-dynamic
axioms are only the skeleton giving a more or less precise form of the dynamic axiom they represent.

The use of meta-rules implies the use of meta-variables. These special variables are useful to get an
abstraction of the syntactical elements appearing in a dynamic axiom but not yet fixed.

When all the dynamic axioms will be derived from a meta-rule, all the syntactical elements appearing
in the meta-rule will remain unchanged, and all the meta-variables will become syntactical elements. The
difference between a variable of Xs U Xgy (appearing in terms) and a meta-variable is that the variable
stands for a future value of sort or event, and the meta-variable stands for a syntactical element.

Definition 3.29 Let ¥ = (S, EV, F) be signature, X a set of variables, V a set of local states, the set
of meta-variables of terms is the SU EV -set, Xp such that Xp N X = (0. The set of meta-variables of
smf is the set X spp, such that Xsyp N (XU X7p)=0.

Example 3.30 Some meta-variables of terms and smf:

(XT)ev _nat = {ﬁlaﬁ2}
({T) v_bool = {€Us3,€U4}
(X7)ew = {evs, evs }
(XSMF) :{fpfzayp%}

The meta-variables used here are of two kinds, the meta-variables that stands for ewvent terms:
€1, €0y, €3, €04, €05, €06 and the meta-variables that stands for smf: f,, f,,7;,9,. The idea is that
meta-variables of event terms will be useful to get an abstraction of events in meta-rules, while meta-
variables of smf get abstraction of smf appearing in meta-rules.

Definition 3.31 Let ¥ = (S, EV, F') be a signature, X a set of variables, V a set of local states, X the
set of meta-variables of terms, the set of meta-terms, Tx(X,V), is the least SU EV -set defined by:

L ((Ts(X,V))y U(X71)y) C (Tu(X, V)
2. te(Ts(X,V))y,,ie{l,...,n} and =

op€ Fop:vi...up — v then = op(t1, -, tn) € (Tu(X, V)
The set of T's(X, V) is the set of all terms that are written with (or without) meta-variables of terms.

Definition 3.32 Let X = (S, EV, F) be a signature, X a set of variables, V a set of local states, X sy r,
the set of meta-variables of smf, the set of meta-smf, SMFx(X,V), is the least set defined by:

1. (XSMFUSMFE(XV C SMF EXV)

2. fe€XsupUSMFy(X,V)) } f&g e SMFs(X,V)

gESMF(X,V)

The set SM F's(X,V) is the set of all smf written with meta-variables of smf. Note that meta-terms
cannot appear in meta-smf.

Definition 3.33 Let ¥ = (S, EV, F') be a signature, X a set of variables, X7 a set of meta-variables of
events, Xsyr a set of meta-variables of smf, V a set of local states, the set of Meta-dynamic Axioms
s given by:

DAs(X,V) = {evnt : f = glevnt € (Ts(X,V))everv, f,§E€ SMFx(X,V)}

A meta-dynamic axiom is a dynamic axiom, where meta-variables of terms or meta-variables of smf
can appear. Note that meta-variables of terms can only appear in the evnt part of the meta-dynamic
axiom, and that meta-smf can only appear in the f or g part of the dynamic axiom.
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Definition 3.34 Let ¥ = (S,EV, F) be a signature, X a set of variables, X1 a set of meta-variables of
terms, X sy a set of meta-variables of smf, V a set of local states, the set of Meta-rules is given by:

MRs(X,V)={Ci;...;Cn ~  A|Cii={l,...,n},Ac DAs(X,V)}

A meta-rule consists of two parts, the left part is made of n Premices (n meta-dynamic axioms), and
the right part is one Action (one meta-dynamic axiom). The meta-variables of the Premices stands for
syntactical elements, that will be used to derive the new dynamic axiom given by the Action.

Definition 3.35 From now on, the set X of variables will contain also the meta-variables. For this
reason X 1is then redefined as:
X=XsUXpgyv UXrUXsyur

Example 3.36 FEzamples of meta-rules are:

€V 371_>§1§W2 372*?2 ~ //(6_1,6_2) T1&72_>§1&g2
s [i—=gueva:fo =7, ~  //(evs ) [&G — 40,
s fL—=gueva:fo—g,  ~ /(€ Ewa) : fo&g, — fi&T,
s f1—TuEs  f,— T~ //(eUs,E0s) : F1&F, — 7,47,

See example 3.30 for the types of meta-variables.

These 4 meta-rules explain how work the operator about events: //. The first meta-rule gives the
description of // when it works on ev_nat sort, // takes two events of natural, symbolized with ev;, evs,
whose behavior is given by the Premices v, : f; — g, and €03 : f, — J, and returns a new event of
natural whose precondition is given by the concatenation of the precondition of ev; with the precondition
of vy, and whose postcondition is given by the concatenation of the postcondition of ev; with the
postcondition of evs. This operator can be seen as the “true” parallel operator, in the sense that the
resulting event, representing €v;, €vs in parallel, behaves like the beginning of €vy, followed by the
beginning of €vs, and it continues with the end of ev; followed by the end of evs. As the arrow —
represents a local temporal ordering, it is respected in the compound event.

The second and third meta-rules explain how the // operator works over ev_bool sorts. There are
two meta-rules, that is to say that there are two ways of deriving Dynamic Axioms when this operator is
used over ev_bool sorts. Firstly, the // operator takes two events of booleans, symbolized with evs,evy
and returns a new event of booleans whose precondition is the precondition of €vs, concatenated with
the postcondition of ev3 and whose postcondition is the precondition of €v4, concatenated with the
postcondition of evsy. This means that the resulting Dynamic Axiom, explains the behavior of a new
event, that works how the event evs followed by the event €v4. The third Meta-Rule is like the second
one, except that the roles of €vs and evy are inversed. These two meta-rules means that the operator
// over ev_bool sorts behaves like the interleaving: in certain cases the event 05 occurs before, and is
followed by €v4, and in other cases the event ev4 occurs before, and is followed by evs.

The last meta-rule explains the // operator over ev sorts. As for the // operator over ev_nat sorts,
this meta-rule describes the “true” concurrency between two events. As the ev event sort is greater than
the two other event sorts ev_nat, ev_bool, this meta-rule produces new events from two other events of
sort ev_nat or two events of sort ev_bool or two events of sort ev or two events of different event sorts.

Remark 3.37 In the ezample 3.36, the resulting parallel events are obtained in a certain manner (“true”
concurrency) for |/ working over ev_nat sorts and /] over ev sort, and in another manner (interleaving)
for /] working over ev_bool sorts. Since ev is the greatest eventl sort, compound evenis of ev_nat sori,
ev_bool sort, ev sort or mized sorts are obtained with the // operator. Another interesting effect is that,
if these 4 meta-rules are present, it means that events of sort ev_bool are obtained in two ways: with
interleaving or with “true” concurrency.

Remark 3.38 Meta-Rules are currently used to easily write Dynamic Azioms, but it is easy to extend
this idea to Static Azioms. From some given Static Azioms, we will derive new Static Azioms.
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3.5.4 Set of Axioms

The sets of static, dynamic axioms and meta-rules are collected together to give the set of all axioms of
ACCEsS.

Definition 3.39 Let ¥ = (S, EV, F) be a signature, X a set of variables, V a set of local states, the set
of Axioms is given by:

AX5(X,V) = SA5(X,V) UDAg(X,V)UMRy(X,V)

3.6 Presentation

A system is correctly defined in AccEss if it is given by a signature, a set of local states, a set of variables
and a set of axioms.

Definition 3.40 A Presentation is 4-tuple PRES = (X, V, X, Az) where:

Y =(S,EV,F) isa signature
V' s a set of local states
X s a set of variables
Ax C AXs(X,V) s a set of azioms

Remark 3.41 All Static Azioms appearing in a Dynamic Aziom or in a Meta-rule are called Static Local
Axioms and must be in the set SLAs (X, V). The others, appearing in the Presentation, but neither in
Dynamic Azioms nor in Meta-rules are called Static Global Axioms and belongs to the set SAs(X,V).

Example 3.42 An example of presentation for a queue of booleans and a queue of natural numbers is

given by the {-tuple PRES = (X,V, X, Az) where:

Y =(S,EV,F) is the signature of example 3.12
V = {Nqueue, Bqueue} 1is the set of local stales of example 3.15
X = is the set of variables
Xnat = {m,n,x,y},
Xpool = {Cl, b};
Xqueue_nat = {X}a
Xqueue_bool = {A}:

Xev_nat = 0
Xew bool =0
Xev = {
T)ev_nat = Q)a
0
{
{

| ><| |

T)ev
T)eu =
SMF

_bool =

P

|
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Az C AX5(X,V) is the set of azioms, where:
Az N SAs(X, V) ={ —(true) = false
—(false) = true
trueVb=1"5
false ANb = false
aVb=-(-aA-b)
pred(suce(n)) =n
n—+zero=mn
n + suce(m) = suce(n + m)
—(D(pred(zero)))
remove_nat(add nat(z, emptyqueue_nat)) = emptyqueue _nat
remove_nat(add nat(z, add_nat(y, X))) =
add_nat(xz, remove_nat(add_nat(y, X)))
first_nat(add_nat(z, emptyqueue_nat)) = x
first_nat(add_nat(z, add nat(y, X))) =
first_nat(add_nat(y, X))
—(D(remove_nat(emptyqueue_nat)))
remove_bool(add_bool(a, emptyqueue_bool)) = emptyqueue_bool
remove_bool(add_bool(a, add bool(b, A))) =
add_bool(a, remove_bool(add_bool(b, A)))
first_bool(add_bool(a, emptyqueue_bool)) = a
first_bool(add_bool(a, add_bool(b, A))) =
first_bool(add_bool(b, A))
—(D(remove_bool(emptyqueue_bool)))
//(ev1,eva) = /[(evs, evr)
Ievr. (v evs)) = /([ (evr, ev3), evs)}
Ar N DAs(X,V) ={ get_nat(m): —(Nqueue = emptyqueue_nat) —
(m = first_nat(Nqueue))&
Nqueue := remove_nat(N queue)
put_nat(m) : € — Nqueue := add_nat(m, N queue)
get_bool(a) :  —(Nqueue = emptyqueue_bool) —
(a = first_bool( N queue))&
Nqueue := remove_bool( N queue)
put_bool(a) : € — Nqueue := add_bool(a, N queue)}
Az NMRs(X, V) ={ev1: fy = ge02: fo =7, ~  //(ev1,e02) : [1&f, — 9, &7}

This presentation describes the behavior of two queues of natural and booleans respectively. It consists
of the signature of example 3.12, that gives the sorts and the operations over the sorts. The presentation
contains also two local states {Nqueue, Bqueue}, one for each queue, whose sorts are queue_nat and
queue_bool respectively. The set of variables collects all variables used in the axioms. The static axioms
of the presentation are constraints about the operations of the signature, we have Equational Atom
about natural, booleans, queues of natural, queues of booleans and events. There are three Predicates,
one about pred(zero) and the others about emptyqueue_nat, emptyqueue_bool. The equational atoms
about events express the commutativity and the associativity of the // operator over ev sorts. The
dynamic axioms explain the behavior of some events and the meta-rule describes the true concurrency
for events produced with the // operator. See example 3.28 for the dynamic axioms.
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Chapter 4

Semantics of Access

The semantics of an ACCESS presentation takes its values in a structure: an algebra for the signature of
the presentation together with a transition system defined over this algebra. The algebra contains the
possible values of the data sorts S of the presentation, the values of the events EFV and the functions
corresponding to the operators of F' working on the data and events. The transition system is a set of
triples, each of them giving an initial state, a transition changing the state, and a final state.

The structure is a model of the system if the constraints of the presentation are satisfied: the global
static axioms have to be satisfied for all possible states of the system; for each triple of the transition
system, there must be a dynamic axiom in the presentation that explains how the final state of the triple
is reached, when the transition occurs during the initial state.

This chapter presents the way to derive all possible dynamic axioms from a given set of Meta-rules.
We will then give the definition of structures corresponding to ACCESS Presentations, followed by the
evaluation of all syntactical elements of the Presentation in the structure. Finally, we will explain which
structures are models.

4.1 Dynamic Axioms derived from Meta-rules

Meta-Rules have been introduced in order to simplify the writing of Dynamic Axioms. The idea is that
for each set of Dynamic Axioms that fits the n Premices (n meta-dynamic axioms) of a Meta-rule, we
can derive a new Dynamic Axiom by the Action part of the Meta-rule.

A Dynamic Axiom fits a meta-dynamic axiom if all meta-variables appearing in the meta-dynamic
axiom can be substituted by syntactical elements (terms or smf) such that the meta-dynamic axiom,
with the syntactical elements in place of the meta-variables, is equal to the given Dynamic Axiom.

The derived Dynamic Action is then given by substituting in the Action part of the Meta-rule the
meta-variables with the syntactical elements used in the premices part of the Meta-rule.

Definition 4.1 Let PRES = (X,V, X, Az) be a presentation, the substitution of the meta-variables of
terms is one of the functions I of the set:

substx, = {I: X7 — Ts(X,V)|Iis a(SUEV) — morphism}

This substitution associates to each meta-variable of terms one term ¢t € T (X, V). Remember that ¢
is a syntactical element, it is not a value in an algebra.

Definition 4.2 Let PRES = (X,V, X, Az) be a presentation, the substitution of the meta-variables of
smf is one of the functions J of the set:

substx.yp = {J : Xsyr — SMFs(X, V)| J is a total function}
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Similarly to the meta-variables of terms, the meta-variables of smf are associated to a smf €
SMFs(X,V) by the mean of a substitution.

Definition 4.3 Let PRES = (X,V, X, Az) be a presentation, I a substitution for meta-variable of terms,
the evaluation of the meta-terms is given by the function:

eval, 7 : Tx(X,V) = Tx(X,V)
defined by:

eval, 7(t) =t,t € Tx(X,V)
eval, 1(T) = I(z),z € X
e'UalTj(op(tl), o op(ty)) = op(e'valTj(tl), cey e'UalTj(tn)), t, e Te(X,V)

A meta-term is evaluated to a term where all syntactical elements of the meta-terms remain unchanged
and where all the meta-variables are replaced by the syntactical term associated to it by the substitution.

Definition 4.4 Let PRES = (X,V, X, Az) be a presentation, J a substitution for meta-variables of
smf, the evaluation of the meta-smf is given by the function:

eval gy p 7 SMFPs(X,V)— SMFs(X,V)

defined by:

eval gy, p5(smf) = smf,smf € SMIs(X,V)
e'UalSMFj(smf) = J(smf),smf € Xsmr
evalSMFj(f&g) = evalSMFj(f) & evalSMFj(g), fLg e SMFx(X,V)

A meta-smf is evaluated to a smf where all syntactical elements of the meta-smf remain unchanged
and where all meta-smf are changed to a smf given by the substitution.

Definition 4.5 Let PRES = (X,V, X, Az) be a presentation, I a substitution for meta-variables of
terms, J a substitution for meta-variables of smf, the evaluation of the meta-dynamic axioms is given
by the function: L

evalDAjj :DAs(X,V)— DAs(X,V)

defined by:

e'valDAjj(evnt f—=9) = e'UalTj(e'Unt) : e'UalSMFj(?) — e'valSMFj(y)

A dynamic axiom is derived from a meta-dynamic axiom by writing the meta-dynamic axiom with
the syntactical elements, given by the two substitutions of terms and smf, in place of the meta-variables.

Free variables (not meta-) with the same name, appearing in two or more premices, of a meta-rule
are supposed to be different variables. For that reason, we introduce the renaming of free variables, in
order to have separate sets of variable names between the premices.

Definition 4.6 Let PRES = (X,V, X, Az) be a presentation, a renaming of variables, o, is a total
(SUEV)-morphism:
. XsUXgy — XsUXgy

Remember that a (S U EV)-morphism is a total function m between two (S U EV)-sets, Eq, E3 such
that m((E1)y) C (E2)y, v € (SUEV).

Definition 4.7 Let PRES = (X,V, X, Az) be a presentation, o a renaming of variables, the extension
of the renaming o to the termst € Ts(X,V) is a (SU EV)-morphism:

ar . TE(X, V) — TE(X, V)
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defined by:

or(z)=o(x),z € Xs UXgy
or(v) =v,v eV

op € Foop: vy...v, — vand
oropttn o) = op(ore).-osorta)): ( FEG P et My )

The extension of a renaming of variables to the terms is nothing else than the same term with renamed
variables.

Remark 4.8 As we defined it for terms, we define the extension of a renaming of variables to Static and
Dynamic Azioms as the same Static or Dynamic azioms with corresponding renamed variables in place
of their variables.

Remark 4.9 From now on, extensions of renamings to terms, op, and to Static and Dynamic Azioms
will all be called, o, since no confusion is possible.

Definition 4.10 Let PRES = (X,V, X, Az) be a presentation, the set of derived Dynamic Azioms,
dDAx(X,V), is the least set defined by:

1. AznNDAs(X,V) CdDAs(X,V)
mr=0Cq;...;C, ~ A€ MRxg(X,V)
( da; € dDAx(X,V),i={1,...,n}

do a renaming of variables
37 € substx,,J € substx.,,, = eval, , 757(A) € dDA(X,V)
with:
Var(o(da;)) N Var(o(da;)) = 0,Yi,j€{l,...,n},i#j
mDA,Tj(Ci) = o(da;),

N

) , such that:

A derived Dynamic Axiom is either a (usual) Dynamic Axiom, i.e. an element of Az N DAx(X,V),
or an actually derived Dynamic Axiom. Such a Dynamic Axiom is obtained from a Meta-rule by fixing
the meta-variables with the Premices, C;, and by replacing them in the Action of the meta-rule. Meta-
variables are fixed, when two substitutions I, .J of terms and smf have been found, such that for each
Premice Cj, there exists a corresponding Dynamic Axiom da; that can be considered as derived from Cj,
with these two substitutions. The renaming of variables, o, is used when two or more da; have common
free variables of terms. In this case, their free variables are renamed such that there is no more common
free variables, i.e. Var(o(da;))NVar(o(da;)) = 0,Vi,j € {1,...,n},7# j. The resulting Dynamic Axiom
is then produced with the o(da;), instead of the da;. It exists always a renaming producing different free
variables among the da;, even if new variables have to be added to the set X of variables.

If two dynamic axioms share the same free variable, n, it means that the value associated to this
variable is meant to be the same. Usually, free variables in two different dynamic axioms represent two
different values (even if the variables have casually the same name). Systematic renamings avoid common
free variables between dynamic axioms involved in a meta-rule.

Note that the same Dynamic Axiom can appear in two or more da;.

From now on, meta-rules and meta-variables will never be used. The word variable will be employed
for variables of Xg U Xgyv excluding variables of XpUXspr.

Definition 4.11 Given PRES = (X,V, X, Ax) a presentation, the derived presentation is given by
PRES' = (%,V, X, Ax'"), where Az’ = Az \ (AN MRs(X,V))UdDAs(X,V).

Remark 4.12 The premices (meta-dynamic azxioms) of a meta-rule may have free variables. If two

occurrences of the same wvariable (not meta-variable) appear into two different premices of the same
meta-rule, these two occurrences become two different variables by the mean of a renaming. However, in
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some cases, the same names of variables are needed in different premices, in order to represent the same
value. This is realized by the use of meta-variables of terms instead of variables. As meta-variables are
not submitted to renamings, the use of the same meta-variable inside two different premices means that
it represents the same syntactical element.

Example 4.13 Given the Meta-rule of example 3.36:
e fi—gE0 i fa =79~ //(Eu, ) F1&f, — 7,40,
and the two Dynamic Azioms:

get_nat(m) : —(Nqueue = emptyqueue_nat) —
(m = first_nat(Nqueue))&N queue := remove_nat(N queue)
put_nat(m) : € — Nqueue := add_nat(m, N queue)

of example 3.28, we can derive new Dynamic Azioms. Using renamings we have:

//(get_nat(m), get _nat(n)) : —(Nqueue = emptyqueue_nat)&—(Nqueue = emptyqueue_nat) —
(m = first_nat(Nqueue))& N queue = remove_nat(N queue)&
(n = first_nat(Nqueue))& N queue := remove_nat(N queue)

//(get_nat(m),put _nat(n)) : —(Nqueue = emptyqueue_nat)&e —
(m = first_nat(Nqueue))&N queue := remove_nat(N queue)&
Nqueue := add_nat(n, N queue)

//(//(get nat(m), get_nat(n)), put_nat(n')) :
—(Nqueue = emptyqueue_nat)&
—(Ngqueue = emptyqueue_nat)&e —
(m = first_nat(Nqueue))&Nqueue := remove_nat(N queue)&
(n = first_nat(Nqueue))& N queue := remove_nat(N queue)&
Nqueue := add_nat(n', Nqueue)

111G

An infinity of derived dynamic axioms are created in that way with this meta-rule.

4.2 Structure

A structure is given by both an algebra of the signature and a transition system. The algebra is a set
of values for both the data and the events, together with functions over these values corresponding to
the operators of the signature working over sorts and events. The transition system is a set of triples:
((initial) global state, transition, (final) global state). The transition occurs during the initial global state
of the system and produces the final global state.

Definition 4.14 Let PRES = (X,V, X, Az) be a presentation, a X-structure is a pair Structy =
(As, TRSx) where:

1. Asis a pair Ay = (A, Fa) and:
Atis a(SUEV)-set such that:
V(51;32) € gS = Asl g A52
V(evl,eUQ) € gEV = Aeul g Aev2
Fa={opa: Ay, x...x A, — Ay|opa is a partial function and3Jop: vy ...v, — v,0p € F'}
such that:
op4 ZAUI1 X ...XAU;L — A, € F
opa Ay, X ... xAy, = A, EF = 0PA,, 4. ulA,x. xA, =O0PA, L
(v ...vh,v1,...0n) ECsuRV ! " e
2. TRSy C (VA X A(eveEV) X VA)
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Ay is the algebra part of the signature. It is made of a (S U EV)-set of values, A, and of a set, Fu,
of partial functions op4, one for each operators op € F'. Remember that F' is the set of operations given
by the signature & = (S, EV, F') and Cg, Cgy are the partial order of the signature, and Csygy is the
extension of these two order relations to the strings of equal length in (SU EV)*. These orderings induce
certain conditions on the X-structure: (1) the carrier sets A, have to respect the two partial orders, Cg,
Cpgv : the carrier set of a supersort has to contain the carrier sets of its subsorts; (2) the restriction of an
overloading function to subsorts (i.e. sorts of the overloaded function) must be equal to the overloaded
function itself. See notation 3.7 of the operations.

T RSy is the transition system, it consists of triples made of two global states and one transition. A
transition is one of the possible values for event sorts, i.e. a transition belongs to A.yepv). A global
state is a collection of values: one for each local state, see definition 4.20 below.

Example 4.15 Let PRES = (X,V, X, Az) be the presentation of example 3.42, a structure for this
presentation is given by Structy = (Ax, TRSy) where:

1. AE = (A, FA) and:
A= Anat u Abool u Aqueue_nat u Aqueue_bool u Aev_nat U Aev_bool u Aev

Anat =N

Abool = {TaF}

Aqueue_nat = { []: [0]1 [1]: [2]1 ey [0:0]1 [0: 1]a [Oa 2]: ) [1: 0]: [1: 1]1 [1:2]: sy
[0,0,1],]0,0,2],...}

Aqueue_bool = { []: [T]: [F]: [T: F]: [FaT]a [T: T: F]: [T; FaT]a
(F,T,T],[F, T, F),[F,F,T],.. .}

Aev_nat = { pUt01PUt1aPUt2: s JpUtO,OJPUtO,bPUtO,Qa R g@to, getl:get2: ey
geto o, geto 1, geto 2, . . ., misclyqr, Misc2pqt, . . .}

Acy bool = { putp,putp,pulr p,putpr, puty 7 F, putr Fr, ... getr, getp, getr p,
getRT,getTyTyF, getT7F7T, ey misclbool, misc?booz, . }

Aey = Ay nat U Ay poot U {miscl, misc2 misc3, ...}
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Fy={ ZERO: — N,
PRED : N — N,
SUCC : N — N,
+ N X N - Na
TRUE : — AT, F},
FALSE : — AT, F},
- {T, I} —{T,F},
Vo {T;F} _>{T>F}a
AN {T;F} _>{T>F}a
EMPTYQUEUE_N : _>Aqueue_nat;
ADD_N N x Aqueue_nat - Aqueue_nat:
REMOVE_N : Aqueue_nat — Aqueue_nat:
FIRST_N : Aqueue_nat - Na
EMPTYQUEUE_B . - Aqueue_boola
ADD_B : {T; F} X Aqueue_bool - Aqueue_boola
REMOVE_B : Aqueue_bool — Aqueue_boola
FIRST.B : Aqueue ool —{T, F},
GET_N : N - Aev_nata
PUT_N N - Aev_nata
GET_B : {T, F} - Aev_boola
PUT._B : {T, F} - Aev_boola

Aev_nat X Aeu_nat
Aev_bool X Aev_bool
Aev X Aev

- Aev_nat:

— Ay bool )

i Aev}

2. TRSy ={ 1, [T, F, T1), puto,y, ([1,0, 1,2, [T, F, TT)),
}1 %Ta F; T])aPUtF: ([1: 2]: [F: Ta F; T])):
T

', T1), misel, ([1,0,1,2],[F, T, F,T])),

The algebra part Ay of the structure of this example is given by the pair Ay, = (A, Flq) where A is
made of 7 sets, one for each sort of the presentation. The carrier sets of nat, bool sorts are the usual sets
of natural numbers, and booleans: N and {7, F'} respectively. The set of queues of natural numbers is
made of ordered list of natural, e.g. [1,2]is the queue where the first element is 2 and the second and last
one is 1. The set of queues of booleans is similar, except that natural numbers are replaced with elements
in {T, F'}. The next two sets are made of events occurring on queues of natural and queues of booleans
respectively. As an example, geto 1 is an event on queues of natural, this event consists in extracting the
element 0 from a queue and then an element 1 from the queue; puty ; is an event on queues of natural,
this event consists in putting the element 0 into a queue and then the element 1 into the queue. The
misc events are complex events producing new queues from a given queue, and that in different manners,
e.g. by mixing get and put operations . The last set is made of events of ev sort, e.g. mixing put, get
for naturals with put, get for booleans. The partial orders of the signature of the given presentation are
respected, as we have Aqy nat € Ay and Aey_poot C Aey.

The set F'y of Ay contains usual operations over natural numbers and booleans, as well as usual
operations on queues. Operations producing events are for example GET_N, defined by: GET_N(i) =
get;. The // operation produces new events for example: //(get1, puty) = miscl,q;. For each op € F
there is a corresponding ops € F4. Some operations of F4 are partial, it is the case for PRED,
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REMOVE_N, REMOVE_B, FIRST_N, FIRST_B, which are not defined over 0 for PRE D and over
emptyqueues for the others.

The transition system of the structure is made of several triples, for example the triple:

(([1,2], [T, F,T7), puton,([1,0,1,2], [T, F,T])) stands for the initial global state ([1,2], [T, F,T]) that be-
comes the final global state ([1,0,1,2], [T, F,T]) when the event putq; has occurred. A global state is
a pair of two values one for each local state. Remember that the given presentation contains two local
states: Nqueue of sort queue_nat and Bqueue of sort queue_bool.

The next sections explain how a syntactical element of the Presentation has an associated value in
the ¥-structure.

Variables, Local States and Terms are evaluated to values in the algebra. Axioms, either Static or
Dynamic will not be evaluated to a value in the algebra, but to a Change of Global State. The reason
for this is that Dynamic Axioms are used to explain how global states change when an event occurs. The
evaluation of a Dynamic Axiom is then a Change of Global State, giving for each current global state,
a new global state resulting of the occurrence of the event defined by the Dynamic Axiom. As Static
Axioms appear in the writing of Dynamic Axioms, it is convenient to evaluate also Static Axioms to

Changes of Global States.

4.3 Interpretation of Variables

Variables are interpreted in the algebra Asx by the mean of a function giving for each variable a (unique)
value in the algebra. The value and the variable have to be of the same sort. Meta-variables are not
concerned.

Definition 4.16 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
the interpretation of the variables € (Xs U Xgv) is one of the (total) functions I of the set Interpx
where:

Interpx ={I: Xs UXgy — A|lis a(SUEV) — morphism}

Definition 4.17 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
I an interpretation of the variables, v € (Xs U Xpv) a variable, the interpretation changing only one
variable is one of the functions I' of the set:

Interpx 1o = {I' € Interpx|: I'(y) = I(y),y # =}

Given [ an interpretation of variables and « a variable, a function I’ of Interpx 1  is an interpretation
of variables that associates to each variable the same value than I except for the variable x.

Example 4.18 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs, = (As, TRSx) of ezample 4.15, an interpretation I of the set of variables is given by:

I(m )_2 In)=3,I(z)=4,1(y) =1

H(a) =T,I(b) = F

I(X) = [1 0,3,12,5], I(A) = [T, F, F, T

I(ev1) = miscl I(evg) = putr p

4.4 Interpretation of Local States

Similarly to Variables, Local states are evaluated in the algebra by a function associating to each local
state a value in the algebra. Naturally, the sorts of the local states and their associated value have to be
equal.

Definition 4.19 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
the interpretation of the Local States v € V' is one of the partial functions st of the set Vi where:

Va={st: V— A|stis a S — function}
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The interpretation of Local States is a mapping that associates a value (of the right sort) to each
Local State. Remember that a S-function is a partial S-morphism.

Definition 4.20 Let PRES = (X, V, X, Az) be a Presentation, Structs = (As,TRSx) a X-structure, a
Global State is a partial S-function:
st: V—A

Remark 4.21 V4 is the set of the Global States.

A Global State is nothing else but a function associating to each Local State a value in the algebra.
The Global State is then the set of values associated to the set of Local States.

Definition 4.22 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
st a Global State, v € V a local state, the definedness predicate of v, Dy (v), is given by:

Dy (v) & st(v)exists

Example 4.23 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs = (As, TRSx) of ezample 4.15, some global states can be given by:

st1(Nqueue) = [1,2,0,2], st1(Bqueue) = [T, F, F, T
sto(Nqueue) = [], sta(Bqueue) = [T
stz(Nqueue) = [9, 2]st4( Nqueue) = [0, 1], st4( Bqueue) = []

These global states give different values to each local state, except stz that is undefined for Bqueue.

Definition 4.24 Let PRES = (X, V, X, Az) be a Presentation, Structs = (As, TRSx) a X-structure, a
Change of Global State is a partial function:

cst: Va4 — Vy
The set of the Changes of Global State is the set:
CSTa = {est : V4 — Va|cst is a partial function}

A Change of Global State is a partial function that associates to each Global State another Global
State.

Example 4.25 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs, = (As, TRSyx) of example 4.15, and the global states of ezample 4.23, some Changes of Global
State are given by:

esty(sty) = stz csti(sta) = stz csti(sts) = st
esta(sty) = sta, esta(sta) = stz esta(sts) = sta, esta(sts) = sty

With the Change of Global state e¢st; each global state is changed to the global state stz except st4, for
which the change is not defined. With the Change of Global state c¢sta, each global state is changed to
another global state forming a cycle.

4.5 Evaluation of Terms

The interpretation of Terms depends on the interpretation of variables and on the current global state of
the system.
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Definition 4.26 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) ¢ X-structure,
I € Interpx an interpretation function for variables, the evaluation of the Termst € Tx (X, V) is given
by the partial function:

[[_]]TVI : VA X TE(X, V) — A

defined by:
st(v), ifv € V and st(v) exists

Lo It ollrs undefined, otherwise
2. [[St,l‘]]TJII(JJ),Vl‘E (X5UXEv)

] S U1 ..., — U and
opa(llst, s, - [[st, talr. 1), < VZ{OEP{ll,}l . .,711;}, [[stU, Z?]T 1 exists )

3. st op(te, ..., ta)le 1 =
undefined, otherwise

The evaluation of a term depends on the given interpretation of variables, I, and on the current state
st.

A Local State is evaluated to its value in the Global State. A variable is evaluated to its interpretation
by I. A more complex term is evaluated by functions in Fy applied upon inmost evaluated terms.

Definition 4.27 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
st a Global State, t € Tx(X,V) a Term, the definedness predicate of t, Dr 1 (1), is given by:

Dr 1 54(t) < [[st,t]]7 rexists

Remark 4.28 As the evaluation functions are partial ones, we use definedness predicates to assert if the
function is, or isn’t, defined for a term (later for a Static or Dynamic Aziom).

Don’t confuse these definedness predicates, useful to explain the semantics, with the Predicates for
terms defined in the syntax, which are used to specify properties of the system, as for example, the
impossibility to have a given event under special conditions.

Example 4.29 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs = (As, TRSx) of example 4.15, with the global state sty of example 4.23 and the interpretation
of variables of example 4.18, we have the following evaluation for some terms:

([st1, Nqueue]lp r = st1(Nqueue) = [1,2,0,2]
([st1, XNrr = I(X) =[1,0,3,12,5]
[[st1, getnat(suce(z))]lr, 1
= GET_N([[st1, succ(z)]]r,1)
= GET_N(SUCC([[st1,2)]]T.1))
=GET_N(SUCC(I(z))) = GET_N(SUCC(4)) = GET_N(5) = gets
([st1,//(get_nat(m), get_nat(n))]]r 1

= //([[st1, getnat(m)]]r 1, [[st1, get_nat(m)]]r 1)
= | (GET_N(2), GET_N(3)) = gets.3

4.6 Evaluation of Static Axioms

A Static Axiom (local or global) is well defined if it is satisfied in the algebra. To do this all the terms
appearing in the axiom are evaluated in the algebra, the terms are then replaced by their value in the
axiom. The axiom is then evaluated with these values. If the evaluation is true then the definedness
predicate associated to the axiom is said to be satisfied. Finally, the Static Axiom is evaluated to a Change
of Global State, this change is nothing else but the identity (i.e. the global state remains unchanged) if
the Static Axiom is well defined. In the contrary, the evaluation of the Static Axiom is undefined.
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Definition 4.30 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) ¢ X-structure,
I € Interpx an interpretation function for variables, st a global state, the definedness predicate of a
Static Aziom 1s given by:

1. Vit € (Ts(X, V))(sES) :
Dsa 1,5:(t1 = t2) & (Dr1,s(ti) ADprsi(ta) Allst, ti]ler = [[st, t2]lr, )V
(=Dr,1,s¢(t1) A —=Dr 1 5:(t2))
2. th,tz € (TE(X, V))(eUEEV) .
Dsa 1,5:(t1 = t2) & (Dr1,s(t1) ADprsi(ta) Allst, ti]ler = [[st, t2]lr, )V
(=Dr,1 s¢(t1) AN=Dr 1 s4(t2))V
(Y(st,w,b) € TRSx; s.t. [[st, t1]lr, 1 = w =
A(st,w’,b) € TRSy, s.t. [[st,ta]lr. 1 = w') A
(V(st,w',b) € TRSy, s.t.[[st, to]lr 1 = w' =
I(st,w,b) € TRSy, s.t. [[st, t1]]r,1 = w)
3. Ve Ts(X,V):
Dsa 1,5:(D(1)) & Drprs(t)
4. Vsa,say, saz € SAx(X,V):
Dsa 1,st(sa1 A sasz)
Dsa 1,st(sa1 V saz)
Dsa1,st(say = sas)
Dsa 1,5t(—sa)
DSA’I’H(H.‘J?(SG))
DSA’I’H(V.‘J?(SG))

An Equational Atom between terms of data sorts is well defined if the two data terms of the Atom
have the same evaluation in the algebra or if the two data terms are undefined. This is the strong equality
of [Broy82].

An Equational Atom between terms of event sorts is well defined if the two event terms have the
same evaluation in the algebra or if they are both undefined or if the two event terms evaluate in two
(different) transitions w, w’ of the algebra (elements of (A).yecpv) whose behavior is identical. Two such
transitions have the same behavior if for each pair of triple, in the transition system T' RSy, whose initial
global state is the current state st, whose transition is w (or w’), whose final global state is b, then there
exists another triple, whose initial global state is the current state st, whose transition is w’ (or w), and
whose final global state is the same global state b. This condition means that for each triple where w is
present there must be another identical triple where w’ takes the place of w and vice-versa. The behavior
of two events is then identical if they evaluate into two transitions, whose occurrences on the current
global state produce the same final global state.

A Predicate for a term is well defined if the evaluation of the term exists.

The combination of Static Axioms with the logical connectors are well defined if the combination of
the corresponding definedness predicates are well defined.

Remark 4.31 As the set of static local azioms, SLAs(X,V), is a subset of SAx (X, V), the set of static
global axiom, the definedness predicate of a static local aziom is the same as those of a static global axiom.

Dsa 1,st(sa1) A Dsa 1 st(saz)
Dsa 1st(sa1)V Dsa 1 st(saz)
Dsa 1,s1(sa1) = Dsa 1 s:(saz)
—Dsa. 1 st(sa)

I’ e InterpX717xD5A71/75t(sa)
vI' € InterpX717xD5A71/75t(sa)

teooee

As we said before, a Static Axiom is evaluated to a Change of Global State. This change is simply
the identity when the Static Axiom is well defined and it is undefined otherwise.

Definition 4.32 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) ¢ X-structure,
I € Interpx an interpretation function for variables, the evaluation of the Static (global or local) Aziom,
sa € SAs(X,V) is given by the partial function:

[Qsar: SAs(X,V) — CSTy
defined by:

undefined, otherwise

[[sa]]sa,i(st) = { st, if Dsa,1,5:(sa)
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The evaluation of a Static Axiom, sa, is a change of global state in C'ST4. For each global state, st, this
change of global state either returns the same global state st is the definedness predicate of the static
axiom sa evaluates to true, or returns undefined.

Example 4.33 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs, = (As, TRSx) of example 4.15, with the global state sty of example 4.23 and the interpretation
I of variables of example 4.18, the definedness predicate of some static azioms is given by:

Dsa 1,51, (Bqueue = emptyqueue_bool) & Dy 1s1,(Bqueue) A Dr 1 o1, (emptyqueue_bool)
Al|[sta, Bqueuellr 1 = [[sta, emptyqueue_bool]]r 1
& sty(Bqueue) = EMPTYQUEUE_B
< (=1
Dsa 1,5t,(//(put_nat(zero), put _nat(y)) =
//(get_nat(zero), get_nat(y))) < (([0,1],[]), puto, ([1,0,0,1],[])) € TRSx s.t.
[sta, //(put nat(zero), put_nat(y)]lr,r = puto, A
([0,1], 1), geto, ([J, [])) € TRSy s.t.
[sta, //(get-nat(zero), get_nat(y)|lr,r = geto1 A
(1,0,0,1,[D# (0. D)
=Dy 1s1,(pred(zero))
[[sta, pred(zero)]|r 1 doesn’t exist
PRED(0) doesn’t exist

P R e B

Dsa 1,st,(~D(pred(zero)))

teo

The definedness predicate Dsga 1 s:,(Bqueue = emptyqueue_bool) is true because the local state
Bqueue is interpreted to [] as it is for the emptyqueue_bool term.

The definedness predicate Dsa rs:,(//(put-nat(zero), put_nat(y)) = //(get_nat(zero), get_nat(y)) is
false because the only two triples, whose transition is the evaluation of //(put_nat(zero), put_nat(y))
and //(get_nat(zero), get_nat(y)) respectively, have the same initial global state ([0, 1],[]) (i.e. the global
state st4), but not the same final global state (([1,0,0,1],]) # ({I, [D)-

The definedness predicate Dsa 1 s1,(—D(pred(zero))) is true because the operation PRED in Ay, =
(A, F4) is not defined over the natural 0.

Example 4.34 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs = (As, TRSx) of example 4.15, with the global state sty of example 4.23 and the interpretation
I of variables of example 4.18, the evaluation of the static axioms of example 4.33 is given by:

[[Bqueue = emptyqueue_bool]|sa 1(sts) = sta
[[//(put_nat(zero), put_nat(y)) =//(get nat(zero), get_nat(y))]]sa r(sts) undefined
[[~D(pred(zero))]]sa r(sts) = sta

The Static Axiom Bqueue = emptyqueue_bool is evaluated to a Change of Global State, that changes
the global state st4 to the same global state st4, because the definedness predicate associated to this Static
Axiom and with this global state is well defined. The other global states are changed to themselves, with
this Change of Global State, if the corresponding definedness predicate is well defined, they are changed
to “undefined” otherwise.

The Static Axiom //(put_nat(zero), put_nat(y)) = //(get-nat(zero), get_nat(y)) is evaluated to a
Change of Global State, that changes the global state st4 to “undefined”, as the definedness predicate
has evaluated to false.

The Static Axiom —D(pred(zero)) is evaluated to a Change of Global State, that changes the global
state sts4 to the same global state st4.

See example 4.33 for the associated definedness predicates.

4.7 Evaluation of Dynamic Axioms

A Dynamic Axiom is evaluated to a Change of Global State. For a given current state, the new state is
obtained by applying the precondition of the Dynamic Axiom on the current state, and then by applying
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the postcondition of the Axiom to the resulting state. An smf changes a given state by the sma appearing
in it, a local state is then changed to the value associated to the term affected to the local state. If a
Static Local Axiom sa appears in a smf it either doesn’t change the current global state if sa is well
defined, or let’s the global state become undefined.

Definition 4.35 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
I € Interpx an interpretation function for variables, the evaluation of State Modification Atoms sma €
SMAs(X,V) is given by the partial function:

([Jsamar: SMAs(X,V) — CSTa

defined by:
st(v'), ifv' #v
(v :=tlsmar(st)(v') =< [[st,tllr.1, ifv' = v and [[st,t]]7 1 exists
undefined, otherwise

A State Modification Formula v := ¢ is evaluated to a Change of Global State that returns for each
current Global State. st, the same Global State except for the local state v that takes the evaluation of
t, or an undefined Global State if the term ¢ cannot be evaluated.

Definition 4.36 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
I € Interpx an interpretation function for variables, the evaluation of State Modification Formula smf €
SMFPs(X,V) is given by the partial function:

[dlsmpr: SMFs(X,V)— CSTy

defined by:

([ellsmpr = idv,
[v:=tlsmrr=[v:=1]smar
([sla]lspr,r = [[sla]]sa,1

([f&gllsmpr = [[9]lsmp o [[fl]smrr
(Bz(Hlsmrr=[[Msmrr, I' € Interpx 1 o

O W N —

The evaluation of the empty smf, ¢, is the identity, i.e each global state remains unchanged by the
change of global state idy,.

The evaluation of a State Modification Atom, v := ¢, is the Change of Global State changing only
the specified local state, v, appearing in the sma and this local state takes the evaluation of the term ¢
appearing in the sma.

The evaluation of a Static local Axiom is the Change of Global State that returns the same Global
State if the Static local Axiom is well defined for the given local state, and undefined otherwise.

The evaluation of a State Modification Formula, resulting of the concatenation of two other State
Modification Formula, is the Change of Global State resulting of the composition of the Change of
Global State of the second smf with the Change of Global State of the first smf. This means that when
a new Global State is obtained by the application of a composition f&g of smf, the Global State is
firstly changed by the first smf, f, of the composition, and the resulting Global State is then changed
by the second smf, g, of the composition.

The evaluation of a State Modification Formula overalled by the Jz. quantifier is the evaluation of
the same smf with an interpretation of variables that changes the z variable only. This interpretation is
one between all the possible interpretations.

Definition 4.37 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
I € Interpx an interpretation function for variables, the evaluation of a Dynamic Aziom da € DAx(X,V)
1s given by the partial function:
([lpar: DAs(X,V) — CST4
defined by:
(levnt : f— gllpar = [[9]lsmpio[[fllsmrr
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The evaluation of a Dynamic Axiom is the Change of global State given by the composition of the
Change of Global State associated to the postcondition, g, of the Dynamic Axiom with the Change of
Global State associated to the precondition, f, of the Dynamic Axiom.

Definition 4.38 Let PRES = (X,V, X, Az) be a Presentation, Structy = (As,TRSx) a X-structure,
st a Global State, da € DAx,(X,V) a Dynamic Aziom, the definedness predicate of da, Dpa 1 si(da), is
given by:

Dpa r1st(da) < [[da]lpa, 1(st)exists

Example 4.39 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs = (As, TRSx) of ezxample 4.15, with the global state sty of example 4.23 and the interpretation
I of variables of example 4.18, the evaluations of some Dynamic Azioms is given by:

[[get-nat(m) : —(Nqueue = emptyqueue_nat) —
(m = first_nat(Nqueue))&N queue := remove_nat(Nqueue)]|pa 1
= [[(m = first_nat(Nqueue))&Nqueue := remove_nat(N queue)|]spr 1o
[[~(N queue = emptyqueue_nat)]]smr,r

Let us see now, how this Change of Global State changes the states, sti, sta of example 4.23.

[[(m = first_nat(N queue))&N queue := remove_nat(N queue)]]smr, o
[[~(N queue = emptyqueue_nat)]]sarr r(st1)
= [[(m = first_nat(Nqueue))&N queue := remove_nat(Nqueue)|]sarr 1(st1)
[[Nqueue := remove_nat(N queue)||spp,r o [[m = first_nat(Nqueue)]]sra 1(st1)
[N queue := remove_nat(N queue)]|sara,r(st1)
([[st1, remove_nat(N queue)|lr 1, [[st1, BN queue]lr 1)
([1,2,0, [T, F, F, T))
[[(m = first_nat(N queue))&N queue := remove_nat(N queue)]]smr, 1o
[[~(Nqueue = emptyqueue_nat)]]sarr r(sta)
= undefined

The evaluation of this Dynamic Axiom is a Change of Global State, that changes the global state sta
to “undefined”, since the Nqueue local state is an empty queue and the precondition of this Dynamic
Axiom states that this local state must be different from the empty queue.

The global state st; is changed to a new global state, where the Bqueue local state remains unchanged
and where the Nqueue local state is decreased of its first element, the natural number 1.

Properties 4.40 Given evnt € (Ts(X,V))(cverv) an event, f,g € SMFs(X,V), we have the following
properties for the evaluation of dynamic azioms:

[[evnt :e — f& gllpar=|[levnt : f — gllpar = [levnt : f& g — ¢]lpar

4.8 Model

Definition 4.41 Let PRES = (X,V, X, Az) be a Presentation, a X-model, Mods, is a X-structure,
Mods, = (As, TRSx) such that:

1. Vsa € Az N SAs(X,V)then
VI € Interpx ,Vst € Va4 = Dsa 1,s:(sa)
2. VY(a,w,b) € TRSy then
37 € Interpx,3da € dDAx(X,V) such that
a. da=evnt: f—g
w = [[a, evnt]]r 1
Dpa1 si(da)
b= [[da]]pa,i(a)

&0 o
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A Y-Structure is a model if all Global Static Axioms are well defined for every interpretation of
variables and for every global state, i.e. Global Static Axioms have to be true in all cases.

A Y-Structure is a model if for every transition in T RSy, there exists an interpretation of variables
and a derived Dynamic Axiom, whose event evaluates to the transition and the final state of the transition
is reached when the Dynamic Axiom is applied on the initial state of the transition. We can say that a
3-Structure is a model if for every transition in T RSy, there is a derived Dynamic Axiom that “explains”
how the final global state of the transition is reached from the initial global state.

Remark 4.42 Dynamic Arioms may have free variables, variables that do not have quantifier, in this
case the default quantifier is said to be I quantifier. This appears in the condition 2. for X-models, by
dI € Interpx. A Dynamic Aziom with free variables behaves like the same Dynamic Axiom with an
overall 3 quantifier, one for each free variable.

If a free variable appears in a Global Static Aziom, the free occurrences of the same variable will
be evaluated to the same value, and the Global Static Aziom must be true for all possible values of all
free variables. A Global Static Aziom with free variables behaves like the same Global Static Aziom with
an overall ¥V quantifier, one for each free variable. This appears in the condition 1. for X-models, by
VI € Interpx .

Two occurrences of the same variable appearing in a Global Static Aziom, each with its own quantifier
will be evaluated to different values as if they were different variables.

Example 4.43 Given the presentation PRES = (X,V, X, Az) of example 3.42, and the X-structure
Structs, = (As, TRSx) of ezample 4.15, let us see if this X-structure is a model of the presentation.

The Static Axioms, except //(evy,eva) = //(eve,ev1) and //(evy,//(eva, evs)) = //(//(ev1, evs), evs) of
the given presentation are satisfied for whatever global state we consider and for whatever value is given
to the variables. The chosen operations of the Y-structure are exactly those we want to have the naturals,
booleans, queues of naturals and booleans.

The Static Axiom //(ev1, eva) = //(eva, evy) is satisfied if the two parts of the equality evaluate for
each global state and for each interpretation of the variables to the same event in A., or if they evaluate
to two different events that are involved in the same transitions of T'RSy;. The first case, evaluation to
the same event, is not true, because the definition of the // operator in Fly, is chosen to give different
events. The other possibility, same behavior, is not true because if I(evy) = putg and I(evs) = puty
then //(evq,evs) evaluates to putg: while //(evs, evi) evaluates to put; o, and the set of transitions
T RSy contains two triples:

(([2a 3]: [])aPUtl,Oa ([07 17 27 3]’ U)); (([2¢ 3]’ [D’pUtO,la ([L Oa 2a 3]a D))

with the same initial global state ([2, 3], []), whose transitions are put; o and putg 1 respectively, but whose
final global states are different.

The static axiom //(evy, //(eva, evs)) = //(//(ev1, evq), evs) is satisfied because the definition of the
// operator in F4 possesses this property. For example, if I(ev1) = putq, I(evy) = put; and I(evs) = puts,
then //(evq, evs) evaluates to puty 2 and //(ev1, //(eva, evs)) to putg 1 2, while //(evi, evy) evaluates to
puto 1 and //(//(ev1, evs), evs) evaluates to putg 1 ».

This Y-structure is not a model because the Static Axiom //(evy, evy) = //(eva, evy) is not satisfied.

Consider now the same X-structure, where this Static Axiom has been taken off. All Static Axiom
are satisfied now. It rests to see if all the transitions in T RSy, can be associated to a Dynamic Axiom
in PRES = (X,V, X, Az) that explains their behavior. The given X-structure contains several transi-
tions in T RSs;. We see that the first one has the associated derived Dynamic Axiom whose event is
//(put_nat(zero), put_nat(succ(zero))). The calculus of the derived Dynamic Axiom is let to the reader.
This evaluation of this Dynamic Axiom applied to the initial global state: ([1,2], [T, F,T) returns the fi-
nal global state ([1,0,1,2], [T, F,T]). The transition (([1, 2], [T, F,T1), puto,([1,0,1,2], [T, F,T])) is then
explained with a Dynamic Axiom of the presentation. We see that the other transitions of TRSy are
also explained with Dynamic Axioms of Structy = (As, TRSy).
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This new X-structure is then a model according to definition 4.41.

Remember that meta-rules are used to enlarge the set of dynamic axioms. Given a presentation with
dynamic axioms and meta-rules, we can derive a new presentation, called derived presentation, with no
meta-rules and with an enlarged set of derived dynamic axioms. The current semantics, explained above,
is associated to the derived presentation. We assert, without prooving it, that the semantics given to the
derived presentation is reachable from the semantics we can give to the previous presentation considering
only the restricted set of dynamic axioms.

Conjecture 4.44 Given PRES = (X,V, X, Az) a presentation, there exists a function Meta' that causes
the following diagram to commute.

Meta

PRES PRES'

Mod Mod

/!

Met
{Models} e {Models'}

where PRES' is the derived presentation, (definition 4.11), Meta is an application that furnishes the
derived presentation of a given presentation: Meta(PRES) = PRES'. The function Mod returns all the
models of given presentation. The sels {Models} and {Models'} are the seis of all X-structures that are
models of PRES, PRES' respectively, when no meta-rules are considered. (This is the case for PRES
only, as in PRES' all meta-rules have been removed)

This conjecture is useful for computation purposes. The derived presentation PRES’ contains a
possibly infinite set of dynamic axioms. In a computation process it would be impossible to compute all
these dynamic axioms. If the conjecture is true, the computation process could work on PRES, which
is made of a finite set of dynamic axioms and a finite set of meta-rules.
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Chapter 5

Example: Arc Extensions for
Coloured Petri Nets in Access

AccEss extends several formal languages [DiMa94], as Algebraic Petri Nets (PN), Coloured Petri Nets
(CPN), Gamma, ACP, CO-OPN.

This chapter is dedicated to the way how AccCESS generalizes Arc Extensions for Coloured Petri Nets.

This chapter firstly presents how “classical” Petri Nets are described with Accgss. It then remembers
the formal definitions of CPN and Arc Extensions for CPN. It then continues with the description in
Accgss of some examples of CPN and Arc Extensions. Based on these examples, a general method to
derive ACCESS presentations from CPN with arc extensions is given. This chapter ends with a discussion
about the differences between CPN specifications and ACCESS presentations, and gives a conjecture about
a possible isomorphism between Petri Nets models and ACCESS presentations models.

5.1 Petri Nets in ACCESS

Petri Nets are naturally represented in Acciss. Each place p of a PN becomes a Local State (defini-
tion 3.14) in the ACCESS system, each transition ¢t becomes an Event. The algebraic specification is the
integer, it is the sort of each local state. The value of a local state is the number of tokens of the corre-
sponding place. Each transition, ¢, is defined with a dynamic axiom. Input (p,t) and output (¢, p) arcs
from a place p to the transition ¢ or vice-versa, become SM A, State Modification Atom in the dynamic
axiom.

Figure 5.1: Trivial PN



Example 5.1 Given the trivial PN of figure 5.1, the corresponding ACCESS presentation is given by
PRES = (X,V, X, Az) where:

1. ¥ = (SEV,F)with:
S = {int}
EV = {ev}
r = { Operations over the sort int
0: — int
+: intint — int
—: antint — int
Fuvents
tl: —ev
t2: —ev

Operations over events
/] i evev— ev}
with Cs=0, Crv=10

2.V = Viu={p) o
3. X = Aaz,y,...,ev1,e02, 1,12, 91,7}
4. Ax = { Static Global Azioms over int:
O+z=2x
z—0=2x
~(D(0 - 2))

Dynamic axioms:

tl: p=p—2 —ce¢

t2: ¢ —p:=p+3

Meta-rulesevy : f1 — G1;€02 : fo — Gy~ [/(€v1,€02) : f1&f — 7,&75}

The signature, X, contains the algebraic specification for the integers (the sort int, with the operations
+, —,0); the sort ev for events; two operation producing events, t1,12, corresponding to the transitions
of the given PN, and the // operation over events.

The set V' of local states contains the place p. The set X of variables contains all variables used in
the Axioms of the Az set.

The set Az of Axioms is made of Static Global Axioms defining the sort ¢nt; Dynamic Axioms, one
for each transition ¢i; and of Meta-rules.

The Dynamic Axiom for ¢1 states that the ¢1 event decreases the local state p from the value 2 and
requires no further action, this correspond in the given PN, to the arc (p,¢1) labelled with 2 tokens.
Similarly, the Dynamic Axiom related to the ¢2 event requires no previous action and increases p with
the value 3, as does the arc (¢2,p) in the PN.

The Meta-rule gives the behavior of the // operator over the events as the “true” parallelism. This
behavior has been already explained in example 3.36.

5.2 Basic Definitions
5.2.1 CPN

The representation, with Petri Nets, of systems, which contain several parts similar, but not identical,
requires to represent several times the same subnet, one for each of these parts. Large systems become
difficult to represent in that way. CPN are an answer to that problem. A given place in a CPN has
an associated type ¢ and its marking consists of a multi-set of this type. Each token of the place has a
value of type ¢. The different colours are given by the different values; they represent different places in
a classical Petri Net.
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Arcs are no more labelled with integers, but with expressions concerning multi-sets. FEach arc has
then an arc expression attached, each value taken by the arc expression represents a different arc in a
classical PN.

Each Transition has a boolean expression attached, a Guard, a step is enabled in the CPN, if the
bindings of the variables appearing in the Guard of the transition and on the arc expression of adjacent
arcs fulfill the Guard expression.

Finally a step is enabled if the occurring bindings fulfill the Guards of the transitions involved in the
step and if the bindings together with the current marking allow the transitions to be fired.

Definition 5.2 [Jens92] A CP-net is a tuple CPN = (X, P,T,A,N,C,G, E,I) such that:

1. ¥ s a finite set of non-empty types, called colour sets
2. P s a finite set of places
3. T s a finite set of transitions
4. A s a finite set of arcs such that
PNT=PNA=TNA=0
5. N s anode function. N is defined from A into P x TUT x P.
6. C s a colour function. C is defined from P into X.
7. G s a guard function. G is defined from T into expressions such that:
Vi €T : [Type(G(t)) = BAType(Var(G(t))) C X]
8. LI s an arc expression function. F is defined from A into expressions such that:

Va € A : [Type(E(a)) = C(p(a))ms A Type(Var(E(a))) C X]
where p(a) is the place of N(a).
9. I s an initialization function. I is defined from P into closed expressions such that:

Vp € P : [Type(I(p)) = C(p)ms]-

Where B is the the boolean type; Type(expr) denotes the type of the expression expr; Var(expr) denotes
the set of variables of expression expr; and Type(Var(expr)) denotes the set of types {Type(v)|v €
Var(expr}, and cprs stands for the multiset whose elements are of type c.

The node function N defines the input and output arcs.

The guard function G associates to each transitiont a boolean expression expr;, while the arc expres-
ston function F associates to each arc a an expression expr,.

Definition 5.3 [Jens92] A step Y of a CPN is enabled in a marking M iff:

VpeP: > E(pt)<b>< M(p)
(t,b)eYy

A step is enabled if for each place p, the binding b and the marking M ensure that tokens can be removed
by the input arcs adjacent to each transition involved in the step.
When a step Y is enabled, the new marking M’ is given by:

VpeP:M'(p)=Mp)— Y Et)<b>+ Y E(t,p)<b>
(1,0)eY (t,b)eY

The new marking is given by the current marking where the removed tokens are removed before the added
tokens are added. The removed (or added) tokens are given by the arc expressions attached to the input
(or output) arcs adjacent to the transitions t involved in the step Y.

5.2.2 Arc Extensions for CPN

A CP-net with test arcs and inhibitor arcs, is a CP-net with usual input, output arcs and with two other
sorts of arcs: the test arcs and the inhibitors arcs. These last two sorts of arcs are useful for testing the
values of places without changing these values.
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Each arc has an arc expression attached. For an input arc, this arc expression represents the tokens
to remove. For an output arc, the arc expression stands for the tokens to add. For a test arc, it stands
for the minimal value that the adjacent place can take. For an inhibitor arcs, it stands for the maximal
value that the adjacent place can take.

Definition 5.4 [Jens94] A CP-Net with test arcs and (generalized) inhibitor arcs is a tuple CPNpy =
(CPN,TS,1S) where:

1. CPN =(X,P,T,A,N,C,G,E,I)is a CP-net, see definition 5.2
2. TS = (Ap, Ny, Er) is a test arc specification with:
a. Ar is a set of test arcs, such that: Ap N (PUTUA)=0.
b. Np: Ap — P x T s atest node function defined on Ap.
c. Erp s the test expression function defined from Ap into expressions
such that:
Va € Ap : [Type(Er(a)) = C(p(a))ms A Type(Var(Er(a))) C X
where p(a) is the place of of Np(a)
3. IS = (A1, N1, E1) is a inhibitor arc specification with:
a. Ay is a set of inhibitor arcs, such that: Ay N (PUTUAUAp) = 0.
b. N;y: Ar — P x T is a inhibitor node function defined on Ay.
c. Fr s the inhibitor expression function defined from Ap into expressions
such that:
Va € Ay : [Type(Er(a)) = C(p(a))ms A Type(Var(Er(a))) C X
where p(a) is the place of of Ni(a)

CPN with arc extensions are CPN with two additional sorts of arcs, test and inhibitor arcs. Each arc
of the CPN has arc expression attached. These expressions must be of the same type of the type of the
place to which they are adjacent and the type of their variables must be part of the authorized types X.

Definition 5.5 [Jens94] A step Y of a CPNryy is enabled in a marking M iff:

lV¥pe P: Z(t,b)eY E(p,t) <b>< M(p)
2¥a € Ap :V(t,b) €Y : Er(a) <b>< M(p(a)) — 32y ey Ep(a),t') <b' >
3Va€ Ap:V(t,b) €Y : Ef(a) <b>> M(p(a)) + 3y pyey B, p(a)) <b' >

p(a) is the place or arc a.

A step is enabled if the input arcs involved in the step can all be fired, and if the expression attached
to each test (inhibitor) arc is less (more) than the value of the adjacent place p previously decreased
(increased) from all arc expressions of input (output) arcs involved in the step.

5.3 CPN with Arc Extensions in ACCESS

The colours used in the CPN are represented by algebraic specifications in Accgss. Each transition
of the CPN becomes an event of the AccEss system. The boolean expression attached to a transition
becomes a SLA (Static Local Axioms, see definition 3.23) in the dynamic axiom describing the transition.

The arcs adjacent to a transition become SMF (State Modification Formula, see definition 3.26) of the
dynamic axiom describing the transition: input, output arcs of the CPN become SMA (State Modification
Atoms, see definition 3.25); test and inhibitor arcs become SLA (Static Local Axioms, see definition 3.23).

This section gives some simple examples of CPN and their presentation in Accgss, and ends with
the generalization of CPN specification into ACCESS presentations.

5.3.1 Examples
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p:C t p:C t

p:C t p:C t
expl exp2 exp3 exp4
L () P 2. () P D () P 4 (p P #

[GO] (GO [GO] (G

Figure 5.2: Basic arc extensions

Example 5.6 Figure 5.2 represents transitions with input, output, test and inhibitor arcs respectively.
This basic examples of transitions are represented in ACCESS, with the following Dynamic Azioms:

1. t:G() —p:=p+expl
2. t:G() — p:=p—exp2
3. t:G) & (p>expd =true) —e¢
4. t:G) & (p<expd=true) —e¢

The boolean expression G(t) has to be satisfied to enable the transitiont. In ACCESS this is expressed
by the SLA: G(t), present in the dynamic aziom describing t.

The output arc needs no constraints and adds expl to the place p.

The input arc needs the — (minus) function to succeed and then it subtracts exp2 to the place p. There
1s no constraint in the second case, because the — operation over the colour C is not defined, if exp2 > p.
That is to say, that a predicate (see definition 3.21) is associated to the — function as a Static Global
Aziom.

The test arc needs the constraint p > exp3d to enable transition t, this arc has no effect on the value
of p.
The inhibitor arc tests if p < expd and doesn’t affect p.
The + and — operations are the +, — operation over multisets of type C'.

p:C t p:C t p:C t

1 i expl D 5 : exp2 D 3. i exp3 D
[GW®] [GW®] [G®]

p:C t p:C t p:C t

exp4 exp5s exp6

[G()] (G [G()]
Figure 5.3: Compound arcs

Example 5.7 Figure 5.3 represents transitions with combinations of input, output, test and inhibitor
arcs, the arcs between the place p and the transition t have the same expression. For example the com-
bination of arcs in 1. is made of an input arc and an output arc having each the same arc inscription
expl.

The semantics of these compound arcs is expressed in ACCEsswith the following dynamic axioms.

1. t:G({) & (p > expl =true) — ¢

2. t:G(1) & p=exp2 — €

3. t:G()&p=exp3 —p:=0

4. t: G &p=10 — p:=expd

5. t:G() & (p> expb + expd =true) — p:=p— expb
6. t:G()& (p> expb = true) —p:=p+expb

These dynamic azioms, one for each CPN mean that:
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1. The Reserve arc ensures that the place p is greater than the expression expl. It doesn’t affect p.
2. The Equal arc doesn’t affect p, but ensures that p = exp2.

3. The Clear arc removes any value from the place p by setting p to the empiyset, this is done if the
value of the place is equal to exp3.

4. The Set arc changes the value of p to exp4, if place p is empty.
5. The Halve arc takes away expb from p if p is over 2 % exp5.

6. The Double arc add expb to p is p is over expb.

p2:C2
t1
LT [x=q]
a X
pl:C
t4 %D t2
w y
[w=q, a=r] T [y=a1
z
LT [z=q7]
t3

Figure 5.4: Simple CPN with several arcs
Example 5.8 Figure 5.4 represents a CPN with 2 places, pl,p2 of color type C'1,C2 respectively, and

with 4 transitions, t1,...,t4 each with a guard associated. The place pl is connected to the four transitions
by the mean of 4 different types of arcs, each with its arc expression.
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Its complete description in ACCESS, is given by the presentation PRES = (X,V, X, Az) where:

1. ¥ = (S EV,F)with:

S = {bOOl,Cl,C?,ClMS,CQMs}

EV = {ev}

F = { Operations over bool:
true : — bool,
false : — bool,
- bool — bool,
Vo bool — bool,
A bool — bool,
Operations over C'1,C2:
Oct : Cl1 — (1,
+c1: C1 — (1,
—ci: C1 — (1,
O¢s : C1 — (1,
+ca: C?2 — (C2,
—c2: C2 — (2,
Operations over C'lpyrg, C2pr5:
7,4,q4": — Clys,
r: — 2ps,
Dc1as — Clys,
+Cims ! Clus — Clys,
—Clms : Clus — Clys,
MAKFE¢c1,,.: C1 — Clys,
>Clus: Clys Clys  — bool,
Deops : — Clys,
+Coms ! C2ms — C2ys,
—C2us - C2ms — C2ys,
MAKFE¢a,,. : C2 — C2ps,
ZCQMS: CQMS CQMS — bool

Transitions as events:
tl: C1 — ev,
t2: C1 — ev,
t3: C1 — ev,
td: C1C2 —ev

Operations over events:
/] evev—ev

with Cs=0, Cev=10

2. V. = Ve1UVeaUVery,e UVea,, o where:
Ver=Vea =10
VClMs = {pl}
VCQMS = {p?}

3. X = {z,y,2,w,a,...}
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4. Ax = { Static Global Azioms over the sorts S:

Dynamic Azioms:

tl(z) : (x=4q) —pl:=pl—ciys @

t2(y) : (y=4¢) —pli=pl+ciysy

(z=¢" & (pl > 2) —¢€

t4 'w,a): (w=gqgAha=r)&(pl <w) —p2:=p2+cay,sa
(

y)): E
/(1) t3(2)) : E
//(t1(x), t4(w, a)) : E
//(t2(x), 13(2)) - Ey§3
o1
(
(
(

&
ll

&
(l

/1(2(z), t4(w, a)) :
/13(x), t4(w, a)) :
/1(t1(=2),12(y), 13(2)) :
/1(t1(x), 12(y), t4(w, a)) :

q

= ]~+C1M§ y) & (p2 = p2 +C2MS a)

z=¢YV&(w=qgrha=7r)&(pl > 2) & (pl < (w)) —

:p2+C2MS a)
r=q)&(y=q)&(z=1q") & (Pl —c1ys ¥) > 2) —

&(pl = pl +Cins y)

(

&

(pl — Pl +C1M< y) &

/1(2(y), 13(2), t4(w, a)) :

//(t1(), 12(9), 13(2), t4(w, @) :

The signature X contains the sorts, C'l, C'2 and the multisets of these sorts, C'lars, C2p5. The event sort
is ev, and the set of operations is made of operations over the sorts, events and operations over events.
The sorts are not ordered.

The operations over the sorts defines 4 constants q,q’, ¢ of sort Clys and r of sort C'2ps5, corre-
sponding to the constants appearing in the given CPN. There are also operations over the sorts C; and
over the multisets as +¢iye, —Cipgsy MAKEciye, 0ciys. The events are the transitions of the given
CPN, their parameters are of the sort of the variables needed by the transition. For example, the tran-
sition ¢1 needs the variable i of sort C'lps5, because it appears in its guard and in the arc expression of
the adjacent input arc; while the transition ¢4 needs the variable w of type C'lprs and the variable a of
type C2u5.

The set V of local state is made of the places, pl of sort C'lyrs and p2 of sort C2pr5. The set X of
variables contains all variables appearing in the axioms.

The set of axioms contains static global axioms and Dynamic axioms.

Static global axioms are concerned with usual operations over multisets, for this reason they are not
mentioned here.

Dynamic axioms explain each possible single event (single transition), each possible pair, triple and
quadruple of event.

The single events, t1(2),12(y) are connected to only input, output arcs. For this reason, their dynamic
axiom contains as precondition (before the —) only the guard and as postcondition (after the —) the
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State Modification Atom corresponding to the arc expression.

The single events, t3(z),t4(w, a) are connected to test, inhibitor arcs, for this reason, the precondition
of their dynamic axiom contains the guard and the test and inhibitor conditions required by the test
or inhibitor arc, and the postcondition contains SMA decreasing or increasing the value of the places
connected to the transition by input or output arcs respectively.

Note that in this example we have written (p > exp) as a shorthand for (p > exp = true).

For events occurring in //, the precondition contains the guard of each event, and the postcondition
contains all State Modification Atom required by all events. If test and inhibitor arcs are adjacent to
the transitions, involved in the event, then in the precondition, test and inhibitor conditions have to be
added. To respect the enabling of the steps, see definition 5.5, the test and inhibitor conditions must be
adapted depending on which input, output arcs are involved in the step.

For example, the event //(t1(x),t3(z)) requires the condition (pl — z) > z because t3(z) is connected
to a test arc with arc expression z and because t1 occurs simultaneously and is connected to an input arc
with expression . On the other hand, the event //(t2(y),?3(z)) has the simple test condition pl > z,
because none of the transitions involved in the event is connected to an input arc. It goes the same for
events occurring with inhibitor conditions.

In this example, we have chosen to describe each event by its own dynamic axiom, in order to explicitly
show the behavior of the events, especially compound events involving test and inhibitors conditions.

The next section introduces the generalization of the AcCcESs presentation of Petri Nets with Arc
Extensions. For this generalization, we use meta-rules to explain compound events.

5.83.2 GGeneralization

Definition 5.9 (Automatic description of CPN arc extensions into AcCcESs). Given a CPNpr =
(CPN,TS,1S) with arc extensions as in definition 5.4, the corresponding ACCESS presentation is given
by PRES = (X', V, X, Az) where:

1. Y = (S,EV,F) with:
S = {bOOZ} uXu (E)MS
EV = {ev}
F = {operations over the soris S} U

{t : Type(Var(t)) — evlt € T} U
{// : evev — ev}

with Cs=10, Cev=10

2. V. = UsexVs,, where:
Vins = {v € P|C(v) = s}
3. X = {All variables appearing in Az}
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4. Ax = {Static Global Azioms over the sorts S (...)} U
{Dynamic azioms over single transitions
t(Var(t)) :
G(t)
&ioevy (V=X jaeain(ar=(v,0) £(@)) > Maz{oear|Nr(a)=(v,0)} Er(a)
&ioevy (v + X (aeaN(a)=(,0)} £(@)) < Minjaga; vy (a)=(v,)} £i(a)

_
&vevy (vi=v— E{aeA|N(a):(v,t)} E(a))
&ppevy (vi=v+ E{aEA|N(a):(t,v)} E(a
[teT}u
{Meta-rules
Wl .
G
&{’UEV} ('U - ml,v) > W2,’U
&{’UEV} (U + m&},v) < Wﬁl,u
_
&{’UEV} (U =U— ml,v)
o &ivevy (vi=v+exps,);
ev'y
el
&ioevy (v —eap'y ) > exp/y,
&{UE‘/} (U + 6Ip/3,v) S 6Ipl4,v
_
&ivevy (v i=v— emp’lyv)
&ivevy (v i=v+ 63317/3,@)
~
//(€vy, ev'h) :

G& G

&ivevy (v —e€xpy , —exp'y ) > Maz(ezp, ,, eap's )
&{’UEV} (U + ml’),v + 6,1‘]9/37@) < Mi”(mz},v ) eajplél,v)
N

&vevy (v:=v—eTp, , — exp’, ,)

&ivevy (vi=v+ETps, +exp's,)}

Where Var(t) is the set of variables appearing in the guard of transition t, Type(Var(t)) is the set of
types taken by the set Var(t).

The signature X' contains the sort bool, the sorts of X (the colour set), and the multisets of these
sorts, (X¥)ams. The event sort is ev.

The set of operations is made of operations over the sorts, of events and of operations over events.
The sorts are not ordered.

The operations over the sorts are classical operations over the booleans, over the naturals (as the
different colours represent different instances of the same natural sort), and over multi-sets. Moreover,
three operations over multi-sets are supposed to be available: the >, Max and the Min operations
returning the maximum or minimum value of two given multi-sets. for clarity purpose, all these operations
have not been listed as they are classical operations concerning abstract data types.

For each transition ¢ € T is defined an operation of F', t : Type(V ar(t)) — ev, that takes as parameters
the variables Var(t) appearing in the guard of ¢ and returns an event. The operation over the events is
the // operation.

There is no ordering defined on the data sort nor on the event sorts.
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The set V' of local states is given by the set of places of the given C'PN. If the place is of colour s,
then the corresponding local state is of sort sprs, the multi-set of sort s.

The set X of variables is obtained from the variables in Az.

The set Az of axioms contains static axioms, dynamic axioms and meta-rules.

Static axioms, not listed here, concern classical axioms over the sorts.

For each single transition, ¢, of the C'PN is defined a dynamic axiom, whose event part is t(Var(t)),
the labelled event with its parameters. The precondition of this dynamic axiom is made of three parts:
(1) the guard of the transition: G(¢); (2) a concatenation of conditions concerning test arcs; (3) a
concatenation of conditions concerning inhibitor arcs. We will call these three parts, the guard part, the
test and inhibitor parts.

The postcondition is made of two parts: (1) a concatenation of changes of local states corresponding
to input arcs; (2) a concatenation of changes of local states corresponding to output arcs. As for the
precondition we will call these two parts, the input, and output part.

Note that we denote by & . the concatenation of smf.

The test part of the precondition is defined as follows: for each local state v € V, there is a static
local axiom verifying if the current value of the local state v minus all the expressions of the input arcs,
between v and the transition ¢, is greater or equal to the maximum expression of the test arcs between v
and the transition ¢. The use of the maximum, Maz, operations ensures the tested value to be greater
than all test arc expressions.

It goes in the same way for the inhibitor part of the precondition. The difference with test part is
that we ensure that the value of the local state v plus all expressions of the output arcs is less than all
expressions of the inhibitor arcs connected to the local state v and the transition ¢.

These two parts, test, inhibitor translate in ACCESS the enabling step conditions 2. and 3. of
definition 5.5.

The nput part of the postcondition is defined as follows: for each local state v, its current value is
decreased by the sum of all expressions of input arcs connected to the local state v and the transition .

It is similar for the output part of the postcondition.

These two parts, input, output express the changes of marking occurring when ¢ happens, and ensures
condition 1. of the enabling step conditions definition 5.5 (a local state cannot be decreased if its value
is less than the value of an input arc).

The meta-rule defines the behavior of compound events obtained with the // operator. This meta-rule
contains two premices and an action for the compound event.

Each premice is a meta-dynamic axiom having the same structure (three parts in the precondition and
two parts in the postcondition) as the dynamic axioms for single transitions explained above. Instead
of the sums, and the Maxz(...) and Min(...) expressions, appearing in the dynamic axioms, we use
meta-smf in the premices.

The action is a meta-dynamic axiom having also the same structure (three parts in the precondition
and two parts in the postcondition). The guard part becomes the concatenation of the two guards of the
premices, the test part is stronger than those of the premices. We test if the value of each local state
v minus the two input expressions €zp ,, and exp’; , of the premices is greater than the maximum of

the two test expressions ezp, ,, and ?Plz,v . It goes in a similar way for the inhibitor part. The input
and output parts of the action are given by the combination of the input and output parts of the two
premices.

The enabling step conditions of definiton 5.5 imply that all test arcs, adjacent to one of the transitions
involved in the step, have their test expression greater than the value of the adjacent place minus all the
values of the input expressions of the input arcs adjacent to the place and to a transition involved in the
step. It is similar for inhibitor arcs. The input and output arcs adjacent to involved transitions obviously
change the markings of the places.

This meta-rule express then these enabling step conditions together with the changes of marking.

The idea is that each dynamic axiom, for single transition of for compound event, is made of the
five parts guard, test, inhibitor, input, outpui. When two events occur at the same time (in a compound
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event), then each part merges the corresponding parts of the two events in order to respect the enabling
step conditions and the changes of the markings.

Definition 5.10 We can define a transformation T'r, that to each CPN with arc extensions, CPNp 1
associates the ACCESS presentation PRES' of definition 5.9:

TT’(CPNTVI) = PRES/

Remark 5.11 We see easily that T'r is well defined (there is only one ACCESS presentation corresponding
to a given CPNyp 1), and is a total function.

5.4 Discussion

This section briefly discusses the flexibility of the AccEss approach vs the PN and CPN approaches.
Finally, we end with a conjecture asserting that models of CPN and models of their corresponding ACCESS
presentation are isomorphic.

Accgss is more flexible than C' P Ny, as the conditions on places are naturally written in the dynamic
axioms, while in C P Ny complex use of several different arcs is needed. Moreover, the range of conditions
writtable with C'P Npy is limited to lesser or more comparisons, while it is quite unlimited in ACCESs.

Modifications fo the values of places are realized in PN by adding or decreasing tokens to the current
value of the place, it consists in a relative modification. CPN, with arc extension, are able to apply
relative and also more absolute modifications to the places as we have seen with the Clear, Halve,
Double arcs of example 5.7 and this is realized using a combination of arcs. ACCESS, by the mean of a
unique SMA, can either define a relative increase or decrease modification to a local state, or clear, halve
or double the value of a local state, in addition it can also define any other modification whose operation
is defined in the algebraic specification part of the presentation.

The generalization of CPN specifications into ACCESs presentations (definition 5.9) is also maintained
at the semantic level. We conjecture that, for a given C PNy 1, there is an isomorphism between the
models of the CPNp ; and the models of the corresponding AccEss presentation, Tr(CPNr 1).

Conjecture 5.12 Given CPNp 1 a CPN with arc extensions, 1'r the transformation of definition 5.10,
PRES' the AccEss presentation associated to CPNp 1 by Tr, there is an isomorphism, =2, between the
set of models corresponding to CPNp 1 and the set of models of the corresponding ACCESS presentation
PRES’ when we consider only initial algebra for the algebraic specification part of PRES':

Tr

CPNy PRES'
Modcpn Mod
{Modelscpn} {Models}
N by
{Modelsinit}

In the diagram above, Modcpn, and Mod are the applications associating to CPNp 1, PRES', the set
of their models {Modelscpn}, {Models} respectively; and w is the projection of the set of all models of
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PRES' to the restricted set of models of PRES’, whose algebra for the algebraic specification part is the
wnitial one.
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Chapter 6

Generalization in Access of
specifications written in other
languages

Specifications written in some other languages are easily translated into ACCESS presentations. The ideas
of the generalizations have been given in [DiMa94] for algebraic specifications, (Algebraic) Petri Nets,
Process Algebra [Baet90], Abstract Dynamic Data Types [Aste91], Gamma and CO-OPN. This chapter
gives the formal translations for the cases of Algebraic Petri Nets specifications, Gamma programs and
CO-OPN specifications. Currently, we give these translations at the syntactic level (the level of the
specifications) only. For what is concerning the semantic level, we conjecture the equivalence between
the models of a given specification and those of its AccCEss translation.

6.1 Algebraic Petri Nets

Algebraic Petri Nets are Petri Nets whose places take as values an algebraic multi-set, instead of black
tokens. This formalism is specially useful as it combines the algebraic specifications, used for describing
data structure, and the Petri Nets, used for describing dynamic properties.

Definition 6.1 [Racl92] An Algebraic Petri Net is a 7-tuple AN = (P, T, X, FR, X, My, Spec) with:

Spec  is an algebraic specification
Spec = (X, X', Az) and ¥ = (S,OP) is the signature
P 1s a S-set of places
T is a set of transitions, with PN'T = ()
X 1s a S-set of variables
'R is a flow relation, FR C (P x T)U(T x P)
A 15 an arc inscription respecting the sorts of the places,
A is a mapping, A : FR — T, s(X),
and A(f) € (T (X)m_rip: VS = (p,) o7 f = (t,p)
My s an initial marking respecting the sorts of the places,
My is a mapping, Mo : P — Ty, s, and Mo € (Trn_s)m_r(p), VP € P

Where Ty, (X)) is the set of terms with variables constructed over the multi-sets of sorts in S, T, s is
the same set of terms but with no variables, 7(p) is the sort s € S associated to the place p.

Definition 6.2 Given AN = (P, T, X, FR, X\, My, Spec) an algebraic petri net, with Spec = (X, X', Az),
and ¥ = (S,0P), as in definition 6.1, the corresponding ACCESS presentation is given by PRES =
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(X", V, X", Az") where:

1Y = (S, EV,F) with:
R {bOOl}USU(S)MS
EV = Aev}
F = {operations over the sorts S"} U

{t : Type(Var(t)) —ev|teT}U
{// :evev — ev}

with Cs=0, Cpv=10

2.V = UsesVs o where:
Vowe = {0 € Plr(p) = 5}
3. X = {All variables appearing in Az}
4. Az" = {Static Global Azioms over the sorts S": Az"}U

{Dynamic azioms over single transitions
t(Var(t)) : &ypevy (vi=v = Av, 1)) = &ipevy (vi=v+ At v)) [t €THU
{Meta-rules
e fi—gnem i =g, ~  //(EnEn) fi&f, = 3,&0,)
Where Var(t) are the variables appearing in A(t) and Type(Var(t)) are the sorts of these variables.

The set S of data sorts, in the ACCESS presentation, is the extension of the algebraic specification,
Spec, of the given AN obtained by adding to each sort in S the corresponding multi-set. The local
states are nothing else than the places of the AN: if the sort of the place is s in the AN, than the sort
of its corresponding local state is m_s, the multiset sort. The static axioms are the equations Az of
the algebraic specification Spec. For each transition t € T of AN, is defined a dynamic axiom, whose
precondition is given by a concatenation of sma, one for each input arc (v,t), going from a place v to the
transition ¢. These sma remove the arc expression A((v,?)) from the local state. In a similar way, the
postcondition is given by a concatenation of sma, one for each output arc (t,v), going from the transition
t to a place v, and these sma add the arc expression A((¢,v)) to the local state.

Examples for transformations of Algebraic Petri Nets are close to those for Petri Nets and CPN with
arc extensions given in the previous chapter. The only difference consists in the ACCESS signature, X,
which must contain the same algebraic specification as those of the given algebraic petri net.

6.2 Gamma Language

The Gamma language [Ban93] is a programming style based on multiset transformations. It is useful for
describing the logical parallelism occurring in systems and is specially well adapted to reactive systems.

Definition 6.3 A Gamma program is defined as follows:
prog(M) =T((Ry, A1),...,(Rm, Am))(M) where fori={1,...,n}:
Ri(xs,,..., &) is a first order formulae
Ai(ziy, ... xi,)  is a multi-set
With M a multiset and x;; elements of the multiset.

The pairs (R;, 4;), 7 = {1,...,m}, made of a condition and a multiset, specify the m possible reactions
that may occur to the multiset M. The semantics is given by the following definition.

Definition 6.4 [Ban93] Given T((Ry1, A1), ..., (Rm, An))(M), ¢ Gamma program as in definition 6.3,
its effect on the multiset M s the following:

T((R1, A1), ., (Rm, Ap))(M) =
if Vi € {1, .. .,m},Vril, X, € M,ﬁRi(l‘il, .. ,Iln)
then M
else letie {1,...,m}, letz;,,...,z;, € M, such that R;(z;,,...,2;
F((Rl,Al),...,(Rm,Am))(M— {lll,,rzn}—l—Al(I“,,lln))
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If there is a collection of elements {x;,,...,2;, } of M satisfying a condition R;, then the multiset M
is changed by removing the multiset {;,,...,2; } and by adding the multiset A;. The program ends
when no collection of elements of M fits a condition R;.

Note that these reactions can occur at any moment and in any order. They may occur more than one
time, and the process ends only when no reaction is able to occur.

Access is well suited for the specification of reactive processes, as the semantics given to ACCESS
presentations allows any dynamic axiom defined in the presentation to occur at any moment and in any
order. At this point, it is easy to associate ACCESS dynamic axioms to Gamma reactions. The following
definition of the transformation of Gamma programs into ACCESS presentations describes formally how
AccEss dynamic axioms are used to specify Gamma reactions.

Definition 6.5 Given T'((R1,A1),...,(Rm, Am))(M) a Gamma program, as in definition 6.3, the cor-
responding ACCESS presentation is given by PRES = (X,V, X, Az) where:

1. S = (S,EV,F)with:
S = {All sorts necessary to define the multiset M and the booleans}
EV = {ev}
F = {operations over the sorts S} U
{ri : Type(wiy, ..., xi,) — ev | Ri(iy, ..., x,) €T, i€ {1,...,m}}U
{6 :—=ev}U

{// :evev — ev}

with Cs=0, Cpy=10

2. V. = Vi, UViee where:
Vi = {Buffer}, Vooor = {End}
3. X = {All variables appearing in Az}
4. Ax = {Static Global Azioms over the sorts S}U

{Dynamic azioms over single transitions
{ri(@iy, -, 2i,) 0 Negin,in}(Em (25, Buf fer) = True) A (Ri(x;,, ..., x;,) = True)
—
Buffer .= Buffer —r, {®iy, .. &, } +5 Ai |1 €{L,...,m}} U
{6 Ni=g1, oy Vi, Vi, (0 ((Eryy (24, Buf fer) = True)A
(Ery (mi,, Buffer) = True)) =
Ri(ziy, ..., 2;,) = False)
— (End := True)} }U
{Meta-rules
ey fy =g fyo =7y~ [/(E01, ) f1&fy — 71&0,}

Where Tar is the sort of S representing the sort of the multiset M, €;,, is an operation of F' specifying
if a given element is part of a multiset of sort Tr.

The set of data sorts contains all sorts and multiset sorts necessary to define the sort of the multiset M,
and the sort bool for the booleans. The set of event sorts contains only the sort ev. The operations over
data and events are operations over data sorts, e.g. operations over multisets and booleans. There are
also operations returning events: (1) for each reaction (R;, A;) in the I' program, there is an operation
ri : Type(&i,, ..., 2;,) — ev whose parameters, z;,, ..., z; , are those of the condition R; (and also those
of the action A;); (2) a special operation § producing an event with no parameters, which is the event
corresponding to the end of the T' program; (3) the // operation between events, producing compound
events.

The set of local states contains two local states: Buffer representing the multiset M, and End
representing the state of the program (running or not).

The variables are those used later in the Axioms.

The Static Global Axioms are those needed for defining the operations and the sorts of S, including
the €;,, operation.
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Dynamic axioms are defined for the labelled events r;j(x;,, ..., ;,) of F' and for the § operation.

The dynamic axioms for r;(2;,,...,2;,) have as precondition a sla (Static Local Axiom) verifying
that each parameter z;, of the event is in the Buffer, it verifies also that with these parameters, the
condition R; evaluates to True. The postcondition of these dynamic axioms firstly removes from the
local state Buf fer the multiset, {z;,,...,#;, }, composed of the parameters, and then adds to Buf fer
the multiset given by the action A;. These dynamic axioms specify the reactions (R;, 4;) as well as their
effect on the multiset, i.e. on the local state Buf fer, according to definition 6.4.

The dynamic axiom for the § event changes the local state End to True (indicating in that way the
end of the T program) if all conditions R; evaluates to false and this for each possible set of parameters
x;, present in Buf fer.

The meta-rule gives the “true” concurrency for compound events obtained with the // operation.

We will see now, on the basis of an example, how the transformation of definition 6.5 is actually
applied.

Example 6.6 [Ban93] A program iesting if a graph is connected or not is given by the following Gamma
program:

connected(G) = singleton(I'((Ry, A1), (Ra, Aq))(G))

where

)
n)) = {v}

In this example, a graph G is represented as a multiset of vertices and edges. The pair (m, n) denotes
an edge connecting z to y, while v, w denotes sets of vertices. The function vertices(v) is a boolean
function testing whether v is a set of vertices or not. Reaction (Ry, A1) tests if two sets of vertices v, w
are connected by an edge (m,n). If this is the case, the edge (m,n) is removed from the multiset G and
the two sets v, w are replaced by a larger set v + w. The second reaction (Ra, A2), removes all edges
connecting two vertices of a set of vertices.

Both reactions are dedicated to remove from the multiset G all edges connecting set of vertices and to
replace all connected set of vertices by only one set. The size of multiset G decreases and G then becomes
a singleton if the graph is connected. Finally, the singleton function tests if the so obtained multiset G
is effectively a singleton (i.e. if G is connected) or not.

The AccESss presentation for this example follows definition 6.5. The set of local states is Buf fer, End
with Buffer of sort multiset of edges and set of vertices, and End of sort bool. The sort of Buf fer
is denoted by m_sg, for the multiset constructed over elements of sort sg, which is our notation for
the combined sort of edges and set of vertices. The set of operations F' contains, among others, the
operations:

vertices : sq — bool
singleton : m_sg — bool

The operation vertices takes as parameter an element of the graph (either a set of vertices or an edge)
and returns a boolean, while the operation singleton takes as parameter a graph and returns a boolean.
The set of dynamic axioms corresponding to the two reactions (R;, 4;) and to the final event é are:

ri(v,w,(m,n)) : (Em_sq (v, Buffer) = True) A (Em_sq (w, Buffer) = True)A
(Em_sq ((m,n), Buffer) = True)A
(vertices(v) A vertices(w) A (Eyert (M, 1)) A (Eyert (n,w)) = True) —
Buffer .= Buffer —m_sq¢ MAKEp,_so(v,w,(m,n)) +m_sqg MAKEp s (v +yert W)

ro(v, (m,n)) : (Em_se (v, Buffer) = True) A(Em_sq ((m,n), Buf fer) = True)A
(vertices(v) A (Eyert (M, 1)) A (Eyert (n,v)) = True) —
Buffer .= Buffer —m_sq MAKE , 5. ((m,n))
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§: Yoy Ywi ¥Y(mi,n1).((Em_se (v1, Buffer) = True) A (Em_sq (w1, Buffer) = True)A
(Em_sg ((m1,n1), Buffer) = True)) =
((vertices(v) A vertices(w) A (Eyert (M, 0)) A (Eyert (n,w)) = False))A
Vg ¥(ma, n2).(((Em_sq (va, Buffer) = True) A (Em_sg ((ma, na), Buffer) = True)) =
((vertices(v) A (Eyert (M, v)) A (Eyert (n,v)) = False))
— (End := True)

The M AK E,,_s is the operation of F' creating a multiset of sort m_sg from given elements of sort
sG- The Ey.r¢ operation tests if a given vertex is element of a given set of vertices.

The dynamic axiom for the reaction (Ry, A1), (i.e. the dynamic axiom for the labelled event 71 (v, w, (m, n))),
has a precondition made of a sla testing if each parameter v, w, (m, n) is an element of the local state
Buffer and if the condition R; is satisfied, its postcondition then removes the multiset {v, w, (m,n)}
from Buffer and adds the multiset given by 4; (i.e. {v+w}).

The dynamic axiom for the reaction (Rg, A2), (i.e. the dynamic axiom for the labelled event r4(v, w, (m, n))),
is very similar to those for (R, A1), the difference comes from the parameters and the tested condition
Rs and the action As.

Finally, the dynamic axiom for the ending event § has a precondition made of a sla testing if firstly
R, is false for each set of parameters {v1, w1, (m1,n1)} belonging to Buffer, and if secondly R is also
false for each set of parameters, {va, (ma,n2)} in Buf fer.

6.3 CO-OPN

CO-OPN is a structured language based on algebraic Petri Nets with adjunction of object-based features
and synchronization: object are whole Petri Nets, whose behaviour can be synchronized by the mean of
a special operator with.

We will not give the formal transformation of CO-OPN specifications into ACCESS presentations, but
we will only present informally on the basis of releavant examples, how this transformation happens.

receive(m) send(gn)

Figure 6.1: Basic CO-OPN example

Figure 6.1 represents two Petri Nets, O1, O2, both composed of two transitions and one place. Each
of these petri nets is an object and we see, that object Os needs to synchronize with object O; when
transition receive(m) is activated: transition receive(m) can happen only if transition get(n) occurs
simultaneously, but get(n) can occur alone even if receive(m) does not happen.

A CO-OPN specification for figure 6.1 is given by:
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Object: Oq;

methods: get : nat, put : nat;

places: p1 : nat;

var: n : nat;

axioms: t1 sput(n) : (...) — pi([n]);

ty : get(n) : pi([n]) —;
init-marking: p;(0);

end;

Object: Os;

methods: receive : nat, send : nat;

places: pa @ nat;

var: m : nat;

axioms: t3 : recetve(m) with get(m) :— pa([m]);

ty @ send(m) : pa([n]) — (.. .);
init-marking: p2(0);
end;

This specification defines two objects 01,04 (Petri Nets), according to the above figure. It defines
for each object, the set of its methods (the transitions) and the set of its places. The axioms give the
flow relation between transitions and places with indication of synchronizations. Axiom #; defines the
flow relation for the method put(n) with an unknown precondition (before the —) as figure 6.1 is not
complete, and with the postcondition p;([n]) for adding the multiset [n] to the place p;. Axiom t5 defines,
in a similar way, the flow relation for the method get(n) with the precondition p;([n]) for decreasing the
place p; from the multiset [n], and with no postcondition. Axiom ts concerns method receive(m). It
indicates that method receive(m) has to synchronize with method get(m), by the use of the operator
with. It defines then the behavior of receive(m) with no precondition and with the postcondition pa([m])
for increasing the place ps with the multiset [m]. The last axio t4 concerns method send(m), it has the
precondition ps([n]) for decreasing ps with the multiset [n] and an unknown postcondition.
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The corresponding ACCESs presentation will be given by PRES = (X, V, X, Az) where:

1. ¥ = (S EV,F)with:
S = {All sorts necessary to define the multiset of nat}
EV = {ev}
F = {operations over the sorts S} U
{Operations producing events
put : nat — ev
get : nat — ev
recetve : nat — ev
send : nat — ev
//: ev ev — ev
with : evev — ev}

= Vm_nat = {P11P2}

{All variables appearing in Az}

z = {Static Global Axioms over the sorts S
—(D(with(evy, evs)))} U

{Dynamic axioms

ISR JCRN N
b <
|

put(n) : (... — p1:=p1 + [n]
get(n) : pri=p1—[n] —e
with(receive(m), get(m)) : ¢ — p2 i=p2 + [m]
send(m) : p2:=pa—[n] —(..)}U

{Meta-rules
€y f1 = e fy =Gy~ /(e En) : fi&ef, — 7,40,
‘With(ﬁl,ﬁ2)3f1_>§1iﬁ23f2_>§2 ~ evy : f1&fy — 71&7,}

The corresponding ACCESS presentation defines all sorts and operations necessary for multisets of
nat (natural). For each method in the CO-OPN specification is defined an operation producing an event
from the parameters of the method. Moreover, two operations producing compound events are defined:
// and with, for the compound events occuring in parallel and for synchronized events respectively.

The set of local states is nothing else than the set of all places present in the CO-OPN specification:
p1, P2 Whose sorts are the multiset of natural, noted m_nat.

Static Global Axioms are usual axioms necessary for defining correct operations over the multisets of
natural, and the additional axiom —(D(with(evi,evs))), indicating that the event with(ev;, evs) is not
allowed to happen.

Dynamic axioms are defined for each method, they are constructed in the same way as dynamic
axioms for transitions in a basic Petri Net. Note that there is no dynamic axiom defined for receive(m),
but there is one for the compound event with(receive(m), get(m)). This last dynamic axiom defines this
compound event by adding the multiset [m] to the local state ps.

Meta-rules are defined for the // operator and for the with operator. The meta-rule of the //
operator defines the parallelism as the “true” parallelism, as we have already seen it some times before.
The meta-rule for the with operator specifies that behaviour of the first event appearing as parameter
of the with operator, here it is &7y, is defined as the compound behaviour of the with(ev,,evy) and evsy
events. Moreover, the static global axiom —(D(with(evy, evs))) forbids events of the form with(evy, evq)
to happen. The use of this static axiom, together with the meta-rule for the with operator, ensures that
(1) event receive(m) can happens and event with(receive(m), get(m)) cannot happen; (2) the behaviour
of receive(m) corresponds to both the behaviour of get(m) and with(receive(m), get(m)). This means
that event receive(m) leads to an abstraction of event get(m), each time receive(m) happens, the event
get(m) happens too.

Remark 6.7 AS for CPN with arc extensions, we conjecture that there exists an isomorphism between
Gamma programs models, CO-OPN models and their models of their corresponding ACCESS presentation.
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Chapter 7

Conclusion

The previous chapters were all dedicated to the formal description of ACCESs syntax and semantics,
as well as to the possibility for other languages to have their specifications transformed into ACCESS
presentations. This section firstly discusses the main features of AccCESS, it then briefly gives some
comparison points between ACCESS and some other specification languages, finally it ends with the
future possible evolutions of ACcCEss.

Acckss features

A CCESss presentations describe systems by a set of local states, whose value changes under the occurrence
of events. Events and Data structure handled by the system are specified as abstract data type. Global
constraints on both events and data structure are described with first order formulae (Static Global
Axioms), while the behaviour of events is given by causality rules (Dynamic Axioms). A syntactic
process (Meta-rules) allows the production, from a restricted set of dynamic axioms, of a large set
(possibly infinite) of dynamic axioms.

Accgss provides a high degree of expressivity combined with a user-defined concurrency instead of
a predefined concurrency as it is the case for some other languages. AccEss offers also some other
particularities as a local temporal ordering or non-determinism. These features and some others are
discussed below:

Multi-levels of granularity

There is possible access to a given data structure as a whole or to subelements of the data structure. In
the following dynamic axiom: evnt(m) : (first(queues) = m) — queuey := queue; the value of a given
element of a queue is tested, and the value of a whole queue is changed with the value of another queue.
We have then accessed to an isolated element of a queue, but also to the queue itself.

At the event level we can define all the details of a given event, and we can also define all the details
of compound events. But, with meta-rules, we can also define only the global combination of compound
events without describing all the internal details.

The use of predicates as static global axioms over events, enables a kind of “modular” definition of
events. For example, we can define a “big” event representing a large set of other subevents (combined
with a given operator). We define also all the dynamic axioms corresponding to the subevents and to the
“big” event. If we add, to the static global axioms, predicates of the form: —(D(ev;)) for all subevents,
then all the subevents are not allowed to happen. On the contrary, the “big” event can happen. We then
have a sort of modular definition for the “big” event as its definition is based on those of the subevents.
Another interpretation, we can give to this particularity, is that the “big” event represents an abstraction
of all the other subevents: subevents cannot happen alone, but they can happen together in the “big”
event; when they happen together none of them is seen separately, only the “big” event is seen.
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High expressivity

First order formulae for static axioms lead to high expressivity, as a great variety of properties may be
described.

Expressivity is also increased by the possibility to change the value of a local state in a relative but
also absolute way. The value of a local state can be decreased (increased) by a given value (as it is the
case for algebraic petri nets places), but the value of a local state can also be changed with the value of
another local state, for example.

Control of events

The behaviour of a given event is permanently under the control of static local axioms appearing inside
the dynamic axioms describing the event. If the conditions are satisfied then the event occurs, otherwise
the event fails.

User-defined concurrency

The double view of events, as both (static) data and dynamic entities, allows the definition of any
operation on events, whose static properties are described with static axioms and whose behaviour, as
event, is given by dynamic axioms and meta-rules. In that manner, it is possible to define different kinds of
parallelism (interleaving, “true” parallelism), that can even coexists inside the same system specification:
some events may happen together according to a given parallelism, while other events happen together
according to another parallelism. Thus, there is no predefined concurrency as it is the case for example
with ACP [Baet90] or Petri Nets, which both work with predefined parallelism (interleaving or parallelism
given by Petri Nets respectively)

Temporal properties

The pre- and postconditions of dynamic axioms let us define local temporal properties, as the postcondi-
tion is supposed to happen after the precondition. However, global temporal properties are not expressed
with ACCESS as no direct mean on the ordering of events is provided. Indirect means could be found, by
defining operators of sequentiality between events and by adding appropriate static and dynamic axioms.

Non-determinism

Non-determinism is naturally present in AcCCEss, as any of the dynamic axioms can be used at any
moment. This similarity between dynamic axioms and reactions in a reactive system, let us suppose that
AccEss is well suited for reactive systems specifications.

The behaviour of an event can be described by more than one dynamic axiom, in that case the
behaviour of the event cannot be predictable as it can be the behaviour defined by any of the dynamic
axioms.

AccEss as a generalization of other languages

Our main conjecture 5.12 affirms that there are isomorphisms between models of ACCESS presentations
and models of specifications of other languages for which there is a transformation of their specifica-
tion into an ACCESs presentation. The major implication of this conjecture, if it is true, is that the
Accgss language would be a generalization language, as specifications in other languages are equivalent
to specifications given in ACCESS.

Problems

The major problems, currently encountered by ACcCEss, are the lack of structure, as no mean is provided
for building modular specifications, and the complexity of the definition of ACCESS presentations.
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AcCcCEss vs other languages

The whole family of Petri Nets has a parallelism based on the Petri Nets concurrency: parallelism is
given by two or more transitions firable at the same time, a given transition can be fired twice or more
at the same time if the value of the adjacent places is sufficient. ACCESss captures the concurrency of
Petri Nets and their derived, and goes further as it is more flexible for what concerns the expressivity
and the description of events: the variety of conditions writtable in AccEss is wider than those given
by [Jens94]; local states may change their value to any other value.

The Gamma language gives a logical programming style, but we suppose that compilation of Gamma
program has to be relatively complex, for example if we consider the large work of matching of parameters.
All the elegance of Gamma programs are then paid by this underground. With AccEss, we are closer to
the running program as details have been given about the evolution of the system (e.g. modification of
local states), but it is also clear that our specification is heavier than those of Gamma.

All features of the CO-OPN language are easily captured by ACcESs, except the structure (as ACCEsS
contains no notions of modularity). The reason for this is that CO-OPN is heavily based on algebraic
petri nets and that the most extensions of CO-OPN concerning the synchronization between object,
realized with the with CO-OPN operator of CO-OPN is specified in a natural way with meta-rules in
ACCESs.

Future work

Future work will focus on different directions. First of all, the resolution (or not) of conjecture 5.12 is
considered, especially the study of isomorphisms between models for the case of Petri Nets, one possible
start point could be given by the correspondence of [Muku92] between PN-transition systems and Petri
Nets.

Although we have given the syntax and semantics of ACCESS, no interests has yet been given to
problems like: initial, terminal algebra; there is, there isn’t a model; etc.

As we said above, no structuring of ACCESS presentations is now possible. We intend to add the
modularity and hierarchy on the basis of [Guel94] and [Moin91].

Currently dynamic axioms are made of a precondition and of a postcondition. They are of the form:
evnt : f — g. For generalization purposes, and for increasing landmarks in meta-rules, we intend to
investigate the possibilities given by meta-rules of the form: evnt : f — g — h — ¢ — ..., with a finite
and varying number of parts, each of them separated by —.

We highlighted previously, the similarity between dynamic axioms and reactions of reactive systems,
in order to go further in that direction, we intend to find fields of applications of AcCESS: as for example
chimical systems.

*
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