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Abstract

This report defines synchronised Petri nets with inhibitor arcs and an extension of these
nets that integrates real-time constraints. The semantics of these nets is given by a transition
system built using Structured Operational Semantics (s0s)) rules. This report is part of a
larger framework that attempts to attach real-time constraints to the CO-OPN/2 language.
Keywords: CO-OPN;, Petri nets, real time, linear temporal logic.

1 Introduction - Motivation

CO-OPN/2 [2] is an object-oriented specifications formalism based on algebraic data types [7]
(ADT) and Petri nets which are combined in a way that is similar to algebraic nets [6]. Algebraic
specifications are used to describe the data structures and the functional aspects of a system,
while Petri nets allow to model the system’s concurrent features. To compensate for algebraic
Petri nets’ lack of structuring capabilities, CO-OPN/2 provides a structuring mechanism based on
a synchronous interaction between algebraic nets, as well as notions specific to object-orientation
such as the notions of class, inheritance, and sub-typing.
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Figure 1: Toy Example with CO-OPN/2

Figure 1 depicts a CO-OPN/2 specification made of two objects (two Petri nets) called O1
and O2. Object O1 is an instance of Class module Sender; it is of type sender. It contains
a place p1, storing terms of sort s, and a transition (called method in the CO-OPN/2 context)
move (t). The current marking of this place contains the three algebraic terms t1, t2, t3. Object
02 is an instance of Class Receiver; it is of type receiver. It contains a place p2, storing terms
of sort s, and a method put(t). Place p2 is initially empty. Object O2 contains as well an
internal transition (called transition in the CO-OPN/2 context) processing. The dashed arrow

*this work has been realized while Dino Mandrioli was visiting the Swiss Federal Institute of Technology.



from method move(t) to method put(t) stands for the fact that method move(t) requests a
synchronisation with method put (t) whenever it fires!.

The CO-OPN/2 semantics states that : (1) method move (t) can be fired only if method put (t)
is firable; (2) if move(t) is fired, then put(t) is fired simultaneously. In the example above, a
firing of move(t) produces the removal of a term t from the pl place, and the insertion of this
term into the p2 place. It is worth noting that method put(t) can be fired alone, without the
firing of method move (t), while the firing of method move (t) cannot be performed without the
firing of method put (t). In addition, as place pl contains three terms, method move (t) can be
fired at most three times; (3) transition processing fires spontaneously as soon as it is enabled,
and fires as long as it is enabled. While transition processing is firing no other method can be
fired, e.g. method put (t) cannot be fired. Transitions have a higher priority than methods. The
process of ending the firing of internal transitions before firing any method is called stabilisation
process in the CO-OPN/2 framework.

This report is a first attempt to attach real-time constraints to CO-OPN/2 specifications. In
order to study how real-time constraints can be introduced into CO-OPN/2 specifications, we will
work on a simplified version of CO-OPN/2 specifications. This version, called Synchronised Petri
Nets, is such that:

e Priority is rendered with inhibitor arcs.

CO-OPN/2 transitions are important, since they provide a priority mechanism of transitions
wrt methods. However, the stabilisation process prohibits the guarantee of real-time con-
straints. Therefore, internal transitions are kept in synchronised Petri nets, but the priority
involved by the stabilisation process is rendered with inhibitor arcs instead of the stabilisa-
tion process. In addition, inhibitor arcs are a more general mechanism than the stabilisation
process. Indeed, the use of inhibitor arcs enables to choose the methods to be given lower
priority wrt transitions, while in the case of the stabilisation process, every method is delayed
until every transition ends.

o ADT are replaced with black tokens.
In order to simplify the notations and the semantics, we replace ADT by black tokens. This
simplification is acceptable since we want to focus on real-time constraints, and the chosen
notion of time does not depend on the data type.

o (Object-based replaces object-orientation.
The CO-OPN/2 semantics allows the creation and destruction at run-time of Class instances.
In this attempt to consider real-time constraints we will focus on synchronisation rather than
creation of instances. Therefore, synchronised Petri nets specifications are made of static
objects, i.e. a fixed number of Petri nets that exist since the beginning of the system.

e Synchronisation is kept.
Focus is given on synchronisation and real-time constraints attached to synchronised meth-
ods. Therefore, the synchronisation mechanism of CO-OPN/2 is kept.

e Real-time constraints are added.
A time interval can be attached to any method and any transition. The firing of a method or
a transition is considered to be instantaneous, it takes place in a time interval that is relative
to the time when the method or transition becomes enabled.

Figure 2 gives a synchronised Petri net version of the CO-OPN/2 Toy example of Figure 1.

The three algebraic terms t1, t2, and t3 are replaced by three black tokens.

Methods move and put have no parameter attached, since we cannot discriminate among black
tokens. Methods have a time interval attached: method move has the time interval [5..15]
attached, method put has the time interval [2..10] attached, and transition processing the
time interval [1..9].

There is an inhibitor arc, with label 0, between place p2 and method put.

ltransitions may also request a synchronisation with methods, however neither transitions nor methods can
request a synchronisation with transitions.
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Figure 2: Toy Example with Real-time Synchronised Petri nets and Inhibitor Arcs

The intuitive semantics of this real-time synchronised Petri net is the following: (1) the time
interval attached to method move means that method move must fire instantaneously in the interval
given by: 5 time slots after it becomes enabled, and 15 time slots after it becomes enabled. In
addition, it must fire at latest 15 time slots after it becomes enabled; (2) similarly for method put
and transition processing: method put must fire not before 2 time slots after it becomes enabled,
and at latest 10 time slots after it becomes enabled, while transition processing must fire not
before 1 time slots after it becomes enabled, and at latest 9 time slots after it becomes enabled;
(3) method move requires to be synchronised with method put, and their respective time intervals
must be respected, this means that method move and method put must fire simultaneously in
an interval corresponding to the intersection of the time interval of move, and that of put, i.e.,
[2..10] (since both are enabled at time 0); (4) the inhibitor arc associated to method put means
that this method can be fired if the number of tokens in place p2 is less or equal 0. Therefore,
transition processing has a higher priority wrt method put. Indeed, method put cannot fire, if
transition processing has not fired before, and thus emptied place p2.

The goal of this report is to precise the syntax and semantics of these real-time synchronised
Petri nets. The report is structured in the following manner: section 2 defines the syntax and
semantics of synchronised Petri nets; section 3 defines the syntax and semantics of real-time syn-
chronised Petri nets; and section 4 gives some applicative examples.

2 Synchronised Petri Nets

Synchronised Petri nets are a simplified version of CO-OPN/2 specifications: synchronisation of
nets is maintained, but object-oriented features, ADT, and the stabilisation process are removed.

2.1 Syntax

A synchronised Petri net is a Petri net with two kinds of transitions: external ones, called meth-
ods, and internal ones, simply called transitions. Three kinds of arcs between places and meth-
ods/transitions are defined: input, output, and inhibitor arcs. Input, output arcs are traditional
pre- post-conditions of nets. Inhibitor arcs prevent the firing of a single method or transition if
the number of tokens in the place is greater than the number of tokens requested by the arc.

Definition 2.1 Synchronised Petri Net.
A Synchronised Petri Net is given by a 6-tuple (P, M, T, Pre, Post, In) where: P is a finite set of
places; M is a finite set of methods; T is a finite set of (internal) transitions; Pre, Post : MUT —
(P — N) are total functions, they define traditional Petri nets arcs removing or inserting black
tokens respectively; to every method or transition is associated a partial function that maps places
to a number. In: M UT — (P — N) is a total function defining inhibitor arcs®.

A synchronised Petri nets system is a set of synchronised Petri nets with a synchronisation
mapping among them.

Definition 2.2 Synchronised Petri nets System.
A Synchronised Petri nets System is given by Sys = (01, ... ,0p, Sync):

2Synchronised Petri nets are not labelled nets. Indeed, methods and transitions of a synchronised Petri net have
at most one behaviour. This is different from CO-OPN/2 nets, where a given method or transition is allowed to
have several different behaviours.



e O; = (P, M;,T;, Pre;, Post;, In;), 1 < i <mn, a synchronised Petri net;
e a total function Sync : Uieqi,... ny(M; UT;) — Syncgap: that defines for each method and
transition m € Ujeq,... ’n}(Mi UT;) a synchronisation expression e € SYNCeapr-
The following conditions must hold:
o for everyi,j€{l,...,n} then LNM; =P,NT; =M;NT; = D;
o for everyi,je{l,...,n},i#jthen bLNP; =@, and Mi N M; =&, and T, N T; =
o the set Syncgqpr of synchronisation expressions is the least set such that:
€ € SYncEzpr
VM, i€ {l,...,n}, M; C Synceup:
e1,62 € SYNCEypr = €1 // €2 € Syncypr
e1,e2 € SYNCEzpr = €1 .. €2 € SYNCEzpr
e1,e2 € SYNCEzpr = €1 D ez € SYNCrgpr-
€ stands for the empty synchronisation;

e the Sync function must ensure that a method does not synchronise with itself, and that the
chain of synchronisations does not form cycles. Therefore, considering the relation <syn.C
Uie{l,...,n}Mi X Uie{l,...,n}Mi’ where :

Vm € Uieqa,.. oy Mi, Ym' € Sync(m) = m <gyne m/,

the relation <3,,,.C Uic(1,... }Mi X Uieq,... .ny M, defined as the transitive closure of

<Sync, 18 such that:

li li /
vm,m' € Uieq1,... myMi, m <5y, m" = m#m'.

The membership of a method m to a synchronisation expression e, denoted by m € e, is
recursively defined by: Ym € Ujeq1,... nyMi, €1, 2 € SYnceep,, then:
mem
(meerVmeey) =mece /] e
(meerVmeey) =>meey .. e

(meeyVmeEey) = méee; P es.

Remark 2.3 A method or a transition of a net can request the synchronisation with a method
of the same net or another net (provided the same method does not appear two times or more in
the chain of synchronisations). In addition, it is not possible to request synchronisation with a
transition.

Notation 2.4 Syntactical Notation.
Let Sys = (O1, ... ,0n, Sync) be a synchronised Petri nets system, with O; = (P;, M;, T;, Pre;, Post;, In;),
we denote:

P =Ucq,.. n} b

M = Uieqa,... ny M

T= Uie{a,... ,n}Tz‘

Pre: MUT — (P — N)

Pre;(m)(p),p € F;
undefined, otherwise

m € M; UT; = Pre(m)(p) :{
Post: MUT — (P — N)

Post;(m)(p),p € P;

m € M; UT; = Post(m)(p) = { undefined, otherwise
In:MUT — (P —N)

In;(m)(p),p € P;

m € M; UTy = In(m)(p) = { undefined, otherwise.

In the rest of this paper we will use this notation.



Notation 2.5 Graphical Notation.

Let Sys = (O1,. .. ,On, Sync) be a synchronised Petri nets system, with O; = (P;, M;, T;, Pre;, Post;, In;),
the corresponding graphical specification is the following: each object O; is depicted by an oval. In-

side the oval, each p € P; is represented with a circle. On the border of the oval, each m € M,;

is giwen by a black rectangle. Inside the border, each t € T; is drawn with a white rectangle.

Each Pre;(m)(p) > 1 is figured with an arrow from p to m (labelled by Pre;(m)(p)), each
Post;(m)(p) > 1 with an arrow from m to p (labelled by Post;(m)(p)). Each In;(m)(p) is de-
picted with a line, ended by circles, between m and p (labelled by In;(m)(p)). Each Sync(m)=m’

is drawn as a dashed arrow from m to m’; and each Sync(m) = e € Sync as a dashed arrow from

m to every method appearing in e, with the mention of //, .., or @.

Definition 2.6 Marking, Set of Markings.
Let Sys = (O1,...,0n, Sync) be a synchronised Petri nets system, a marking is a total mapping
mark : P — N. For each place p € P, the marking mentions the number of black tokens in p.

We denote by Mark the set of all markings of Sys.

Definition 2.7 Sum of Markings.

Let Sys = (O1,...,0,,Sync) be a synchronised Petri nets system, and Mark be the set of all
markings of Sys. The sum of two markings is given by a mapping +nrark : Markx Mark — Mark
such that:

Vp € P = (marky +park markz)(p) = mark: (p) + markz(p).
In the rest of this paper we simply note + instead of + prark-

Definition 2.8 Marked Synchronised Petri Nets System.

A marked Synchronised Petri nets system is a pair (Sys, mark) where Sys is a synchronised Petri
nets system, and mark € Mark is a marking for Sys. Marking mark is said to be the initial
marking of Sys.

Example 2.9 Figure 2 (without the time intervals) is the graphical notation of the marked syn-
chronised Petri nets system (Sys, mark) given by:

Sys = (01,03, Sync)
= (Py, My, Ty, Prey, Posty, Iny),
= (Py, M3, T3, Prez,Postg,]ng)
1}, My = {move}, Ty =
2}, My = {put},To = {p'r‘ocessing}

(pl)
(p2)
Posty (put)(p2)
Inz(put)(p2)
)
)
)

Prej(move)
)

Prey(processing

{p
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)
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€
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mark(p2) =0

2.2 Semantics

The semantics of a synchronised Petri nets system is given by a transition system. In order to build
the semantics of a synchronised Petri nets system, we build first a basic transition system containing
triples related to single transitions. We build then an ezpanded transition system containing triples
related to synchronisation, parallelism, and sequence among transitions and methods. Both the
basic and the expanded transition systems are built using Structured Operational Semantics (SOS))
rules. The final semantics is then given by a subset of the expanded transition system, where we
retain only the triples containing observable events.



This section defines first observable events and events, second transition systems for synchro-
nised Petri nets system, third the set of rules that enable to construct the basic transition system,
then the set of rules for the expanded transition system. Finally, we define the semantics of a
synchronised Petri nets system.

An observable event is one of the following: the firing of a method, the firing of a transition, or
the parallel ( //) or sequence (..) firing of two observable events, or the alternative (&) between
two observable events.

Definition 2.10 Observable Fvents.
Let Sys be a synchronised Petri nets system. The set of observable events of Sys, denoted by
Obsgys, is the least set such that:

MUT C Obsgys
e1,e2 € Obsgys = e1 [/ ea € Obsgys
e1,62 € Obsgys = €1 .. ea € Obsgys
e1,e2 € Obsgys = e1 @ ex € Obsgys.

Definition 2.11 Events.

Let Sys be a synchronised Petri nets system. The set of events of Sys, denoted by Event, is the
least set such that:

e € Obssys = e € Event
e=mwithe', me MUT,and e’ € Syncpy, = € € Event.

An event is any observable event, but also an event of the form “m with e”, where the synchroni-
sation is explicitly required.

Definition 2.12 Transition System.
A transition system trs for a synchronised Petri nets system Sys is such that:

trs C Mark x Event x Mark.

A transition system is a set of triples consisting of two markings and an event.

Basic Transition System

Definition 2.13 gives the rules for building the basic transition system.

Definition 2.13 Rules, Basic Transition System.

Let Sys be a synchronised Petri nets system, the set of rules for constructing the basic transition

system 1is given by the rules below. In these rules: m € M UT, e € Syncgapr, mark, € Mark.
The basic transition system, denoted by trspasic, i the least fized point resulting from the

application of the inference rules R1 and R2.

Sync(m) = €
In(m) > mark,;
mark; > Pre(m)

R1
(marky, m, marky — Pre(m) + Post(m))

Sync(m) = e
In(m) > mark
marky; > Pre(m)

(marky, m with e, mark,; — Pre(m) + Post(m))

R2

Remark 2.14 In the above rules In(m) > mark holds if In(m)(p) > mark(p) for every p where
In(m) is defined.

There are two kinds of rules for constructing the basic transition system:



e R1
Rule R1 covers the case of the firing of a single transition or method that does not require
any synchronisation. Provided the marking mark; is greater than the pre-condition Pre,
and the conditions of the inhibitor arcs hold, the resulting marking after the firing, is simply
given by the removal of tokens requested by the pre-condition, and the insertion of tokens
requested by the post-condition.

e R2
Rule R2 enables to build additional triples, whose event part is of the form “m withe”. Rule
R2 covers the case of the firing of a single transition or method that explicitly requires to be
synchronised with some other methods, given by synchronisation expression e. The resulting
triple is the same as Rule R1, except the event part. These triples will not be part of the
final semantics, but they are useful for building the intermediate semantics.

Expanded Transition System

The expanded transition system is obtained from the basic transition system by adding triples

related to synchronisation, simultaneity, sequence and alternative.

Definition 2.15 Rules, Expanded Transition System.

Let Sys be a synchronised Petri nets system, and trspesic its basic transition system, the set of
rules for constructing the expanded transition system is given by the rules below. In these rules:

m,m; € MUT, e € SYncgapr, €1,e2 € Obssys, marky, marky, marky, marks € Mark.

The expanded transition system, denoted by trscupand. 15 the least fixed point resulting from the

application of the inference rules Sync, Sim, Alt.1, Alt.2, and Seq to trspgsic-

In(m) > marky + mark + Post*(e) In*(e) > marky + mark| + Post(m)
(marky,m with e, marks) (mark}, e, mark})

S
yne (mark, + mark}, m, marks + mark})

In*(e1) > mark; + mark] + Post*(e3) In*(e2) > mark; + mark] + Post*(e1)
(mark,, e;, marks) (marky, es, mark})

(marky + mark’, ey // ez, marks + markl)

im

(marks, e;, marks) (mark; , es, marks)

Alt.1 Alt.2

(marky, e1 @ ea, marks) (marky, e1 ® ea, marks)

(marky,e;,marky) (marky,ea, marks)

Se
d (marky, ey .. ea,marks)

Remark 2.16 In the above rules, the following conventions are used:

e In*(e) is recursively defined in the following way:

e=m,Sync(m) =€ = In*(e) = In(m)

min{In(m)(p), In*(e')(p)}, if both are defined
In(m)(p), if In*(e’)(p) is not defined
In*(')(p), if In(m)(p) is not defined
undefined otherwise

min{In*(e1)(p), In*(e2)(p)}, if both are defined
In*(e1)(p), if In*(e2)(p) is not defined

e =m,Sync(m)=¢€¢ = In*(m)(p) =

e=e1 /) e = In"(e)(p) = In*(e2)(p), if In*(e1)(p) is not defined
undefined otherwise
e=eg .. e = In*(e) = In*(e1).



e Post*(e) is recursively defined in the following way:

e =m,Sync(m) =€ = Post™(e) = Post(m)

e =m,Sync(m) =€ = Post*(e) = Post(m) + Post*(e’)
e=-e1 // e2 = Post™(e) = Post™(e1) + Post™(ez)
e=ej1 .. eag = Post*(e) = Post*(ey).

The cases In*(e1 & e3) and Post*(e1 @ ez) are not considered, because we assume that events can
always be written in a “normal” form: e = e; @ ex D es D ..., where e; do not contain the @
operator. Therefore, rules Sync, Sim, and Seq are applied on events that do not contain the ®
operator, and rule Alt can be applied independently from Sync, Sim, and Seq.

The fact that conditions on a sequence ey .. es are actually conditions on ey is motivated by
the fact that we will add timing constraints to the events that will imply a further constraint on
the time of occurrence of synchronised and simultaneous events. In the case of a synchronisation:
mwithey .. ez, orin the case of a simultaneous event: (e; .. ez) // es, conditions on inhibitor arcs
hold if and only if m occurs simultaneously with ey, or ey occurs simultaneously with es respectively.

The rules are such that:

e Sync.
Rule Sync handles the case of the synchronisation. From two triples, one with a requested
synchronisation, and one with the corresponding synchronisation, it produces a triple where
the synchronisation is abstracted. An additional condition is necessary: the inhibitor arcs of
m have to be greater than the sum of markings and the post condition of e, and conversely
for the inhibitor arc of e.

e Sim.
Rule Sim handles the case of simultaneity of observable events. From two triples: one for e;
and one for ey it builds the triple for event e; // es. Additional conditions are necessary:
inhibitor arcs for e; have to be greater than the sum of markings and post condition of es,
and conversely for es.

o Alt.1, Alt.2
Rule Alt.1 corresponds to the case where e; fires. Rule Alt.2 corresponds to the case where
ey fires.

e Seq.
Rule Seq defines triples for sequential events: from two triples whose final and initial marking
correspond, it is possible to obtain the triple for their sequence.

Semantics

Once we have built the expanded transition system according to the above rules, we obtain the
semantics by retaining only the triples such that:

e only observable events appear in the triple, i.e., no “m with e” appears in the triple;

e the triples contain markings reachable from the initial marking.

Definition 2.17 Semantics of a marked synchronised Petri nets system.

Let (Sys,mark) be a marked synchronised Petri nets system, trSezpand be the expanded transition
system obtained with the rules given in Definition 2.15. The semantics of (Sys, mark), denoted by
Sem, is given by the least transition system such that:

(mark, e, mark’) € trsegpana AN e € Obssys = (mark,e,mark’) € Sem
(mark’, e,marks) € trsezpand N € € Obsgys A

Imarks, e’ s.t. (marky, e’,mark}) € Sem  =(mark}, e, marks) € Sem.

Example 2.18 Figure 3 depicts (a subset of) the tree of reachable markings of the example of
Figure 2. The initial marking is made of 3 tokens in place p1, and by the empty place p2. Therefore,
the root of the tree of reachable markings is given by this initial marking, denoted by {3,0}. Given



this marking, three observable events can occur: (1) move, which leads to marking {2,1} (since
mowve requires a synchronisation with put, both fire simultaneously); (2) put, which leads to marking
{3,1} (put occurs alone); or (3) the alternative move @ put, which produces either marking {2,1}
(move actually occurs) or marking {3,1} (put actually occurs).

Because of the synchronisation between move and put, each time event move fires, event put fires
too. In addition, each time event put occurs, the next event to occur is necessarily processing.
Indeed, the inhibitor arc (with weight 0) between place p2 and method put means that processing
has to empty place p2 before put can newly fire. Therefore, a move or a put can be followed neither
by a put nor by a move (since move requires the firing of put). A move or a put can be followed
only by the firing of processing.

Rule Sim prohibits put // put to occur, since the condition regarding the inhibitor arc would
be violated. Since put cannot occur two times simultaneously, observable events move // put, and
move // move cannot occur. Rule Sim would be violated in this case too.

proc.

{2,1} o
put {2,0}
proc. ove DProc. move Pproc. put
{2,1}

{2,0} {1,1} {1,0} {o0,1} {0,0} {0,1}”.

move

{2,1}

move @ put

{3,0}
move @ put

{3,1}
proc.

{3,1} {3, O}‘ h

Figure 3: Tree of reachable markings

2.3 Examples

Jensen [5] defines inhibitor arcs in a different way: In(m) > mark + Post(m). We chose instead:
In(m) > mark for single methods (or transitions) m (see Rules R1, R2), and In(m) > mark; +
mark} + Post*(e), when m requires a synchronisation with e (see Rules Sync, Sim).

For single methods, the choice of the condition In(m) > mark is motivated by the fact that
we want the following meaning for the weight of the inhibitor arc: a weight of 0 means that the
transition (or method) attached to the inhibitor arc can fire alone provided that there are no tokens
in the considered place. A weight k£ > 0 means m is able to fire alone provided that there are less
or equal k tokens in the place.

Figure 4 explains the choices regarding the inhibitor arcs:

e Case a: If we remove the conditions regarding the inhibitor arcs in rule Sim (In*(el) >
marky + mark] + Post*(€2) and In*(e2) > marks + mark} + Post*(el) ), then only local
conditions would apply (this would correspond to split the resources present in places before
evaluating inhibitor arcs). In this case, we could fire m1 // m2 but not m1 & m2 or m1 .. m2.
Indeed, on one hand rule R1 can be applied to m1 with a marking of two tokens, and to m2
with a marking of two tokens. Then rule Sim (without conditions) could be applied to m1
// m2. On the other hand, rule R1 cannot be applied to m1 with a marking of four tokens,
and consequently both m1 @ m2 and m1 .. m2 are not allowed.

Allowing parallel firing, and prohibiting sequential firing is contradictory when time reduces
to zero, since the simultaneity corresponds to the case when time becomes zero. Indeed, even
for small times m1 .. m2 is not allowed, while m1 // m2 would be allowed.



Since we will add, in a further step, timing constraints to every transition and method, we
have chosen to use condition In(ei) > mark, + mark] + Post*(e2) in rules Sync and Sim.
Indeed, in the case of time, we want to avoid the fact that two events can occur in parallel
(i.e., exactly at the same time ¢), but cannot occur in sequence, even for very short delays
between the occurrences.

e Case b: In the case of a single method m, whenever the weight of the inhibitor arc is & = 0,
since Post*(m) inserts one token in the corresponding place, then method m, cannot fire
twice or more simultaneously (condition regarding the inhibitor arc would be violated in
rule Sim). Whenever the weight of the inhibitor arc is k¥ > 0, method m can fire n times
simultaneously if (n — 1) * Post*(m) < k. In the figure below, if £k = 1, then n = 2, since
m // m can fire, but not m // m // m; if k = 2 then n = 3, m can fire 3 times simultaneously,
but not 4.

Similarly to Case a, method m can fire n times simultaneously only if it is able to fire n times
in sequence.

e Case c: If we had In*(el) > marky +mark] instead of In*(el) > mark; +mark} + Post*(ez)
in rule Sim, we could firem1 // m2 but not m1 .. m2. For the same reason of Case a, we want
to avoid such discontinuity when the time reduces to zero.

e Case d: If we had In*(e) > mark; +mark] + Post*(m) instead of In*(e) > mark, +mark; +
Post(m) in rule Sync, we could fire m2 alone, but not m1 (which requires a synchronisation
with m2). Requiring Post*(ml) would require also Post*(m2) in the computation of the
inhibitor arc. This would be contradictory with rule R1, where the firing of m2 alone does
not require Post(m?2). The chosen rule for the inhibitor arc is such that the firing of the
synchronous event fails only if the method requesting the synchronisation is directly involved
in the post-set of the required method.

(0]

mq mo

(a) Split of resources (b) Same Method

(0]

my mo my mgog

(c) Post-condition (Sim) (d) Post-condition (Sync)

Figure 4: Inhibitor Arcs

3 Real-Time Synchronised Petri Nets

Real-time synchronised Petri nets are synchronised Petri nets with time interval attached to meth-
ods and transitions.

10



3.1 Syntax

A real-time synchronised Petri net is simply a pair given by a synchronised Petri net and a function
that associates to every method and transition of the net a time interval. The method or transition
has to fire in the given time interval, relatively to its time of enabling. If a method or transition
is not constrained by time, then an infinite time interval is attached.

Definition 3.1 Real-Time Synchronised Petri Net.

A Real-Time Synchronised Petri Net is given by a pair (O, Time) where O = (P, M, T, Pre, Post, In)
is a synchronised Petri net, and Time is a total function that associates a time interval to every
method and transition of O: Time : MUT — R* x (RT Uoo). The following condition must hold:

Time(m) = (t1,t2) = ((t2 >t1) V (Time(m) = (t,00))).

Definition 3.2 Real-Time Synchronised Petri nets System.
A Real-Time Synchronised Petri nets System is given by Sys = (O1,... ,0n, Sync):

e O; = ((P;, M;,T;, Pre;, Post;, In;), Time;), 1 <i <n, a real-time synchronised Petri net;

e a total function Sync : Uicq1,... ny(M; UT;) — Syncpep, that defines for each method and
transition m € Ujeqq, . m}(Mi UT;) a synchronisation expression’ e € Synceapr-

Notation 3.3 Syntactical Notation.

Let Sys = (O1,...,0y,,Sync) be a real-time synchronised Petri nets system, with

O; = (P, M;,T;, Pre;, Post;, In;), Time;), we use the same notation as 2.5 for P, M, T, Pre, Post, In.
In addition, we denote

Time: MUT — RT x (RT U oo)
m € M; UT; = Time(m) = Time;(m).

In the rest of this paper we will use this notation.

The marking of a real-time synchronised Petri nets system is a mapping that associates to every
place a multiset of real numbers. Every token of the net is stamped with its arrival time.

Definition 3.4 Marking, Set of Markings.
Given a real-time synchronised Petri nets system Sys = (Oy, ... ,0y, Sync), a marking is a total
mapping:

mark : P — [RT].
We denote by Mark the set of all markings of Sys.

A multiset of RT is given by a function f € [R*] such that f : R" — N, which evaluates to
zero, except on a finite number of cases (i.e., the set made of all ¢ such that f(t) # 0 is a finite set,
thus the number of tokens in a place is finite). Here, f(t) = j means that j tokens arrived at time
t. We denote by @ the empty multiset (&(t) = 0 for every t), and for instance {t1,t1,t2,t2,12} a

non-empty multiset containing two tokens arrived at time ¢; and three tokens arrived at time 5.

Definition 3.5 Sum of Markings.

Let Sys = (O1,...,0,, Sync) be a real-time synchronised Petri nets system , and Mark be the set
of all markings of Sys. The sum of two markings is given by a mapping +ayrari : Mark x Mark —
Mark such that:

(marky +nrark marks)(p) = marky (p) +g+) marks(p).

For every t € RT, (mark:(p) +g+) marks(p))(t) = marky(p)(t) + marks(p)(t).
In the rest of this paper we simply note + instead of +nrark, and + g+

3SyncEzp,« is given by Definition 2.2

11



Definition 3.6 Number of Elements in a Marking.
Let mark be a marking. The number of elements in marking mark, denoted by #mark, is a total
mapping:

2sex, mark(p)(t)

#mark : P — N, s.t. #mark(p) = { zfmark( )(t) = 0,Vt € RY

where K, = {t € R" | mark(p)(t) > 0}.

The function #mark returns for every place p the number of tokens present in the place. The sum
is finite since the multiset mark(p) has only a finite number of elements (hence K, is a finite set).

Definition 3.7 Initial Marking.
Given a real-time synchronised Petri nets system Sys = (O1,... ,0yp, Sync), an initial marking is
a marking, mark : P — [RY], such that for every p € P:

mark(p)(0) =k,
mark(p)(t) = 0,Vt > 0.

The initial marking is such that a place p contains k, tokens arrived at time 0. The places do
not contain tokens arrived after time 0.

Definition 3.8 Marked Real-Time Synchronised Petri Nets System.
A marked Synchronised Petri nets system is a pair (Sys, mark) where Sys is a real-time synchro-
nised Petri nets system, and mark is an initial marking for Sys.

Example 3.9 Figure 2 (with the time intervals) is the graphical notation of the marked real-time
synchronised Petri nets system (Sys, mark) given by:

Sys = (01, O3, Sync)
0, = (Py, My, Ty, Prey, Posty, Iny, Timey),
O3 = (Py, M3, Ty, Pres, Posta, Ing, Times)
Py ={pl}, M1 = {move}, T1 = &
Py, = {p2}, My = {put}, T> = {processing}
(p1) =1
(p2
Posty (put)(p2
Ins(put)(p2
Sync(move

Prej(move)
)

Prey(processing

(I I
O ==

put

|
(@)}

Sync(put

)
)
)
)
)
)

Sync(processing

€
Timey(move) = (5,15)
(2,10)

Timea(put

{ooo}

) =

) =
Times(processing) = (1,9)
mark(pl) =
) =

mark(p2

3.2 Semantics

In order to build the semantics of synchronised Petri nets systems, we build first, using an initial set
of rules, a weak transition system that contains transitions belonging to the weak time semantics
(an enabled transition may not fire even if the time of occurrence elapses). Second, on the weak
transition system, we apply a condition that enables to retain only those transitions that belong to
the strong time semantics (an enabled transition must fire when the time of occurrence elapses).
We obtain what we call the strong transition system. Third, on the strong transition system, we
apply another set of rules (taking into account synchronisations) that enables us to obtain an
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expanded transition system. Finally, we retain only those transitions necessary for the (observable)
strong time semantics.

Transition systems for real-time synchronised Petri nets are made of 4-tuples (instead of triples):
the time of occurrence of the transition is added.

Definition 3.10 Transition System.
A transition system, trs, for a real-time synchronised Petri nets system Sys is such that:

trs C Mark x Event x Mark x RT,

FEvent is given by Definition 2.11, and Mark by Definition 3.4.

Weak Transition System

The rules for constructing the weak transition system of a real-time synchronised Petri net are
given by Definition 3.11 below:

Definition 3.11 Rules, Weak Transition System.
Let Sys be a real-time synchronised Petri nets system, the set of rules for constructing the weak
transition system is given by the rules below. In these rules: m,m; € M UT; e € Syncggpr, and
marky, mark € Mark are markings.

The weak transition system, denoted by trSyeak, S the least fixed point obtained by the appli-
cation of the inference rules R1.a, R1.b, R2.a, R2.b below.

Sync(m) =€

In(m) > #mark;

Time(m) = (t1,t2)

t € [t1 4+ x,t2 + 2] A x = max (mark)
#mark = Pre(m)

marky, > mark
Rl.a

(marky, m, marky — mark + Post(m),t)

Syne(m) = e

In(m) > #mark,

Time(m) = (t1,00)

t >t + 2z A x = max (mark)
#mark = Pre(m)

marky > mark

R1.b

(marky, m, mark; — mark + Post(m),t)

Sync(m) = e

In(m) > #mark,

Time(m) = (t1,t2)

t € [t1 + x,t2 + 2] A = max (mark)
#mark = Pre(m)

marky > mark
R2.a

(marky, m with e, mark, — mark + Post(m)y, t)

Sync(m) =e

In(m) > #mark;

Time(m) = (t1,00)

t > 11 + o A x = max (mark)
#mark = Pre(m)

mark,; > mark
R2.b

(marky, m with e, mark, — mark + Post(m)y, t)
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Remark 3.12 In the above rules, the following conventions are used:

In(m) > #mark holds if In(m)(p) > #mark(p) for every p where In(m) is defined (#mark(p)
stands for the number of elements in mark(p)).

#mark = Pre(m) holds if #mark(p) = Pre(m)(p) for every p € P;
Post(m); : P — [R"] is a marking such that all tokens are stamped at time t:
Post(m)(p)(t) = Post(m)(p)
Post(m)(p)(t') = 0,Vt' # t.
x = max (mark) stands for:
@ = max({0}, Upe p Kp),

x is the time when the last token that will be removed (i.e., in mark) arrived in the net
(remember that K, = {t € R" | mark(p)(t) > 0} ).

Remark 3.13 Rules 3.11 provide the weak time semantics since nothing forces enabled methods
(or transitions) to fire within the given time interval.

The rules are such that:

Rl.a and R1.b

Rules R1.a and R1.b cover the case of the firing of a single transition or method that does
not require any synchronisation. Rl.a is for a finite time interval, while R1.b is for an infinite
time interval. The 4-tuple is part of the weak transition system if the time of occurrence is
in the absolute time interval. The absolute time interval is computed from the relative one
(given by Time(m)) and by the greatest time of arrival of the tokens that will be removed
(max(mark)). Marking mark stands for the real-time marking that will be removed from
the places when the transition fires. Of course the number of tokens that will be removed
must match the pre-condition, i.e. #mark = Pre(m).

R2.a and R2.b

Rules R2.a and R2.b enables to build additional 4-tuples. They cover the case of the firing
of a single transition or method that requires to be synchronised with some other methods,
given by synchronisation expression e. The resulting 4-tuple is the same as Rule R1.a and
R1.b, except the event part.

Strong Transition System

The strong transition system is obtained as a subset of the weak transition system, by applying a
condition that removes the tuples containing a transition that fires at a time such that it prevents
the firing of another transition, whose time of occurrence elapsed.

Definition 3.14 Strong Transition System.
Let Sys be a real-time synchronised Petri nets system, and trsyeqr be its weak transition system.
The strong transition system, denoted by trSstrong, 5 the mazimal subset of trsyeqr such that:

V(marks, e, marka,t) € trssirong = Cond(marki, marks) holds.

Conditions Cond is such that:

Cond(marky, marks) ==3 (m’,mark’,t') € (M UT) x Mark x R" s.t.

<t A

Time(m') = (t},t5) A

t' = (max(mark’) +t5) A

((marky, m',mark; — mark’ + Post(m')y,t') € trswear V

(marky, m’ with €', mark; — mark’ + Post(m/)y,t") € trsyeak))-
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Remark 3.15 Condition Cond removes from the weak transition system, every 4-tuple, of the
form (marky, e, marka,t), for which there exists another 4-tuple that should have fired before.

Therefore, condition Cond guarantees the strong time semantics: a transition must fire at time
t if it is enabled at t, and if time t is the mazimal bound of firing of the transition. However, when
two transitions or more reaches their marimal bound of firing at the same time, one of them may
still disable the others.

Expanded Transition System

The expanded transition system is obtained from the strong transition system by adding tuples
regarding synchronisation, simultaneity, sequence and alternative.

Definition 3.16 Rules, Expanded Transition System.
Let Sys be a real-time synchronised Petri nets system, the set of rules for constructing the expanded
transition system is given by the rules below. In these rules: m,m; € M UT; e € Syncgqpr, and
marky, marks, marky, marky, mark € Mark are markings.

The expanded transition system, denoted by trSecupand, 15 the least fized point obtained by the
application, to trSsirong, of the inference rules Sync, Sim, Alt.1, Alt.2, and Seq below.

In(m) > #mark, + #mark} + Post*(e) In*(e) > #marks + #markj + Post(m)

Sync (marky, m with e, marks,t) (mark’, e, mark},t)

(marky + marky, m, marks + mark,, t)

In*(e1) > #marky + #mark] + Post*(e2) In*(e3) > #mark; + #mark} + Post*(e;)

o (marky, e;, marks,t) (marky, ez, markh, t)

(marky +markl,e1 // ea, marks + markl,t)

(marky, e;, marks,t) (marky, ea, marks, t)

Alt.1 Alt.2
(marky, e; @ ez, marks,t) (marky, e1 ® ea, marks,t)
>t
Seq (marky, er, marky,t) (marky, ez, marks,t")

(marky, ey .. ea,marks,t)

Remark 3.17 In*(e) and Post*(e) are defined in the same manner as in the case without time.

As already mentioned in the case without time, constraints on time of firing of synchronous and
simultaneous events are such that: an event mwithey .. es occurs at time t, if m occurs at time t
and ey .. ez occurs at time t; event ey .. es occurs at time t, if e; occurs at time t and ey occurs
after t. Event (e .. ea) // ez occurs at time t, if e; and e3 occur at time t, and es occurs after.

The CO-OPN/2 original definition of such synchronised and simultaneous event allows more
non determinism. In the case of (e1 .. e2) // es, es occurs at some time between the beginning
of e1 and the end of ex. If in a particular case, we want to allow more non determinism in the
time of occurrence of transitions in synchronous and simultaneous events, we use other events. For
instance, we will use ((e1 // e3) .. ea) & (e1 .. (e2 // e3)) instead of (e1 .. e2) // e3.

These rules are such that:

e Sync.
Rule Sync handles the case of the synchronisation. From two 4-tuples, one with a requested
synchronisation, and one with the corresponding synchronisation that occur at the same time
t, it produces a 4-tuple, occurring at ¢, where the synchronisation is abstracted.

e Sim.
Rule Sim handles the case of simultaneity of observable events. From two 4-tuples: one for
e1 and one for ey that occur at the same time t, it builds the 4-tuple for event e; // es.

e Alt.1, Alt.2
Rule Alt.1 corresponds to the case where e; fires. Rule Alt.2 corresponds to the case where
ey fires.
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e Seq.
Rule Seq defines 4-tuples for sequential events: from two 4-tuples whose final and initial
marking correspond, and whose time of occurrence of the second is greater than the time of
occurrence of the first one, it is possible to obtain the 4-tuple for their sequence.

Strong Time Semantics

The semantics of a real-time synchronised Petrinets system is obtained by retaining, from t7s¢;pand,
the 4-tuples such that:

e only observable events appear in the 4-tuple, i.e., no m with e appears in the 4-tuple;

e 4-tuples contain markings reachable from the initial marking.

Definition 3.18 Strong Time Semantics of a marked real-time synchronised Petri nets system.
Let (Sys, mark) be a marked real-time synchronised Petri nets system, trsezpana be the expanded
transition system obtained with the rules of Definition 3.16. The semantics of (Sys, mark), denoted
by Sem, is given by the least transition system such that:

(mark, e,mark’,t) € trsezpand N € € Obssys = (mark,e,mark’,t) € Sem

(mark’, e, marks, t) € trsegpand N\ € € Obsgys A Imarky, €', t" s.t.
(marky, e, marky,t') € Sem At' <t =(marki,e, marks,t) € Sem.
Remark 3.19 If we want to obtain the weak time semantics, instead of the strong time semantics,

we proceed from the weak transition system 3.11, then we apply the rules of Definition 3.16, without
applying the condition Cond, and then we apply Definition 3.18.

Figure 5 shows a partial view of the tree of reachable markings of the strong time semantics of
the real-time synchronised Petri nets system of Figure 2.

proc., 8
{07 0}7 {7} no
put, 7 {0,0}, @
proc., 6 ove, 7 proc., 8 move, 9 proc., 10 put, 11
{0’ 0},@ {0}7{7} {O}vg g: {9} Q’Q @,{11}

move, 5
{0, 0}, {5.5}

move & put,b5.5

{07 07 0}7 ,@

move @ put,2.5

o {0,0,0}, {2.5}
pu ’

proc., 3

{0,0,0},{2} {o.0, 0}, @

Figure 5: Tree of reachable markings

The tree is similar to that of Figure 3, except that time of occurrences of transitions and
methods are denoted. The initial marking is made of three tokens arrived at time 0 in place p1,
and the empty place p2, it is denoted {0, 0,0}, @. Method move has to occur between time 5 and
time 10 (because of put), and method put has to occur between time 2 and time 10. The figure
shows the case of method move occurring at time 5, this leads to a new marking where a token
stamped at 5 is in place p2.

It is worth noting that the tree depicted by Figure 5 is not complete. Indeed, from the initial
marking it is also possible to fire method move at any time in the interval [5,10]; and to fire
method put at any time in the interval [2,10]. Since method put has no pre-set, the relative time
interval [2,10] is also the absolute time interval: Rl.a applies to put with z = max (mark) = 0,
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and therefore the time t of occurrence must be such that ¢ € [2,10]. Similarly, from any other
reachable marking, method move and put can fire at any time in the interval [5, 10], respectively
[2,10] after transition processing has emptied place p2. For instance, if processing occurs at
time 6, then method put can occur at any time in the interval [6, 10].

3.3 Examples

Figure 6 shows three cases related to condition Cond (weak time semantics wrt strong time se-
mantics). The initial marking is such that places p1 and p2 have one token each, stamped with

time O:

e Case a: ml must fire at 5.
In the weak time semantics it may occur that method m1 does not fire at 5, and that method
m3 fires at 6, followed immediately by the firing of method m2 at 6.

In the strong time semantics, condition Cond removes from the tree of reachable markings,
the firing of method m3 at 6 if it is not preceded by the firing of method m1 (at 5 or before).

e Case b: m1 or m2 must fire at 5, the firing of one of them disables the other.
Method m2 must fire immediately when a token reaches place p3, i.e., when method m3 fires
(at 5). In the strong time semantics, two cases occur: either m3 and m1 fire both at 5, and
m2 cannot fire because m1 removes the token from p2; or m3 fires at 5, m2 fires immediately
after m3 (at 5 too), and m1 cannot fire because m2 removes the token from p2.

e Case c: ml and m2 must fire at 5.
Since method m3 inserts a token into place p2, the disabling of method m2 by method m1 or
vice-versa does not occur. In the strong time semantics, we have that the three methods fires
at 5.

m3 [6..6] m3 [5..5]

( :

1 4 : T

1 1 . 1

C? 1 1 1 C(? 1/69\1 1 C? 1 1 1
ol DN A N N,
m1 [2..5] o m2 [0..0] m1 [2..5] o m2 [0..0]

ml [2..5] ) m2 [0..0]

(a) Must fire (b) Disabling (c) Both Must fire

Figure 6: Simple Methods

Figure 7 shows three cases related to synchronisation and sequential firings:

e Case a: m must fire in [3..4]
Method m requires the firing of m2. Since the time of firing of m2 is [3..4], and that of m is
[2..5], the intersection gives [3..4]. Since it has no pre-set, method m2 cannot fire after time
4.

e Case b: if m fires at 3.5, the firing of m produces a token stamped with time 6.5 in place p2.
If method m fires at 3.5, thus method m2 becomes enabled at 3.5. Since it must fire in the
time interval [3..3], this means that m2 must fire at 6.5.

e Case c: m3 never fires.
Method m3 becomes enabled at the same time as m2. Since m2 must fire exactly 3 times slot
after it becomes enabled, and m3 must fire exactly 4 times slot after it becomes enabled, m2
always fires before m3. Therefore, m3 never fires.
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o || e || o || ®

~m2 [3..4] m (2.5 T-ml [3..4] m[2.5-""" " T-ml[3.4]

m [2.5]-77

1

1 1
m2 [3..3] l m2 [3..3] i :
o1 02 o1 — o1 e

P2 P2

1 1
O O

- —
02 02
(a) Simple (b) Sequence (c) Disabling

Figure 7: Synchronisation and Sequence

Figure 8 shows two cases related to an uncountable number of firings. The semantics given above
allows cases, where the number of firings of a transition or a method may be uncountable. These
cases occur for transitions or methods having no pre-set, and no inhibitor arc, or when intervals
[0..0] are used.

Case a: Method m fires an uncountable number of times at time 1.

Rule R1 applied to method m provides triples (&,m, {1},1), ({1},m, {1,1},1), {1,1},m,{1,1,1},1),
etc. The final semantics Sem, allows all these triples, since they derive all from the initial
marking.

Case b: Method m fires only once at 1, 2, etc.
In this case, method m requires a pre-set in place P’. Rule R1 implies that m fires at 1, then
it must wait 1 unit of time before firing, since the new token in P’ is stamped with time 1.

Case c: Method m fires an uncountable number of times at time 0.
For the same reason as Case a, method m fires at 0.

Case d: Method m still fires an uncountable number of times at time 0. The solution found
in case b to avoid uncountable number of firings cannot be applied for intervals of the form
[0..0]. Indeed, rule R1, applied to case d, provides the same triples as in case ¢, since m will
fire immediately after the new token arrives in place P’, i.e. at time 0.

Case e: Method m fires at 0, 1, etc.
In this case, the transition t requires 1 unit of time for emptying place P, and the inhibitor
arc prevents m from firing at 0 if place P is not empty.

m [1..1] m [1..1] m [0..0]

P P

O O
O (0] O O (O]
(a) Uncountable (b) Countable (c¢) Uncountable (d) Uncountable (e) Countable

Figure 8: Uncountable Number of Firings

Figure 9 shows several small examples illustrating the chosen semantics for real-time synchro-
nised Petri nets.
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e Case a: Method m fires in [t1..t2].
Method m can fire at any time between the absolute interval [t1..t2], it cannot fire after t2.

e Case b: Method m fires in [t1..00]
Method m can fire at any time between the absolute interval [t1..00], it cannot fire before t1.

e Case c: Method m waits at least t1, and at most t2 between two firings.
Because of the pre-set in place P, the time interval is re-evaluated after each new token in P.
The strong time semantics implies that m must fire at the end of the time interval.

e Case d: Method m waits at least t1 between two firings.
This case is similar to Case c, except that there is no upper bound for the firing.

e Case e: Method m fires only once.
Method m must fire in the time interval [t1..t2]. Once it has fired, the inhibitor arc prevents
any subsequent firing of m.

m [t1..t2] m [t1..00] m [t1..t2] m [t1..00] m [t1..t2]

L @

(a) (b) (c) (d) (e)
Figure 9: Hlustrative Examples

3.4 Choices and Alternatives

We have already seen in Section 2 that providing a precise semantics to inhibitor arcs requires
some critical choices even for untimed nets. Things become even more intricate -and somewhat
controversial- when we augment nets with timing behaviour. The main point is relating the absence
of a token in an inhibited place with the time interval during which a transition is enabled to fire.

To illustrate, consider Figure 10.
P1 P2
1 0

m [2..4]

(0]

Figure 10: Inhibitor Arcs and Time (1)

A possible semantics (we call it SEM1) to be given to such a net is that transition enabling
is evaluated on the basis of the ”positive” conditions only, i.e., on the marking of P;. On this
basis, the method should fire at a time between 2 and 4: at that time we verify whether Ps has
tokens or not and, in the negative case, m is actually fired. Notice that, in this way, m could fire
twice simultaneously at any time between 2 and 4 (provided Py is empty) thanks to the double
enabling provided by the two tokens in P;. On the other hand, suppose that a token abides in Ps
continuously from 1 to 5. Then, when Ps is emptied, the timeout for m to fire is expired so that
the tokens in P; are "dead” producing a situation somewhat similar to weak time semantics.

An alternative semantics (we call it SEM2) instead would interpret the lack of tokens in inhib-
ited places in a more symmetric way wrt positive arcs: roughly speaking no tokens in a inhibited
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place are assimilated to the presence of tokens in places with normal arcs. This requires the knowl-
edge of the time when the place has been emptied to define precisely the time semantics. According
to SEM2, and still with reference to Figure 10, if we assume that no token ever occurs in Ps, then
we can have a first firing of m at a time between 2 and 4. After this firing, however, we must wait
again at least 2 time units -and no more than 4- before m can fire again.

Both SEM1 and SEM2 have pros and cons. SEM1 is easier to formalise since it does not require
the knowledge of "negative time stamps”, i.e. recording the time when a token has been taken
out from a place. There are cases, however, when definitely SEM2 better fits practical needs. For
instance, in a situation such as that in Figure 11 one may typically wish to formalise that token
X in P; waits to fire method m as soon as Py is emptied: with SEM1 instead, token X would be
dead unless P is already empty at time X. On the other hand, with SEM2 there would be no way
of firing a transition more than once simultaneously if it has inhibitor arcs (at least if they have
weight 0, as it will be illustrated later).

RN
Vi

m [0..0]

(o)

Figure 11: Inhibitor Arcs and Time (2)

On the basis of these remarks we chose to adopt SEM1 as the basic semantics. SEM2 however,
can be adopted as a derived semantics by introducing a different type of inhibitor arcs (with
dotted line) as a short notation for a more complex net as illustrated in Figure 12 (in the case
that inhibitor arcs have weight 0). The main idea underlying the construction of Figure 12 is
to build a ”complement place” PC attached to the original place P so that we have a token in PC
whenever P is empty and conversely. Furthermore, all methods, such as a, that put tokens into
P are split in such a way that, first, through al they empty PC and put a first token in P; for all
other tokens method a2 is used instead (notice that al and a2 are mutually exclusive). Thus, the
net of Figure 12 (b) provides SEM2 to the net of Figure 12 (a).

The symmetry between the presence of tokens in normal places and their absence in places
with inhibitor arcs can be further pursued by exploiting weights attached to inhibitor arcs as well
as those attached to positive arcs. In fact, intuitively, we can consider a place P with k tokens
and an inhibitor arc with weight k as a place whose contents -or lack of contents- provides enough
resources to its output method to let it fire just once. Instead, if P contains only k-1 tokens this
enables its output method twice in the same way as two tokens enable twice a method which is
connected to a place by one normal arc (with weight 1); and so on with fewer and fewer tokens.
Of course the symmetry is eventually broken by the impossibility of having a negative marking.
This interpretation however, seems to be general enough so that SEM1 and SEM2, together with
the use of k-weighted arcs, cover all cases of practical interest. Figure 13 illustrates the natural
generalisation of the construction of figure 12 to the case of weighted inhibitor arcs. In this case
we have K,, ., +1 tokens in place PC.

4 Applicative Examples: Trains

In this section we illustrate the applicability of the real-time synchronised Petri nets to practical
cases through a fairly classical ”benchmark” for real-time system formalisms, i.e., the Generalised
Railroad Crossing (GRC) system [4]. First, we informally describe the GRC system and its prop-
erties. Then, we show how it can be formalised through real-time synchronised Petri nets. Finally,
we briefly comment on the proposed formalisation.

The GRC system consists of one or more train trails which are traversed by a road. To avoid
collisions between trains and cars a bar is automatically operated at the crossing. Let us call 1
the portion of train trails which crosses the road. To properly control the bar, sensors are placed
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Figure 12: Inhibitor Arcs and Time (3)

on the trails to detect the arrival and the exit of trains: the arrival of a train must be signalled
somewhat in advance wrt the train entering region I, whereas the exit is signalled exactly when a
train exits I. We call R the portion of train trails included between the place where entering sensors
are placed and the beginning of I (see Figure 14). All trains have a minimum and a maximum
speed so that they take a minimum and a maximum, yet finite and non-null, time to traverse R
and I. The control of the bar operates as follows. Whenever a train enters R, this is detected and
signalled by a sensor; similarly when a train exits I. If a train enters R and the bar is open (up),
then a command is issued to the bar to close. This takes a fixed amount of time (7). As soon as
no more trains are in R or in I (this must be computed by the control apparatus on the basis of
entering and exiting signals) the opening command is issued to the bar, which again takes v time
units to open (notice that, in this description, we assume that if a train enters R while the bar is
opening, the control must wait until the bar is open before restarting closing it). The designer’s
job is to set system parameters (e.g., the length of R and the duration v) in such a way that the
following properties hold:

e Safety property: When a train is in I the bar is closed

e Utility property: the bar is closed only for the time that is strictly necessary to guarantee
the safety property.

Let us now formalise the GRC system through real-time synchronised Petri nets. Figure 15
shows two objects: Train and Level Crossing. The Train object represents the entry and the
exit of trains into a critical region: a train enters into the critical region with method entry, it
stays first in the section corresponding to R (place p2), for a certain amount of time, represented
by transition in. Then, it enters region I, represented by place p3, and finally it leaves the critical
region with method exit. Several trains may be simultaneously in the critical region, however
their entry is not simultaneous. Indeed method entry can fire more than once, since place p1
contains always one token. However, method entry cannot fire twice or more simultaneously, and
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Figure 13: Inhibitor Arcs and Time (4)

there is a delay of at least ] between two trains entering the critical region. The fact that two
trains may be simultaneously in region R or in region I depends also of the values of ¢y, ta, ], ], 5.
Indeed, if t2 +t§ < ¢} then there will be at most one train in the critical region.

The Level Crossing object represents the behaviour of the critical region, i.e., the level cross-
ing. The level is up iff no train is currently in the critical region, or entering it.

bar

Figure 14: Critical Section

Each time a train enters the critical region, the signal _entry method fires. This is due to the
fact that the signal_entry requires a synchronisation with method entry and the time interval
of signal entry is [0..0] (i.e., signal entry must fire immediately when it is enabled). The
signal_entry method increases the number of tokens in place Counter, whose role is to count the
number of trains that are currently in the critical region. If the barrier is up and if a train arrives
in the critical region, transition go_down fires and the barrier begins to go down (place mv_down).
After a certain amount of time -, represented by transition end_down, the barrier is finally down
(place down).

Each time a train leaves the critical region, by activating method exit, the signal_exit method
fires simultaneously. This method simply decreases by one the number of trains that are currently
in the critical region. As soon as there are no more trains in the critical region, i.e. place Counter
is empty, transition go_up fires (because of the inhibitor arc of weight 0, and time interval [0..0]
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attached to go_up). The barrier begins to go up (place mv_up), and after a certain amount of time
7, represented by transition end_up, it arrives in the up position (place up).

When trains are in the critical region, and the barrier is already down, neither method go_down
nor method go_up can fire.

signal_entry [0..0] \ | signal_exit [0..0]

s S

1
No\mt er

end_up
. ﬂ% .
mv-up
go-down [0..0] go-_up [0..0]

mv_ down doun
' *)Di
\_ T .

Level Crossing

Figure 15: Train and Level Crossing

Remark 4.1 The proposed example, though still rather simple, illustrates the suitability of the
model for the description of -even complex- real-time systems. First, modularisation is naturally
achieved through the definition of several objects and the use of the synchronisation mechanism to
formalise their interaction.

Second, the use of inhibitor arcs allows to achieve a good level of generality without resorting to
more sophisticated models. In our case inhibitors arcs allow a natural formalisation of the counter
mechanism which is essential for a proper description of the system.

Notice that pure Petri nets allow only the modelling of simplified versions of the GRC' system
(e.g. the case where only one train can traverse the regions R and I per time) whereas in order to
deal with the general case more cumbersome formalisations are usually needed, all adopting Petri
net-based models and other formalisms such as automata or process algebras [4]. It is an interesting
exercise to pursue further generalisation of the example. For instance: modelling synchronisation
amonyg different trains besides synchronisation between trains and cars; allowing several trains to
enter R simultaneously (allowing several train trails with place p1 containing more than one token);
modelling a bounded number of train trails; etc. It is easy to realize that much generality can be
achieved exploiting the ”pure model” with anonymous tokens, up to some point where other typical
features of the general CO-OPN formalism [2] must be included in the timed version. Once the
system model has been built in terms of real-time synchronised Petri nets, we can use it to verify
the desired properties. For instance we may build constraints on the values of train speed, length
of R, and ~y -which determine the value of interval [t1..ta]- in such a way that the safety and the
utility property are guaranteed. Presently, such an analysis must be done informally through a
typical simulation of the -timed- token game of the net. Further development of this research will
build an axiom system in a suitable assertion language so that such an analysis can be carried over
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as a formal proof, e.g., in the style of [3]. Also, once such an aziomatisation will be available,
typical supporting theorem proving tools will be applicable to mechanise and making more robust
system analysis [1].

5 Conclusion

This report presents real-time synchronised Petri nets, a class of high-level Petri nets (with inhibitor
arcs, and synchronisation among Petri nets) with real-time constraints attached to transitions as
relative time intervals. Strong time semantics has been defined for these nets: once it has been
enabled, a transition must fire during the time interval attached to it.

Real-time synchronized Petri nets enable to easily specify the Generalised Railroad Crossing
system (GRC). Thus, these nets promise to be a powerful tool for specifying complex critical
systems.

Future works will concentrate on giving an axiomatisation to these nets in order to enable
formal verification of logical properties.

References

[1] A. Alborghetti, A. Gargantini, and A. Morzenti. Providing automated support to deduc-
tive analysis of time critical systems. In Sizth European Software Engineering Conference
(ESEC’97), 1997.

[2] D. Buchs and N. Guelfi. A formal specification framework for object-oriented distributed
systems. IEEE Transactions on Software Engineering, Special Section on Formal Methods for
Object Systems, 26(7):635-652, July 2000.

[3] M. Felder, D. Mandrioli, and A. Morzenti. Proving properties of real-time systems through logi-
cal specifications and Petri net models. IEEE Transactions on Software Engineering, 20(2):127—
141, February 1994.

[4] C. Heitmeyer and D. Mandrioli, editors. Formal methods for real-time computing. John Wiley
& Sons, 1996.

[5] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use, volume 1
of EATCS Monographs in Computer Science. Springer-Verlag, 1992.

[6] W. Reisig. Petri nets and algebraic specifications. In Theoretical Computer Science, volume 80,
pages 1-34. Elsevier, 1991.

[7] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, volume B: Formal Methods and Semantics, chapter 13, pages 675-788. North-
Holland, Amsterdam, 1990.

24



