Real-Time Synchronised Petri Nets

Giovanna Di Marzo Serugendo!, Dino Mandrioli2,
Didier Buchs®, and Nicolas Guelfi*

1 Computer Science Department, University of Geneva,
CH-1211 Geneva 4, Switzerland,
? Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano 20133, Italy
3 LGL-DI, Swiss Federal Institute of Technology,
CH-1015 Lausanne, Switzerland,
4 Department of Applied Computer Science
IST - Luxembourg University of Applied Science,
L-1359 Luxembourg-Kirchberg

Abstract. This paper presents the combination of two well established
principles: the CO-OPN synchronisation mechanism, and the Merlin and
Farber time Petri nets. Real-time synchronised Petri nets systems are
then defined such that a Petri net is an object that can ask to be syn-
chronised with another net, and whose transition firing is constrained by
relative time intervals. Qur proposal enables to define complex systems
with compact specifications, whose semantics is given through a small
set of Structured Operational Semantics (S0s) rules. The applicability
of the new model is shown by applying it to a traditional benchmark
adopted in the literature of real-time systems.

Keywords: CO-OPN, Petri nets, real-time, inhibitor arcs.

1 Introduction

This paper is a first step to enhance a high-level class of Petri nets with real-
time constraints. Starting from a simplified version of the CO-OPN [4] language,
where Petri nets are able to request synchronisation with each other, we have
augmented the syntax and semantics with time intervals attached to the transi-
tions in a way similar to that of Merlin and Farber nets [11].

A real-time synchronised Petri nets specification is object-based, i.e., it is
made of a fixed number of objects that exist since the beginning of the system.
An object is a real-time Petri net with inhibitor arcs. Such a net has two kinds of
transitions: external transitions, called methods, and internal ones simply called
transitions. Methods and transitions may request a synchronisation with meth-
ods, provided no cycles are formed. A method m that requests synchronisation
with m’ can fire only if m’ can fire simultaneously. However, neither methods
nor transitions can request a synchronisation with a transition.

Inhibitor arcs [10] provide a symmetric enabling of methods and transitions
wrt usual pre-conditions: a transition cannot fire if a place connected to it
through an inhibitor arc contains tokens in a number exceeding the label of

the arc. In addition, inhibitor arcs can be used as a priority mechanism among
methods and transitions. Such a mechanism is quite useful to achieve time pre-
dictability in real-time systems. Time stamped black tokens are used for popu-
lating places.

A time interval is attached to any method and any transition. The firing of a
method or a transition is considered to be instantaneous, it takes place within a
time interval that is relative to the time when the method or transition becomes
enabled (wrt the pre-set).

Figure 1 shows a simple real-time synchronised Petri net system made of
two objects (two Petri nets) called O1 and O2. Object O1 contains a place
pl, and a method move. The current marking of this place contains three black
tokens stamped at time 0. Object O2 contains a place p2, a method put, and a
transition processing. Place p2 is initially empty. There is an inhibitor arc, with
label 0, between place p2 and method put. The dashed arrow from method move
to method put states that method move requests a synchronisation with method
put whenever it fires. In this particular case, the synchronisation corresponds to
the classical fusion of transitions, even if its asymmetry makes it more general.
Method move has the time interval [5..15] attached, method put has the time
interval [2..10] attached, and transition processing the time interval [1..9].

move [5..15] -7 SO put [2..10]

1 o1 processing [1..9]
\
@ ' ﬂﬂ
pi P2
O1 02

Fig. 1. A Real-time Synchronised Petri net

The intuitive semantics of this real-time synchronised Petri net system is the
following: (1) method move requires to be synchronised with put, therefore move
is enabled if its pre-condition is satisfied, and if put is enabled; (2) whenever
move fires, put fires simultaneously, i.e., whenever move fires, a token is added in
place p2. It is worth noting that put can fire alone without the firing of move; (3)
the time interval attached to move means that move must fire instantaneously
in the interval given by: 5 time slots after it becomes enabled, and 15 time slots
after it becomes enabled. In addition, it must fire at the latest 15 time slots
after it becomes enabled; (4) similarly, method put and transition processing
must fire in the relative time interval [2..10], and [1..9] respectively; (5) move
requires to be synchronised with put, and their respective time intervals must be
respected, this means that move and put must fire simultaneously in an interval
corresponding to the intersection of the time interval of move, and that of put,
i.e.,, [6..10] (since both are enabled at time 0); (6) the inhibitor arc associated

to put means that this method can fire only if the number of tokens in place
p2 is less or equal 0. Therefore, transition processing has a higher priority wrt
method put. Indeed, method put cannot fire, if transition processing has not
fired before, and thus emptied place p2. A second firing of method put can occur
as soon as transition processing fires, but not before.

The main contribution of this paper consists in the definition of a compact
syntax and semantics of these real-time synchronised Petri nets. The paper is
structured in the following manner: section 2 defines the syntax of real-time
synchronised Petri nets, section 3 describes their semantics, and section 4 gives
an applicative example. A full version of this paper can be found in [5]. It includes
a more detailed analysis of some intricacies in the semantics of the model.

2 Syntax

A Petri net with inhibitor arcs is a Petri net with two kinds of transitions:
external ones, called methods, and internal ones, simply called transitions. Three
kinds of arcs between places and methods/transitions are defined: input, output,
and inhibitor arcs. Input, output arcs are traditional pre- post-conditions of nets.
Inhibitor arcs prevent the firing of a single method or transition if the number
of tokens in the place is greater than the number of tokens associated with the
arc.

Definition 1. Petri Net with Inhibitor Arcs.

A Petri Net with inhibitor arcs is given by a 6-tuple (P,M,T, Pre, Post,In)
where: P is a finite set of places; M is a finite set of methods; T is a finite
set of (internal) transitions; Pre,Post : M UT — (P — N\{0}) are total
functions, they define traditional Petri nets arcs removing or inserting black
tokens respectively; to every method or transition is associated a partial function
that maps places to a positive natural number. In : MUT — (P — N) is a
total function defining inhibitor arcs; to every method or transition is associated
a partial function that maps places to a natural number.

Remark 1. If Pre(m)(p) is undefined there is no pre-set condition between place
p and method m. It is similar for Post(m)(p) and In(m)(p). If Pre(m)(p) is
defined, then Pre(m)(p) = 0 is not allowed (idem for Post(m)(p)). If In(m)(p)
is defined, then In(m)(p) = 0 means there is an inhibitor arc with weight 0
between place p and method m.

A real-time Petri net is a Petri net with inhibitor arcs having a time interval
associated to every method and transition.

Definition 2. Real-Time Petri Net.

A Real-Time Petri Net is given by a pair (O, Time) where O = (P, M, T, Pre, Post, In)
is a Petri net with inhibitor arcs, and Time is a total function that asso-
ciates a time interval to every method and transition of O. Time : M UT —

R* x (Rt U), is such that the following condition must hold:

Time(m) = (t1,t2) = ((t2 >t1) V (Time(m) = (t,00))) -

We denote t1 by Timerns(m), and t2 by Timesup(m).

A real-time synchronised Petri nets system is a set of real-time Petri nets with
a synchronisation mapping among them. A method or transition may request
to be synchronised with two or more methods simultaneously (//), in sequence
(..), or in alternative ().

Definition 3. Real-Time Synchronised Petri nets System.
A Real-Time Synchronised Petri nets System is given by Sys = (O1, ... ,On, Sync):

— 0; = ((P;, M;,T;, Pre;, Post;, In;), Time;), 1 <i < n, a real-time Petri net;
— atotal function Sync: Uses,... n}(M;UT;) — Syncrep, that defines for each
method and transitionm € Ujeqy,... n}(M;UT;) a synchronisation expression.

The following conditions must hold:

- Vi,j € {1, ,’I’L} thenBﬂMj =.PiﬂTj ZMiﬂTj =0
- Vi,je{l,...,nhi#j then P; N P; =0, M;NM; = 0, and T; N'T; = 0;
— the set Syncgapr of synchronisation expressions is the least set such that:

€ € SYnCegpr

VM;,i€{1,...,n}, M; C Syncggpr

1,62 € SYncgepr = €1 [/ ea € Synceapr
e1,es € SYNCEzpr = €1 .. ea € SYNCEzpr

€1,e2 € SYNCEzpr = €1 ® ez € SYNceapr ,

where € stands for the empty synchronisation. We write “m withe” to denote
Sync(m) = e;

— the Sync function must ensure that a method does not synchronise with itself,
and that the chain of synchronisations does not form cycles.!

We denote by P the union of all sets of places P; of a real-time synchronised
Petri nets system. Similarly, we denote M, and T', the union of all methods, and
all transitions respectively. We denote by Pre, Post, In, and T'ime the extension
of the pre-conditions, post-conditions, inhibitor arcs and time intervals to the
Petri nets system.

Every token of the net is stamped with its arrival time. Several tokens may
arrive in a place at the same time, as a result of the post-condition. The marking
of a real-time synchronised Petri nets system is then a mapping that associates
to every place a multiset of non-negative real numbers.

Definition 4. Marking, Set of Markings.
Let Sys = (01, ... ,0,,Sync) be a real-time synchronised Petri nets system. A
marking is a total mapping:

mark : P — [R].
We denote by Mark the set of all markings of Sys.

! For simplification purposes, we impose this limitation in order to prevent infinite
behaviour.

A multiset of R is given by a function f € [R*] such that f : Rt — N
evaluates to zero, except on a finite number of cases (thus the number of tokens
in a place is finite). Here, f(t) = j means that j tokens arrived at time t. We
denote by () the empty multiset (B(t) = 0, Vt), and {t1,%1,%2,12,%2} a multiset
containing two tokens arrived at time ¢;, and three tokens arrived at time ¢5. It
is worth noting that mark(p)(t) = j means that place p contains (among others)
J tokens stamped with time ¢.

The sum of two markings returns, for every place, a new multiset made of
the union of the two original multisets, where multiple occurrences of the same
time stamp are taken into account.

Definition 5. Sum of Markings.

Let Sys = (O1,...,0n,Sync) be a real-time synchronised Petri nets system,
and Mark be the set of all markings of Sys. The sum of two markings is given
by a mapping +prark : Mark x Mark — Mark such that:

(marky +arark marks)(p) = mark: (p) +r+ marka(p) -

For every t € RY, (mark: (p) +r+ marks(p))(t) = mark (p)(t) + marks (p)(t).
In the rest of this paper we simply note + instead of +nrark, and +r+).

To every marking corresponds an unstamped marking, which returns for every
place p the number of tokens present in the place regardless of their arrival time.

Definition 6. Unstamped Markings.
Let Mark be the set of all markings. The Unstamped Markings are given by the
the total mapping:

U:Mark — (P —->N),

where U(mark) is a total mapping, s.t.

[Siex, mark(p)(®)
Ulmarkp) = { et Dot e o

where K, = {t € Rt | mark(p)(t) > 0}.

U (mark) returns for every place p the number of tokens present in the place.
The sum is finite since the multiset mark(p) has only a finite number of elements
(Kp is the finite carrier set of mark(p)).

Definition 7. Initial Marking.
Let Sys = (O, ... ,0n, Sync) be a real-time synchronised Petri nets system. An
initial marking is a marking, marky : P — [RY], such that for every p € P:

marky(p)(0) >0
marky(p)(t) =0,Vt > 0.

An initial marking is such that a place p contains tokens stamped at time 0. The
places do not contain tokens stamped with a time greater than time 0.

Definition 8. Marked Real-Time Synchronised Petri Nets System.

A marked Synchronised Petri nets system is a pair (Sys,marky) where Sys is
a real-time synchronised Petri nets system, and marky, is an initial marking for
Sys.

Figure 1 is the graphical notation of the marked real-time synchronised Petri
nets system (Sys, marky,) given by:
Sys = (01, 03, Sync)
01 = ({p1}, {move}, B, Pre;, Posty, Inq, Time,),
02 = ({p2}, {put}, {processing}, Pres, Posty, In,, Times)

Pre; (move)(pl) = 1, Pres(processing)(p2) =1
Posta(put)(p2) = 1, Ins(put)(p2) =0
Time;(move) = (5,15), Times(put) = (2,10), Timea(processing) = (1,9)
Sync(move) = put, Sync(put) = €, Sync(processing) = €
marky(p1l) = {0,0,0}, mark;(p2) =0 .

3 Semantics

Real-time synchronised Petri nets are a timed extension of a simplified version
of CO-OPN/2 nets [2]. The establishment of their semantics follows that of CO-
OPN/2: it is based on the use of Structured Operational Semantics (SOS) rules,
similar to those of CO-OPN/2, but adapted to the real-time constraints.

We first build, using an initial set of rules, a weak transition system that
contains transitions belonging to the weak time semantics (an enabled transi-
tion may not fire even if the time of occurrence elapses). Second, on the weak
transition system, we apply a condition that enables to retain only those tran-
sitions that belong to the strong time semantics (an enabled transition must
fire when the time of occurrence elapses) [6]. We obtain what we call the strong
transition system. Third, on the strong transition system, we apply another set
of rules (taking into account synchronisations) that enables us to obtain an ez-
panded transition system. Then, we retain only those transitions necessary for
the (observable) strong time semantics. Finally, in some cases, it is more valu-
able to consider a subset of the strong time semantics representing what we are
actually interested to observe. We call this subset, the system view semantics.

Let us first give some preliminary definitions. An observable event is one of
the following: the firing of a method, the firing of a transition, or the parallel
(//) or sequence (..) firing of two observable events, or the alternative (@)
between two observable events.

Definition 9. Observable Events.
Let Sys be a real-time synchronised Petri nets system. The set of observable

events of Sys, denoted by Obssys, is the least set such that:?

MUT C Obsgys
e1,ez € Obssys = e1 [/ e2 € Obsgy,
e1,ez € Obsgys = €1 .. ea € Obsgy,
e1,es € Obsgy, = e1 Dey € Obsgys .

An event is any observable event, but also an event of the form “m withe”,
where the synchronisation is explicitly required.

Definition 10. Ewvents.
Let Sys be a real-time synchronised Petri nets system. The set of events of Sys,
denoted by Event, is the least set such that:

e € Obsgy, = e € Event
e=mwithe', me MUT,ande € Syncgzpr = € € Event .

Transition systems for real-time synchronised Petri nets are made of 4-tuples,
made of two markings, an event (not necessarily an observable one), and a time
of occurrence.

Definition 11. Transition System.
Let Sys be a real-time synchronised Petri nets system. A transition system, trs,
for Sys is such that:

trs C Mark x Event x Mark x Rt .

We represent a 4-tuple (marky,e,marks,t) by mark; %) marks.

3.1 Weak Transition System

The rules for constructing the weak transition system of a real-time synchronised
Petri net are given by rules BasicBeh and BasicSyncBeh formally described in
Definition 12 below.

BasicBeh covers the case of the firing at time ¢ of a single transition or
method m that does not require any synchronisation. From a given marking
marky , the rule enables to compute the new marking after the firing of transition
m alone. The 4-tuple is produced if several conditions are met: (1) the inhibitor
arc condition is satisfied (In(m) > U(mark;)); (2) the time of occurrence ¢
is in the absolute time interval. The absolute time interval is computed from
the relative one, given by Time(m) = (Timerng(m), Timesyp(m)), and by the
greatest time of arrival of the tokens that will be removed (max(mark));® (3)

% an observable event has the same structure as a synchronisation expression. However
a transition may appear in an observable event, while only methods are part of a
synchronisation expression.

3 Marking mark is a way of representing the pre-condition in a stamped form; it stands
for the marking that will be removed from the places when the transition fires

the number of tokens that will be removed must match the pre-condition, i.e.
U(mark) = Pre(m); (4) the pre-condition is satisfied (mark; > mark); (5) the
new marking, after the firing of m is obtained by removing mark from marking
mark;, and inserting new tokens stamped at time ¢ (Post(m);).

BasicSyncBeh covers the case of the firing of a single transition or method
that requires to be synchronised with some other methods, given by synchroni-
sation expression e. The resulting 4-tuple is the same as rule BasicBeh, except
the event part, which is of the form “m withe”. The new marking is obtained
from mark; by considering the firing of m alone (without e). Such tuples will be
exploited in Section 3.3 to define the semantics of synchronisation. Indeed, the
"with e” part of the event serves as a hook for combining transitions.

Definition 12. Rules, Weak Transition System.

Let Sys be a real-time synchronised Petri nets system. The weak transition
system, denoted by trsyeqr, i the set obtained by the application of the in-
ference rules BasicBeh and BasicSyncBeh to Mark. In these rules: m € MUT,
e € Syncgapr, and mark,, mark € Mark are markings.

Sync(m) = ¢

In(m) > U(mark,)

Timerng(m) + max (mark) < t < Timegyp(m) + max (mark)
U(mark) = Pre(m)

marky; > mark

BasicBeh -
mark; —t> mark, —mark + Post(m);

Sync(m) = e

In(m) > U(mark,)

Timerns(m) + max (mark) <t < Timegyp(m) + max (mark)
U(mark) = Pre(m)

) mark; > mark
BasicSyncBeh

mark; % mark,; —mark + Post(m);

In the above rules, the following conventions are used:

— In(m) > U(mark,) holds if In(m)(p) > U(mark,)(p) for every p where
In(m) is defined;

— U(mark) = Pre(m) holds if U(mark)(p) = Pre(m)(p) for every p where
Pre(m) is defined, and U(mark)(p) = 0, otherwise;

— max (mark) = max({0}, UpepK}).
It is the greatest time of arrival of the tokens that will be removed (i.e.,
tokens in mark). Indeed, K, = {t € R" | mark(p)(t) > 0} gives the time
stamps of tokens in mark. Whenever Timegy,(m) = oo, then Timegy,y(m)+
max (mark) = oc;

— Post(m); : P — [Rt] is a marking such that all tokens are stamped at
time ¢:

Post(m):(p)(t) = Post(m)(p)
Post(m);(p)(t') = 0,Vt' # t;

— marky > mark holds if mark; (p)(t) > mark(p)(t), for every p € P, and
t e Rt.

Rules of Definition 12 provide the weak time semantics since nothing forces
enabled methods (or transitions) to fire within the given time interval.

Remark 2. The weak transition system is simply a set of 4-tuples. Trying, at this
point, to make sequences of transitions based on markings may lead to paths
where time goes backward. Therefore, we do not consider building paths at this
stage.

3.2 Strong Transition System

The strong transition system is obtained as a subset of the weak transition sys-
tem, by applying a condition that removes from the weak transition system,

o, . e . .
every transition, of the form mark; — marksy, for which there exists an-

other transition mark; %) mark) that should have fired before (¢’ < t).

Definition 13. Strong Transition System.

Let Sys be a real-time synchronised Petri nets system, and trsyeqr, be its weak
transition system. The strong transition system, denoted by trssirong, is the maz-
imal subset of trsyeqr such that:

V(mark; %) marks) € trsgirong = Cond(mark:, marks,t) holds .

Condition Cond(mark;, marks,t) is such that:

Cond(mark,,marks,t) :==3 (m',mark’,t') € (M UT) x Mark x R" s.t.
th <t A

t' = (Timegup(m') + max(mark')) A
((mark; %) marky — mark’ + Post(m')y) € trsweak V

(mark; % marky, — mark' + Post(m/)y) € trsyear) -

Remark 3. Condition Cond guarantees the strong time semantics: a transition
m' must fire at time ¢’ if it is enabled at #', and if time #' is the maximal bound
of firing of the transition (¢’ = Timegyp(m') +max(mark')). However, when two
transitions or more reach their maximal bound of firing at the same time, Cond
does not apply, and one of the transitions may still disable the other.

3.3 Expanded Transition System

The expanded transition system is obtained from the strong transition system by
adding tuples regarding synchronisation, simultaneity, alternative and sequence.
Sync handles the case of the synchronisation. From two transitions, one with a
requested synchronisation, and one with the corresponding synchronisation that
occur at the same time t, the rule produces a transition, occurring at ¢, where the
synchronisation expression is abstracted. The new marking takes into account
the effects of the simultaneous firing of m and e, but in the produced transition,
the observable event m replaces “m with e”. This rule produces transitions where
only the firing of m is observable, but the result of the firing of m takes into
account the behaviour of e. Sim handles the case of simultaneity of observable
events. From two transitions: one for e; and one for es that occur at the same time
t, it builds the transition for event e; // es. Alt.1 corresponds to the alternative
case where e; fires. Alt.2 corresponds to the case where es fires. Seq defines
transitions for sequential events: from two transitions whose final and initial
marking correspond, and whose time of occurrence of the second is greater or
equal to the time of occurrence of the first one, the rule produces the transition
corresponding to their sequence. Definition 14 formally describe these rules.

Definition 14. Rules, Expanded Transition System.

Let Sys be a real-time synchronised Petri nets system, and trssirong its strong
transition system. The expanded transition system, denoted by trscypand, s the
least set obtained by the successive application, to trssirong, of the inference rules
Sync, Sim, Alt.1, Alt.2, and Seq below. In these rules: m € MUT, e € Syncgepr,
e1,e € Obssys, and mark,, marks, mark],mark}, mark € Mark are markings.

In(m) > U(mark,) + U(mark}) + Post*(e)
In*(e) > U(marky) + U(mark;) + Post(m)

m with e ! € !
mark; — marky markj — marks

Sync —
mark, + mark; — marks + mark)
In*(e1) > U(mark,) + U(mark;) + Post*(e2)
In*(e2) > U(mark:) + U(mark}]) + Post*(e1)
e ! €2 !
mark; — marks mark;] — marks
Sim
mark; + mark] Lt/”) marky + mark),
mark; —>— marks, markl —2— mark)
Alt.1 — Alt.2 —
mark; %) marks mark)] %) mark}
>t
mark; e—t1> mark] mark] %) marks
Seq

€e1..6€
mark; %) marks

In the above rules, In*(e) stands for the minimal value associated to an in-
hibitor arc of a method or transition that takes part in the behaviour of e.
Post*(e) stands for the sum of the post-conditions of all methods and transition
taking part in e. Therefore, the conditions on the inhibitor arcs implies that the
strongest condition applies. Formal definitions of In*(e) and Post*(e) are given
in [5].

Remark 4. According to rules Sync, and Sim, an event of the form e // (e; .. e2),
or ewith(e; .. e2) occurs only if both e and (e; .. e3) occur at the same time.
Intuitively, such events should occur if e and e; occur simultaneously, and es
occurs later. Therefore, in rule Seg, the time of occurrence of a transition whose
event is of the form e; .. es is the time of occurrence of e;.

As a consequence of this choice, rule Seq builds 4-tuples where the resulting
marking may contain tokens stamped at a time which is over the time of firing
of the whole transition. These tokens result from the firing of e, which actu-
ally occurs later. Such tokens are actually not available; they will take part in
transition firings (pre- post-conditions) only when the time will have advanced.
However, they are taken into account for inhibitor arc evaluation even though
they are not actually available. If such situations are not desired, the use of
inhibitor arcs combined with the sequential operator should be avoided.

3.4 Strong Time Semantics

Similarly to the weak transition system, the expanded transition system con-
tains only 4-tuples, i.e., no paths are considered. The strong time semantics
builds meaningful paths from the 4-tuples available in the expanded transition
system. Therefore, the semantics of a real-time synchronised Petri nets system is
obtained by retaining, from #rs¢;pend, all the sequences of transitions containing:
(1) observable events only (no m with e); (2) markings reachable from the initial
marking on a path where time is monotonic. A path p is a sequence of 4-tuples.
We denote tail(p) the last 4-tuple of the path.

Definition 15. Strong Time Semantics.

Let (Sys, marky,) be a marked real-time synchronised Petri nets system, trSezpand
be the expanded transition system obtained with the rules of Definition 14. The
strong time semantics of (Sys, marky), denoted by Sem, is the least set of paths
such that:

(marky —— mark') € trsecapana A € € Obssy,s

= (marky —): mark') € Sem

(mark; %) marks) € trsezpand A e € Obsgys A
dp € Sem s.t. tail(p) = (mark; %) mark;) A t' <t

= p (mark] —)j marks) € Sem .

Remark 5. If we want to obtain the weak time semantics, instead of the strong
time semantics, we proceed from the weak transition system given by Defini-
tion 12, then we apply the rules of Definition 14, without applying the condition
Cond, and finally we apply Definition 15.

3.5 System View Semantics

In some cases, the whole observable strong time semantics is too vast, and we
want to keep only a subset of behaviours in order to analyse them. We model a
lot of behaviours, but we want to observe actually only few of them.

For this reason, in addition to the strong time semantics, we define the System
View Semantics representing only those paths that we want to observe. We will
see in the example how it is useful to not see part of the behaviour of some
component.

The system view semantics is obtained from the strong time semantics by
retaining from the transition system only the paths labelled with methods and
transitions that we want to observe. Therefore, we need first to choose a set
View C (M UT) of methods and transitions that we want to observe. On the
basis of View, we define the set of observed events, in a similar manner to the
observable events.

Definition 16. Observed Events.

Let Sys be a real-time synchronised Petri nets system. Let View C (M UT) be
the set of methods and transitions that we actually want to observe. The set of
observed events of Sys, denoted by Viewsys, is the least set such that:

View C Viewsys
e1,e2 € Viewsys = e1 [/ ex € Viewsys
e1,e € Viewsys = €1 .. e2 € Viewsys
e1, ez € Viewgy, = €1 @ ey € Viewgys -

An observed event has the same structure as an observable event. However
only methods and transitions being part of the View set can appear in an ob-
served event.

The system view semantics is then obtained from the expanded transition
system, trscypand, by retaining the transitions containing observed events only,
and whose markings are reachable from the initial marking.

Definition 17. System View Semantics.

Let (Sys,marky) be a marked real-time synchronised Petri nets system, let
View C (M UT), trsegpand be the expanded transition system obtained with
the rules of Definition 14. The system view semantics of (Sys, marky), denoted
by Semview, s given by the least set of paths such:

(marky, % mark') € trseppana A € € Viewsys

e
= (marky, —)0 mark') € Semy ieq

(mark; % marks) € trsezpand A € € Viewsys A
dp € Semvyiew 8.t tail(p) = (mark, %) mark;) A t' <t

=p (marki —)i markz) € Semy ey -

The system view semantics Semy ., is actually a subset of Sem, where we
remove all the branches of the semantics tree labelled with events made with
methods or transitions that are not part of View. Paths of Semy .., are made
of transitions whose events are exclusively those that we want to observe.

It is important to note that even though a method m is not part of View, its
behaviour is taken into account if it is requested for synchronisation by another
method m’> € View.

3.6 Example

Figure 2 shows a partial view of the tree of reachable markings of the strong
time semantics of the real-time synchronised Petri nets system of Figure 1.

The initial marking is made of three tokens present at time 0 in place p1,
and the empty place p2; it is denoted {0,0,0}, 0. Method move has to occur
between time 5 and time 10 (because of put), and method put has to occur
between time 2 and time 10. In this example, the relative time intervals are also
the absolute ones, since move and put are enabled at 0, and no token may arrive
in their pre-set. The figure shows several cases. For instance, the firing of move
occurring at time 5 leads to a new marking where a token has been removed
from p1, and a token stamped at 5 is in p2. This corresponds to transition:
{0,0,03,0 == {0,0},{5}.

The formula below shows how the inference rules are applied in order to
obtain this transition:

move with put BasicSyncBeh —————— 5 BasicBeh
{0,0,0},0 45P, {0,0},0 0,0 — 0, {5}

Sync .

move

{0,0,0},0 — {0,0}, {5}

First, BasicBeh and BasicSyncBeh are applied. The obtained transitions are
part of the weak transition system. Then rule Sync is applied on the two tran-
sitions. The resulting transition is then part of the strong time semantics, since
it starts from the initial marking.

If we come back to Figure 2, the firing of move must be followed by the firing
of the processing transition, because of the inhibitor arc. Since processing is
enabled at 5, it can fire in the time interval [6. .14]. For instance, it fires at time
6, and p2 becomes empty. At this point, put can fire alone, or move can fire (for
instance at time 7), but still within their absolute time interval. After the second
firing of move, there is necessarily a firing of processing, which can occur at
time 8 or after. Then, we can have either a firing of move or a firing of put. For

proc., 8

{0,0},{7} e 0,0
put, 7 {0,0},0 proc, 11
proc.,6 mdve,7 proc.,8 move,8 toc,10 put,10 proc, 11
{0,0}, {5}

{0,0},0 {0}, {7+ {0},0 0, {8} 0,0 0, {10} 0,0

{0,0}, {5.5}
.5 ce

5 e
{0,0,0}, {2.5}
proc., 3

{0,0,0},{2} 0,0, 0}.,-@.

Fig. 2. Tree of reachable markings - Strong Time Semantics

instance, move fires a last time at 8 (all tokens in the pre-set are consumed),
then it is followed by processing. If processing occurs between 9 and 10, then
put has to occur at the latest at 10, then processing occurs a last time at 11
or after. If processing occurs after 10, then put cannot fire since the current
time is over its time interval. In both cases, the system has reached its end, no
method or transition may fire. From the initial marking, it is also possible to fire
put at time 2 for instance, thus producing a new marking {0,0,0},{2}; or to fire
the alternative event move @ put. The tree shows the case of move & put firing
at 2.5, corresponding to the firing of put, or at 5.5, corresponding to the firing of
move. It is not possible to fire event move // put. Since move requires the firing of
put, an event such as move // put requires that put fires twice simultaneously.
Method put cannot fire two or more times simultaneously because the inhibitor
arc is set to 0. The tree depicted by Figure 2 is not complete: it is also possible
to fire move at any time in the interval [5..10]; and to fire put at any time in
the interval [2..10].

Figure 3 shows the system view semantics, with View = {move,processing}.
It is a subset of the tree of Figure 2, where method put alone cannot fire.

proc, 11 0,0
proc.,6 move,7 proc.,8 move,S/ﬁ{,lO
{0,0}, {5}

{0,030 {oy,{7} {oy,0 0,{8} 0,0

{0, 0}, {5.5}
5 ...

move, 5

move,5.

{0,0,0},0

Fig. 3. Tree of reachable markings - System View Semantics

Remark 6. Zeno Behaviour. The semantics given above allows cases, where the
number of sequential firings of a transition or a method, at a given time ¢, may
be uncountable. These cases occur for transitions or methods having no pre-
set, and no inhibitor arc, or when intervals [0..0] are used. It is recommended,

to insert extra places with pre-sets, or inhibitor arcs, in order to prevent time
stuttering.

4 An Applicative Example: the Railroad Crossing System

In this section we illustrate the applicability of the real-time synchronised Petri
nets to practical cases through a fairly classical “benchmark” for real-time system
formalisms, i.e., the Generalised Railroad Crossing (GRC) system [8].

The GRC system consists of one or more train trails which are traversed by a
road. To avoid collisions between trains and cars a bar is automatically operated
at the crossing. Let us call I the portion of train trails which crosses the road. To
properly control the bar, sensors are placed on the trails to detect the arrival and
the exit of trains: the arrival of a train must be signalled somewhat in advance
wrt the train entering region I, whereas the exit is signalled exactly when a train
exits I. We call R the portion of train trails included between the place where
entering sensors are placed and the beginning of I (see Figure 4). All trains have a
minimum and a maximum speed so that they take a minimum and a maximum,
yet finite and non-null, time to traverse R and I.

bar

R I

Fig. 4. Critical Section

The control of the bar operates as follows. Whenever a train enters R, this
is detected and signalled by a sensor; similarly when a train exits I. If a train
enters R and the bar is open (up), then a command is issued to the bar to close.
This takes a fixed amount of time (). As soon as no more trains are in R or in
I (this must be computed by the control apparatus on the basis of entering and
exiting signals) the opening command is issued to the bar, which again takes
time units to open (notice that, in this description, we assume that if a train
enters R while the bar is opening, the control must wait until the bar is open
before restarting closing it). The designer’s job is to set system parameters (e.g.,
the length of R and the duration «) in such a way that the following properties
hold:

— Safety property: when a train is in I the bar is closed;
— Utility property: the bar is closed only for the time that is strictly necessary
to guarantee the safety property.

Let us now formalise the GRC system through real-time synchronised Petri
nets. Figure 5 shows two objects: Train and Level Crossing. The Train object
represents the entry and the exit of trains into a critical region: a train enters into
the critical region with method entry, it stays first in the section corresponding
to R (place p2), for a certain amount of time (at least ¢1). Then, it enters region
I, represented by place p3, and finally it leaves the critical region with method

exit. Several trains may be simultaneously in the critical region, however their
entry is not simultaneous. Indeed method entry can fire more than once, since
place p1 contains always one token. However, method entry cannot fire twice
or more simultaneously, and there is a delay of at least ¢} between two trains
entering the critical region. The fact that two trains may be simultaneously in
region R or in region I depends also on the values of ti,ts,t],¢],t5. Indeed, if
to 4+t <t} then there will be at most one train in the critical region.

Train

in [t1..t2]
P2 p3
O {p O
/ 1 1
| 1 P \
I \
I |

entry [t’1..00[exit [t77..t7 5]

signal_entry [0..c0[! signal_exit [0..00[

1 end-up [v..7] 0
1
fe— 1 —H(— 1 11
up mv._up
1 1
go_down [0..0] go-up [0..0]

1 1
mv.down down
OO
\ end_down [y..7] /

Level Crossing
Fig. 5. Train and Level Crossing

The Level Crossing object represents the behaviour of the critical region,
i.e., the bar’s behaviour: it must be up iff no train is currently in the critical
region, or entering it.

Each time a train enters the critical region, the signal entry method fires.
This is due to the fact that signal_entry is requested by entry. The signal entry
method increases the number of tokens in place Counter, whose role is to count
the number of trains that are currently in the critical region. If the barrier is
up and if a train arrives in the critical region, transition go_down fires and the
barrier begins to go down (place mv_down). After a certain amount of time ~,
represented by transition end down, the barrier is finally down (place down).

Each time a train leaves the critical region, by activating method exit, the
signal exit method fires simultaneously. This method simply decreases by one
the number of trains that are currently in the critical region. As soon as there
are no more trains in the critical region, i.e. place Counter is empty, transition

go_up fires. Indeed, the inhibitor arc of weight 0 prevents the firing of go_up
before all trains leave the critical region, and time interval [0..0] attached to
go_up enforces go_up to fire as soon as it is enabled. The place en maintains the
time of exit of the last train. Then, the barrier begins to go up (place mv_up),
and after a certain amount of time =y, represented by transition end up, it arrives
in the up position (place up).

When trains are in the critical region, and the barrier is already down, neither
method go_down nor method go_up can fire. Therefore, the barrier remains down
until all trains have leaved the critical region.

For the System view semantics we chose View = {entry,exit,go down,
end _down,go_up,end up}. We do not consider paths where methods signal entry
and signal_exit fire without being requested by methods entry and exit re-
spectively. Indeed, train and level crossing are obviously two different objects.
However, the level crossing is such that the commands activating the bar are
issued from the trains, i.e., methods signal entry, and signal exit fire when-
ever a train enters R or exits I respectively, but these two methods should not
fire alone. Let us now see how the safety property is satisfied.

The sequence of transitions (1) shows an incorrect sequence* of transitions
wrt the safety property.

{} entry) {} go_down) {} in N {} end_down) {} (1)

t t t4t tt+y

This sequence of transitions corresponds to the case a train entering region R
at t (entry), and region I at t+1¢; (in) before the bar is down at t++ (end_down).
This case occurs whenever v > t;. The first condition to impose on < is then
v < t1. The sequence of transitions (2) shows the correct sequence of the bar
going down when one train enters R and v < ¢;. Sequence (2) shows as well the
exit of the train at t +t1 + tlll (exit), followed by the bar immediately beginning
to go up, and finally reaching the up position ¢ +¢; + tlll +7y (end_up). Whenever
a second train enters R at ¢ + t', after the bar is up, then the bar begins to go
down normally, and the safety property is still satisfied.

entry o_down, end_down in exit
{} » {1} = » {} > Y} ——
t t t+y t4tq bty
2
go-up end_up N entry go_down N } ()
7 1 ? 1 ? . ? 1
t+t+ty t+ty+ty +y ! b1ty

It is similar, if a second train enters region R while the first train has not yet
leaved I: the bar remains down until the second train leaves I. However, condition
v < t1 is no longer sufficient, if the second train enters region R just after the
exit of the first train, but before the bar is up. Indeed, the bar has received the
signal to go up, and it will have to completely go up before being able to come
down. The first train enters R at ¢, leaves I at ¢t + t; + tlll. The second train

4 for space purposes, markings are not shown, only transitions and time of firing are
represented.

enters R at t+¢' (t, +t, <t'). Since the first train exits at t +t; + ¢, , and the
second train is not yet in R, the bar begins to go up at t+1¢; + tlll, reaches the up
position at ¢t +t1 + tlll + 7. Since in the meanwhile, the second train has entered
R, the bar immediately begins to go down, and reaches the down position at
t+t + 1t + 2.

The incorrect case (3) occurs whenever the second train arrives after the exit
of the first train: t; + ¢, < #'; and the bar is down (end_down) after the train
has entered I (in): ¢/ +t; <ty +t, + 2, Le., t' <t + 2.

By combining these two conditions, we obtain the following equation: ¢; +t11' <
t' <t, +2v. It reduces to: t; +t, <t, +2v, and finally #; /2 < ~. Therefore, in
order to prevent the incorrect behaviour, v must be such that: v < ¢ /2.

{} entry R {} go-down) {} end.down) {} in

t t t+y t+tg
exit R go-up { } entry R { end_up
" ’) " ’) t+tl ’ : " (3)
t+ty+tg t+i1+1, t+t1 4ty +y
go_down g in R] end_down R {}
t+t1+t] +y t+t i1 t+tg -ty +27

In the correct case (4), the bar reaches the down position before the second
train arrives in I.

entry go-down end_down_ in
[} -, gy o ogy oomddon, gy b
exit go-up entry end_up
. _— . > . > . >
t ttrt] t} -ttt th t+t! t tht1 4t +v (4)
go_down end_down in
> {. > {. > {.}
ttr+t]) +y tHty 4+t +2y i+t 4t

The utility property is simpler to see. Whenever the last train leaves I while the

bar is already down, the inhibitor arc and the interval [0..0] attached to go_up
guarantee that the bar begins to go up immediately when no more trains are in
the critical region. Problems arise when the last train leaves I while the bar is
not yet in the down position, i.e., transition end down fires after the exit of the
last train. The sequences of transitions (5) and (6) below show two occurrences
of this case. Sequence (5) shows the case of a single train, entering R at ¢, and
leaving L at t+t; + tlll before the bar reaches the down position. This is a special
case of (1), it shows a worst behaviour, since the train not only enters I, but even
leaves I before the bar is in the down position. Requiring v > ¢; is sufficient to
avoid this case.

{} entry {} go_up) {} in N {} exit {} end_down) {} (5)

> >
t ¢ t+t1 bt 4] 4y

Sequence (6) shows a particular case of (3), when two trains are involved. As
in (3) the second train enters R soon after the exit of the first train: t; +¢, < ¢'.
Due to the bar going up and down, the second train leaves I before the bar is
down: t' +t; +1t; <t1+1t, +27, ie., t' <2v.

exit go_up entry end_up
{. g},

3 3
4

t4ty -ty bty -+t t4tg 4ty oy (©)
{} in go_down N exit N end-down {}
t+t+t t+ty+ty +y t+t! eyt t+ty+ty +2y

By combining both equations we have: t; + tlll < t' < 2, which reduces to:
~ < (t1+t;)/2. Therefore, in order to avoid this we must enforce: v < (t; +t;)/2.
The requirement needed for the safety property: v < ¢1/2 is sufficient to ensure
the utility property too.

The GRC example, though still rather simple, illustrates the suitability of the
model for the description of real-time systems. First, modularisation is naturally
achieved through the definition of several objects and the use of the synchro-
nisation mechanism to formalise their interaction. Second, the use of inhibitor
arcs allows to achieve a good level of generality without resorting to more so-
phisticated models. In our case inhibitors arcs allow a natural formalisation of
the counter mechanism which is essential for a proper description of the system.
Notice that pure Petri nets allow only the modelling of simplified versions of the
GRC system (e.g. the case where only one train can traverse the regions R and
I per time) whereas in order to deal with the general case, more cumbersome
formalisations are usually needed [8].

5 Related Works

The model of Communicating Time Petri Nets [3] is close to the one presented
in this paper. It combines inhibitor arcs, attaches firing time intervals to tran-
sitions, and allows decomposition into modules. It differs in the composition
of modules, which is realised through a message passing-based communication
among modules. This work has also resulted in an analysis technique of the over-
all system based on an analysis of each individual modules. The combination of
time and Petri nets modules has been also addressed in [9] which introduces the
Time Petri Box calculus. Modules are Petri Boxes equipped with a dynamic fir-
ing time interval over a discrete time domain, and composition is realised by the
means of several operators. The analysis method for single Time Petri nets of [1]
is based on a “state-class” technique and allows to build a finite representation
of the behaviour of the nets, enabling a reachability analysis similar to that of
Petri nets.

6 Conclusion

We introduced real-time synchronised Petri nets, a class of high-level Petri nets
that combines modularity and abstraction mechanisms (transactional view of
synchronisations) proposed by CO-OPN, inhibitor arcs, and a delay time model
for Petri nets (using relative time intervals). This paper does not address prob-
lems related to reachability analysis, even though the defined semantics consti-
tutes a basis for elaborations of analysis techniques and tools. Efforts towards
this direction have already been realised and an operational semantics is now

available [12]. It relies on a symbolic technique that enables to build a finite
representation of temporal constraints, which actually defines an uncountable
number of state spaces and firings. Future work will concentrate on giving an
axiomatisation to these nets in order to enable formal verification of logical
properties (safety, liveness), and on pursuing further generalisation. Once the
axiomatisation will be available, supporting theorem proving tools will be appli-
cable to mechanise and make system analysis more robust [7].

References

1.

10.

11.

12.

B. Berthomieu. La méthode des Classes d’Etats pour I’Analyse des Réseaux Tem-
porels - Mise en Oeuvre, Extension a la multi-sensibilisation. In Modélisation des
Systémes Réactifs, MSR’2001. Hermes, 2001.

O. Biberstein, D. Buchs, and N. Guelfi. Object-oriented nets with algebraic specifi-
cations: The CO-OPN/2 formalism. In G. Agha, F. De Cindio, and G. Rozenberg,
editors, Advances in Petri Nets on Object- Orientation, volume 2001 of LNCS, pages
70-127. Springer-Verlag, 2001.

G. Bucci and E. Vicario. Compositional Validation of Time-Critical Systems Using
Communicating Time Petri Nets. IEEE Transactions on Software Engineering,
21(12):969-992, 1995.

. D. Buchs and N. Guelfi. A formal specification framework for object-oriented

distributed systems. IEEE Transactions on Software Engineering, Special Section
on Formal Methods for Object Systems, 26(7):635-652, July 2000.

G. Di Marzo Serugendo, D. Mandrioli, D. Buchs, and N. Guelfi. Real-time synchro-
nised Petri nets. Technical Report 2000/341, Swiss Federal Institute of Technology
(EPFL), Software Engineering Laboratory, Lausanne, Switzerland, 2000.

M. Felder, D. Mandrioli, and A. Morzenti. Proving properties of real-time systems
through logical specifications and Petri net models. IEEE Transactions on Software
Engineering, 20(2):127-141, February 1994.

A. Gargantini and A. Morzenti. Automated Deductive Requirements Analysis
of Critical Systems. ACM TOSEM - Transactions On Software Engineering and
Methodologies, 10(3):255-307, July 2001.

C. Heitmeyer and D. Mandrioli, editors. Formal methods for real-time computing.
John Wiley & Sons, 1996.

M. Koutny. A Compositional Model of Time Petri Nets. In M. Nielsen and
D. Simpson, editors, International Conference on Application and Theory of Petri
Nets 2000, volume 1825 of LNCS, pages 303-322. Springer-Verlag, 2000.

C. A. Lakos and S. Christensen. A General Systematic Approach to Arc Extensions
for Coloured Petri Nets. In R. Vallette, editor, Proceedings of the 15th International
Conference on Application and Theory of Petri Nets, volume 815 of LNCS, pages
338-357. Springer-Verlag, 1994.

P.M. Merlin and D.J. Farber. Recoverability of communication protocols - implica-
tions of a theoretical study. IEEE Transactions on Communications, 24(9):1036—
1043, 1976.

S. Souksavanh. Operational Semantics for Real-Time Synchronized Petri Nets.
Master’s thesis, Swiss Federal Institute of Technology (EPFL), Software Engineer-
ing Laboratory, Lausanne, Switzerland, 2002.

