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Abstract. Mobile code has often been mentioned as an attractive technol-
ogy for distributing computations inside a Grid consisting of heterogeneous
nodes interconnected by a large-scale network. We describe here a Java-based
mobile agent model for a Grid infrastructure which addresses issues such as
customizable distribution of computation, security, billing and accounting.
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1 Introduction

Grid computing enables worldwide distributed computations involving multi-site
collaboration, in order to benefit from their combined computing and storage power.
The way to distribute an application on a set of computers connected by a network
depends on several factors.

First, it depends on the application itself, which may be not naturally distributed
or on the contrary may have been engineered for Grid computing. A single run of the
application may require a lot of computing power. The application is intended to run
several times on different input data, or few times, but an a huge amount of data.
The application has at its disposal computational, storage and network resources.
They form a dynamic set of CPUs of different computing power, of memory stores
(RAM and disks) of different sizes, and of bandwidths of different capacities. In addi-
tion, the basic characteristics of the available CPUs, memory stores and bandwidth
are not granted during the whole computation (a disk with an initial capacity of
512MBytes when empty, cannot be considered having this capacity when it is half
full). Code and data may be stored at different locations, and may be distributed
across several databases. Computation itself may occur at one or more locations. Re-
sults of the computation have to be collected and combined into a coherent output,
before being delivered to the client, who may wait for it at still another location. The
network topology has also an influence on the feasibility of the distribution. Central-
ized topologies offer data consistency and coherence by centralizing the data at one
place, security is more easily achieved since one host needs to be protected. How-
ever, these systems are exposed to lack of extensibility and to fault-tolerance, due
to the concentration of data and code to one location. On the contrary, a fully de-
centralized system will be easily extensible and fault-tolerant, but security and data
coherence will be more difficult to achieve. A hybrid approach combining a set of
servers, centralizing each several peers, but organized themselves in a decentralized
network, provides the advantages of both topologies [17]. Finally, policies have to



be taken into account. They include clients and donators (providers) requirements,
access control, accounting, and resource reservations.

Mobile agents constitute an appealing concept for realizing computation distri-
butions, since the responsibility for dispatching the program or for managing some
run-time tasks may be more efficiently performed by a mobile entity that rapidly
places itself at strategic locations. However, relying completely on mobile agents
for realizing the distribution complicates security tasks, and may incur additional
network traffic.

This paper proposes a model combining the use of a stationary operator with
mobile agents, running in a secure Java-based mobile agent kernel. The operator
is responsible for centralizing customized clients computations requests, as well as
security and billing tasks, and for dispatching the code on the Grid. Mobile agents
prevent the operator to become a bottleneck, by forwarding input data to compu-
tations locations, and performing management tasks. They start the different parts
of the computations, ensure the management and monitoring of the computation’s
distribution, and finally collect and combine the results of the computation.

Section 2 reviews distributed computations, Section 3 presents the model, Sec-
tion 4 describes the chosen secure execution environment, while Section 5 explains
adaptations of the environment necessary to the full realization of the model. Finally,
Section 6 summarizes some related approaches.

2 Distributed Computations

Worldwide distributed computations range from parallelization of applications to
more general Grid distributions.

2.1 Parallelization

Distribution of computing across multiple environments shares similarities with the
parallelization of code on a multi-processor computer. We distinguish two cases, the
first one corresponds to single instruction, multiple data (SIMD); while the second
one corresponds to multiple instruction, multiple data (MIMD). Figure 1 shows both
cases.

In case (a), the client’s host ships the same code, but with a different accompa-
nying data to multiple locations. After computation, the different results are sent
back to the client’s host. The final result is simply the collection of the different
results. This kind of distribution is appropriate for intensive computing on a huge
amount of the same type of data. It corresponds to the distribution realized by the
SETI@home? experiment that uses Internet connected computers in the Search for
Extraterrestrial Intelligence (SETI). Donators first download a free program. The
execution of the program then downloads and analyzes radio telescope data. Note
that in this case, the downloaded data may come from a different source.

In case (b), code and data are split into several parts, then pairs of code and
data are sent to several locations. The result is obtained by a combination (some
function) of the different results.

3 http://setiathome.ssl.berkeley.edu/
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Fig. 1. Parallelisation

Such a distribution is suitable for applications that can be divided into several
pieces. This scheme fits the case of Parabon?. The client defines jobs to be performed.
Transparently, the API divides the job into several tasks, on the client side; a task
is made of a code, data, and some control messages. Tasks are sent to the Parabon
server, which then forwards each task to a donator, using the donator’s CPU idle time
for computing the task. Once the task is achieved, the server sends back the result
to the client, where the API then combines all results together, before presenting
them to the client.

As a particular case of the MIMD example, code and data may be divided into
several sequential parts. Computation would occur then in a pipeline-like style, where
the next piece of code runs on the result of the previous computation.

These examples all exploit idle CPU time of the computer participating in the
computations. The execution of the code on the data occurs inside a secure “bubble”,
which ensures, on one hand, that the donator cannot exploit the code, the data and
the results of the client; on the other hand, that the client does not execute malicious
code in the donator’s host.

2.2 Grid

The more general case of distributed computing is provided by the Grid computing
concept which enables collaborative multi-site computation [11]. Grid computing
goes beyond traditional examples of peer-to-peer computing, since there is a concern
of proposing a shared infrastructure for direct access to storage and computing
resources.

Figure 2 shows a generic Grid computation, encompassing the different classes
of Grid applications [10]. The client, requesting the computation, the software to
run, the data, and the results may be located at different sites. The data is even
distributed across two databases. In this example, the code and the two pieces of

* http://www.parabon.com



data are moved to the donator’s location, where the computation takes place. The
result is then shipped to the client.
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Fig. 2. Grid

The CERN DataGrid [8] provides an example where physicists are geographically
dispersed, and the huge amount of data they want to analyze are located worldwide.

3 Proposed Model

In this section we give an overview of our overall architecture, we outline our busi-
ness model, and describe the different roles of participants in our Grid computing
infrastructure, as well as their interactions.

3.1 Participating Parties in the Grid Computing Model

Our model involves 3 distinct parties: the operator of the Grid, resource donators,
and clients. The operator is in charge of maintaining the Grid. With the aid of a
mobile deployment agent, he coordinates the distribution of applications and of input
data, as well as the collection and integration of computed results. The operator
downloads the applications, and distributes them to resource donators that perform
the actual computation.

Clients wishing to exploit the Grid for their applications have to register at
a server of the operator before they are allowed to start computations. During the
registration step, the necessary information for billing is transmitted to the operator.
Afterwards the client is able to send a deployment descriptor to the operator.

The deployment descriptor comprises the necessary information allowing the op-
erator to download the application, to prepare it for billing and accounting, and to
distribute the application and its streams of input data to different active resource
donators, taking into consideration their current load. The mobile deployment agent,
which is created by the operator based on the contents of the client’s deployment
descriptor and coordinates the distributed client application, is not bound to a server
of the operator; the client may specify the server to host the deployment agent, or
decide to let the agent roam the Grid according to its own parameters. This approach



improves scalability and ensures that the operator does not become a bottleneck,
because the operator is able to offload deployment agents from his own computers.

Resource donators are users connected to the same network as the operator (e.g.,
the Internet) who offer their idle computing resources for the execution of parts of
large-scale scientific applications. They may receive small payments for the utiliza-
tion of their systems, or they may donate resources to certain kinds of applications
(e.g., applications that are beneficial for the general public). Resource donators reg-
ister at the Grid operator, too. They receive a dedicated execution environment to
host uploaded applications. Portability, high performance, and security are key re-
quirements for this execution platform. Section 4 gives detailed information on our
platform, which is completely based on the Java language. The operator dispatches
downloaded applications to active resource donators. The deployment agent is in
charge of supervising the flows of initial and intermediate data to and from the re-
source donators, as well as the final results, which are passed back to the destination
designated by the client. Allowing the deployment agent to be moved to any machine
on the Grid improves efficiency, as the deployment agent may locally access the re-
quired data there. As explained later, the deployment agent, or its clones, is also
responsible for minimizing the flows of Grid management data between the donators
and the operator.

3.2 Business Model

In our model the operator of the Grid acts as a trusted party, since he is responsible
of all billing tasks®. On the one hand, clients pay the operator for the distributed
execution of their application. On the other hand, the operator pays the resource
donators for offering their idle computing resources.

The client buys ezecution tickets (special tokens) from the operator, which the
deployment agent passes to the resource donators for their services. The resource
donators redeem the received execution tickets at the operator. The execution tickets
resemble a sort of currency valid only within the Grid. They are micro-payments for
the consumption of computing resources. There are 3 types of execution tickets:
tickets for CPU utilization, for memory allocation, and for data transfer over the
network. The coordinating deployment agent has to pass execution tickets of all
types to a resource donator for exploiting his computing resources.

Execution tickets are protected from faking, as the operator keeps track of the
tickets in use. Execution tickets can be split and distributed at a fine granularity.
Hence, the loss of a single execution ticket (e.g., due to the crash of a resource
donator) is not a significant problem. In case the deployment agent does not receive
the desired service from a resource donator for a given execution ticket, it will report
to the operator. If it turns out that a resource donator collects tickets without
delivering the appropriate service, the operator may decide to remove him from the
Grid.

% The operator may also be responsible for guaranteeing that only applications correspond-
ing to the legal or moral standards fixed by the donators are deployed.



3.3 Deployment of Applications

In order to start an application, the client transmits a deployment descriptor to
the operator, who will retrieve and dispatch the application to different resource
donators and also create a deployment agent for the coordination of the distributed
execution of the application.

The deployment descriptor, sent by the client, consists of the following elements:

— A description of the application’s code location and structure. The client informs

the operator of the application he wants to run. The operator will then down-
load the application, and prepare it for resource control, before dispatching it
to the donators. The application’s structure establishes cut points and defines
the different parts of the application that can run concurrently, as well as possi-
ble computational sequences. The client may specify himself the composition of
computations, which reflects the calculus he desires to achieve (SIMD, MIMD,
other). However, he does not customize the part of the description related to cut
points, since it is tightly dependent of the application;

A description of the source for input data. Usually, scientific applications have
to process large streams of input data, which can be accessed e.g. from a web
service provided by the client. The interface of this service is predefined by the
operator, it may support various communication protocols (e.g., RMI, CORBA,
SOAP, etc.);

A descriptor of the destination for output results. Again, this element designates
the location of an appropriate service that can receive the results;
Quality-of-service (QoS) parameters. The client may indicate the priority of the
application, the desired execution rate, the number of redundant computations
for each element of input data (to ensure the correctness of results), whether
results have to be collected in-order or may be forwarded out-of-order to the
client, etc. The QoS parameters allow the client to select an appropriate trade-
off between execution performance, costs, and reliability. The QoS parameters
are essential to select the algorithms to be used by the deployment agent. For
instance, if the client wishes in-order results, the deployment agent may have to
buffer result data, in order to ensure the correct order.

In the following we summarize the various steps required to deploy a client ap-

plication in the Grid. Figure 3 illustrates some of them.

1.

3.

4.

Prospective resource donators and clients download and install the mobile code
environment employed by the chosen operator, in order to be able to run the
computations and/or to allow the execution of deployment agents.

Donators register with the operator and periodically renew their registration by
telling how much they are willing to give in the immediate future; a calibration
phase is initially run at each donator site to determine the local configuration
(processor speed, etc.).

A client registers with the operator and sends the deployment descriptor (steps
1 and 2 of Figure 3).

The operator reads the deployment descriptor and:



(a) Chooses an appropriate set of donators according to the required service
level and to actually available resources; a micro-payment scheme is initi-
ated, where fictive money is generated by the operator and will serve as
authorization tokens for the client to ask donators for resources; a first wave
of credit is transferred to the donator set, thus signifying that the corre-
sponding amount of resources are reserved.

(b) Creates a mobile agent, the deployment agent, for coordinating the distri-
bution, execution and termination of the client application (step 3); this
deployment agent will shift the corresponding load from the operator to the
place designated by the client, or to a donator chosen according to load
balancing principles; the deployment agent may clone itself or move to the
appropriate places for ensuring that input and output data is transferred op-
timally, thus avoiding useless bottlenecks at central places like the operator
server.

(c) Downloads the client application (step 4) and rewrites it (reification of re-
sources, step 5); the resulting code is signed to prevent tampering with it,
and deployed directly from the operator’s server (step 6).

(d) Dispatches the deployment agent to the appropriate initial place for execu-
tion (step 7).

. The deployment agent launches the distributed computation by indicating (step 8)

to each donator-side task where to locate its respective share of input data (step

9), and starts monitoring the computation.

. The deployment agent acts as a relay between the operator and the donators. The

agent receives regular status reports from the various locations of the resource-

reified application (step 10); this enables him to monitor the progress of the
computations, and to detect problems like crashes and to assist in the recovery

(e.g- by preparing a fresh copy of the appropriate input data, or by finding a new

donator to take over the corresponding task); the status reports are filtered and

forwarded to the operator (step 11) in order to help maintaining a reasonably
good view of the global situation (the operator might decide to schedule a second
application on under-utilized donators); when necessary, the operator will ask
the client for more credit (step 12), who will then buy more authorization tokens
from the operator (step 13). The deployment agent then passes the execution

tickets to the donators (steps 14 and 15)

. When results have to be collected, the deployment agent may clone or migrate

to the destination (step 16) and coordinate the incoming flows of data (step 17).

He may perform a last filtering and integrity control of data before it is definitely

stored.

We favored this model over a P2P setting, since it simplifies the implementation of

a global strategy for load balancing and ensures that a trusted party — the operator
— controls the progressing computations. In this setting, the operator also is in a
natural position for managing all operations related to the validation of client-side
payments and corresponding authorizations. Using mobile code for the deployment
agent ensures that the server of the operator does not become a bottleneck and single
point of failure. In the current model, the application code has to be transferred to
the operator’s computer, since it needs to be checked for security purposes, to be



prepared for billing and accounting (using resource reification), and to be partitioned
according to the deployment descriptor.

Currently, resource reification is a heavy process, therefore it is natural to con-
centrate it at the operator’s site. However, future work on the resource reification
may allow schemes where the application code is directly dispatched to the donators
without passing through the operator. Resource reification would then occur at the

donators sites.
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4 Using Java for the Distribution of Computations

Here we motivate the use of Java [13] for the implementation of distributed com-
putations and their distribution within a network. In our model we use Java-based
mobile agents for the distribution of deployment agents (to a server specified by the
client) and of computational tasks (to resource donators). A secure mobile agent
kernel, the J-SEAL2 system, serves as execution platform for mobile agents in both
cases. In that way, we leverage the benefits of Java and of mobile code, while at the
same time offering enhanced security to protect hosts from faulty applications.

4.1 Why Java?

Recently, platforms for Grid computing have emerged that are implemented in Java.
For instance, Parabon offers an infrastructure for Grid computing which is based
completely on Java. In fact, the Java language offers several features that ease the
development and deployment of a software environment for Grid computing. Its
network-centric approach and its built-in support for mobile code enable the distri-
bution of computational tasks to different computer platforms.

Java runtime systems are available for most hardware platforms and operating
systems. Because of the heterogeneity of the hardware and of operating systems em-
ployed by Internet users, it is crucial that a platform for large-scale Grid computing
be available for a large variety of different computer systems. Consequently, a Java-
based platform potentially allows every computer in the Internet to be exploited for
distributed, large-scale computations, while at the same time the maintenance costs
for the platform are minimal (“write once, run everywhere”).

Apart from its portability and compatibility, language safety and a sophisticated
security model with flexible access control are further frequently cited advantages of
Java. As security is of paramount importance for the acceptance of a platform for
Grid computing, the security and safety features of Java are highly appreciated in
this context.

4.2 Performance Issues

Java has its origins in the development of portable Internet applications. The first
implementations of Java runtime systems were interpreters that inefficiently executed
Java Virtual Machine (JVM) bytecode [16] on client machines. Also, several features
of the Java programming language impact performance: the fact that it is a type safe,
object-oriented, general-purpose programming language, with automatic memory
management, and that its implementation does not directly support arrays of rank
greater than one, means that its execution may be less efficient compared to more
primitive or specialized languages like C and Fortran.

However, optimizations performed by current state-of-the-art Java runtime sys-
tems include the removal of array bounds checking, efficient runtime type check-
ing, method inlining, improved register allocation, and the removal of unnecessary
synchronization code. See [15] for a recent survey of current compilation and opti-
mization techniques that may boost the performance of Java runtime systems for



scientific computing. In [18] the authors report that some Java applications already
achieve 90% of the performance of equivalent compiled Fortran programs.

Considering the advantages of Java for the development and deployment of plat-
forms for Grid computing, we think that a minor loss of performance can be ac-
cepted. Furthermore, the availability of more nodes where distributed computations
can be carried out may often outweigh minor performance losses on each node. Ul-
timately, we are confident that maturing Java runtime systems will offer continuous
performance improvements in the future.

4.3 Security Considerations

A high level of security is crucial for the acceptance of a platform for Grid computing.
At first glance, Java runtime systems seem to offer comprehensive security features
that meet the requirements of an execution environment for Grid computing: lan-
guage safety [24], classloader namespaces and access control based on dynamic stack
introspection. Despite these advantages, current Java runtime systems are not able
to protect the host from faulty (i.e. malicious or simply bugged) applications.

In the following we point out serious deficiencies of Java that may be exploited
by malicious code to compromise the security and integrity of the platform (for
further details, see [6]). Above all, Java is lacking a task model that could be used
to completely isolate software components (applications and system services) from
each other. A related problem is that, unfortunately, thread termination in Java is
an inherently unsafe operation, which may e.g. leave shared objects, such as certain
internals of the JVM, in an inconsistent state. Also related to the lack of task model
is the absence of accounting and control of resource consumption (including but
not limited to memory, CPU, threads, and network bandwidth). Concerning the
implementation of current standard Java implementations, an issue is that several
bytecode verifiers sometimes accept bytecode that does not represent a valid Java
program: the result of the execution of such bytecode is undefined, and it may even
compromise the integrity of the Java runtime system. Finally, while the security
model of Java offers great flexibility in terms of implementing access control, it lacks
central control: security checks are scattered throughout the classes, and it is next to
impossible to determine with certainty whether a given application actually enforces
a particular security policy.

All these shortcomings have to be considered in the design and implementation of
Java-based platforms for Grid computing. Therefore, massive re-engineering efforts
are needed to create sufficiently secure and reliable platforms.

4.4 A Java Micro-Kernel for the Secure Execution of Mobile Code

Here we present J-SEAL2 [3,4], a lightweight security layer that executes on top of
standard Java runtime systems. It provides solutions to all the security problems
mentioned before and, hence, represents a state-of-the-art platform for the creation
of secure environments for Grid computing. Several researchers have stressed the
importance of multi-tasking features for Java-based middleware [2]. An abstraction
similar to the process concept in operating systems is necessary in order to create



secure execution environments for mobile code. However, proposed solutions were ei-
ther incomplete or required modifications of the Java runtime system. In contrast, the
J-SEAL2 kernel has been designed to ensure important security guarantees without
requiring any native code or modifications of the underlying Java implementation.

J-SEAL2 is a micro-kernel implemented in pure Java, which supports the hierar-
chical task model of the Seal Calculus [22] that was first implemented by the JavaSeal
mobile object system [7]. The J-SEAL2 kernel manages a tree hierarchy of nested
tasks, which may be either mobile objects or system services. In J-SEAL2 tasks are
completely separated from each other. Untrusted tasks are not allowed to directly
use certain functions of the JDK, such as file or network 10, but they have to access
dedicated J-SEAL2 services that are executing in separate tasks. The hierarchical
task model allows to interpose supervisor and mediator components between an un-
trusted application and trusted system services. Each service access is subject to
verification by the supervisor task. Consequently, the J-SEAL2 kernel does not rely
on the security model of Java, but enables the installation of centralized security
policies.

In J-SEAL2 each task has associated its own set of threads, which cannot cross
task boundaries arbitrarily. This property ensures that the termination of a task
cannot leave a different task in an inconsistent state, because the threads, which have
to be stopped during task termination, are confined to their owning task. Mobile
objects are not allowed to directly create Java threads, but they have to use a safe
wrapper class instead. The J-SEAL?2 kernel enforces additional constraints on mobile
objects, in order to ensure that a parent task may terminate its children at any time,
forcing the children to release all allocated resources immediately.

Many security restrictions are ensured by extended bytecode verification: J-SEAL2
employs a custom classloader, which invokes the extended bytecode verifier of J-
SEAL2 before a class is linked by the JVM. This mechanism is also used to prevent
untrusted code from accessing certain JDK functions, and compensates for security
flaws of the basic JVM verifier.

J-SEAL2 supports resource control for physical resources (e.g., memory, CPU,
network bandwidth, etc.) and for logical resources (e.g., threads, number of tasks,
etc.). According to the nested task model, J-SEAL2 supports hierarchical resource
control, where the parent task acts as a resource manager of its children [5]. Since
currently Java has no support for resource control, J-SEAL2 relies on bytecode
rewriting to reify the memory and CPU consumption of applications [21]. Mem-
ory allocation instructions are re-directed to a controller object that denies object
allocation if a limit is exceeded. CPU accounting is based on the number of exe-
cuted bytecode instructions. Accounting is performed at the beginning of each basic
block of code; the information on CPU consumption is used by a periodic scheduler
thread, which assigns thread priorities according to CPU limits and recent CPU
consumption. Due to a carefully tuned accounting scheme, the runtime overhead is
kept reasonably small [5]. The consumption of network bandwidth is directly con-
trolled by a supervisor task that is interposed in the hierarchy between untrusted
applications and the network service. A limit on the number of concurrent tasks or
threads is enforced by the kernel before a new task or thread is created.

The J-SEAL2 micro-kernel is thus perfectly suited for the development of plat-
forms for Grid computing: It is small in size (about 100KB of Java class files) and



compatible with the Java 2 platform. Therefore, the distribution and installation of
the kernel itself incurs only minimal overhead. J-SEAL2 supports mobile objects,
which enable the distribution and remote maintenance of scientific applications.
The extended bytecode verifier prevents untrusted code from utilizing dangerous
JDK functions. Such restrictions may be cumbersome for developing interactive ap-
plications, but typical scientific applications do not need high-level JDK functionali-
ties (except for mathematics and cryptography packages). Finally, whereas scientific
applications make heavy use of CPU and memory resources, the resource control
features of J-SEAL2 ensure a fair distribution of computational resources among
multiple applications and prohibit an overloading of the machine.

5 Adapting J-SEAL2 for Grid Computing

J-SEAL2 has been conceived as a kernel for execution environments for mobile ob-
jects, the goal being to achieve savings in network bandwidth, to support offline op-
eration, and to enhance flexibility, especially concerning the distribution and remote
maintenance of software. J-SEAL2 has an open and extensible system architecture,
allowing to plug-in the necessary services without modifying the code of the kernel.

5.1 Components of the Grid Computing Platform

Essentially, five special components are needed for the Grid computing platform run
by the resource donators: A mediator component to control the execution of up-
loaded applications, a network service to receive application code (Net-App service),
a second network service allowing applications to receive input data and to transmit
their results (Net-Data service), a system monitor to prevent an overloading of the
machine, as well as a monitor window that displays information regarding the run-
ning applications, the elapsed time, etc. to the resource donator. In the following we
give an overview of these components:

— In the task hierarchy, the mediator component is the parent of the untrusted
applications. The mediator is responsible for the installation and termination of
applications, as well as for access and resource control. It utilizes the Net-App
service to receive control messages from the deployment agents that coordinate
the distributed applications. It receives application archives, which contain the
application code as well as a deployment descriptor. The deployment descriptor
comprises a unique identifier of the application, as well as information concerning
the resource limits and the priority of the application. The unique application
identifier is needed for dispatching messages to the appropriate application. Re-
quests to terminate an application are also received from the Net-App service.
The mediator component ensures that applications employ only the Net-Data
service and guarantees that an application only receives its own input data and
that its output data is tagged by the application identifier. The mediator task
uses the system monitor in order to detect when the machine is busy; in this
case, applications are suspended until the system monitor reports idle resources.



— The Net-App service is responsible for exchanging system messages with the
coordinating deployment agent. When the platform is started, the Net-App ser-
vice contacts the operator’s server, which may transfer application archives to
the platform. Optionally, a persistency service can be used to cache the code
of applications that shall be executed for a longer period of time. The Net-App
service also receives requests to terminate applications that are not needed any-
more.

— The Net-Data service enables applications to receive input data and to deliver
the results of their computation to the coordinating server. Messages are always
tagged by an application identifier in order to associate them with an appli-
cation. Access to the Net-Data service is verified by the mediator component.
Frequently, continuous streams of data have to be processed by applications.
The Net-Data service supports (limited) buffering of data to ensure that enough
input data is available to running applications. The optimized inter-task com-
munication mechanisms of J-SEAL2 [4] help to minimize the overhead of passing
data streams over task boundaries.

— The system monitor has to detect whether the machine is busy or idle. If the com-
puter is busy, applications shall be suspended in order to avoid an overloading
of the machine. If the computer is idle, applications shall be started or resumed.
An implementation of the system monitor may employ information provided
by the underlying operating system. However, such an approach compromises
the full portability of all other components, since it relies on system-dependent
information. Therefore, we follow a different approach: The reification of CPU
consumption in J-SEAL2 [5,21] allows to monitor the progress of applications.
If the number of executed instructions is low (compared to the capacity of the
hosting computer), even though applications are ready to run, the system mon-
itor assumes that the computer is busy. Therefore, it contacts the mediator
component in order to suspend computations. Periodically, the system moni-
tor resumes its activity in order to notice idle computing resources. When the
computer becomes idle, all applications are resumed.

— The monitoring window presents information about the past and current work
load of the system to the resource donator. It shows detailed status information
of the running applications, the time elapsed for the computations, the estimated
time until completion, if available, as well as some general information regarding
the purpose of the computation. As the resource donator is in control of his
system, it is important to show him detailed information of the utilization of his
machine.

The mobile code execution environment for the deployment agents is based on
J-SEAL2 as well. But as the deployment agents stems from the operator, a trusted
party, the security settings are relaxed. There are a few mandatory services needed
by the deployment agent: access to the client web services that provide the input data
and consume the output results, as well as network access for the communication
with resource donators and the operator. Communication with the resource donators
is necessary for the transmission of the application data, while communication with
the operator is essential for the implementation of a global strategy for load balancing
and for payment issues.



6 Related Work

The primary purpose of mobile code is to distribute applications and services on
heterogeneous networks. Many authors relate mobile code, and more often mobile
agents as a practical technology for implementing load-balancing in wide-area net-
works like the Internet. Load-balancing can be either static (with single-hop agents,
in the sense that once a task is assigned to a host, it does not move anymore) or
dynamic (with multi-hop mobile agents enabling process migration). A recent survey
of load-balancing systems with mobile agents is presented in [12]. Security and effi-
ciency have immediately been recognized as crucial by the research community, but
it was necessary to wait for technology to mature. Resource monitoring and control
is needed for implementing load-balancing, and more generally for realizing secure
and efficient systems, but is unavailable in standard Java, and particularly difficult
to implement in a portable way. For instance, Sumatra [1] is a distributed resource
monitoring system based on a modified JVM called Komodo. See [5] for a further
study on the portability of resource monitoring and control systems in Java.

According to [23], almost all Grid resource allocation and scheduling research
follows one of two paradigms: centralized omnipotent resource control - which is
not a scalable solution - or localized application control, which can lead to unstable
resource assignments as “Grid-aware” applications adapt to compete for resources.
Our primary goal is however not to pursue research on G-Commerce [23], even
though we sketch an economical model based on virtual currency. For these rea-
sons, our approach is hybrid. We relax the conservative, centralized resource control
model by proposing an intermediary level with our deployment agents, designed to
make the architecture more scalable. We have identified a similar notion of mobile
coordination agent in [9], with the difference that our agents do not only implement
application-level coordination (synchronization, collection of intermediate results),
but also management-level activities (local collection and filtering of load-balancing
data), following the general approach we describe in [20]. As described in [19], con-
trol data generated by distributed resource control systems may be huge - and even
higher in G-commerce systems, because of bidding and auctioning messages - and
mobile agents may thus profitably be dispatched at the worker nodes for filtering the
data flows at their source. We propose a further level of filtering to be accomplished
by the deployment agents; this is even more necessary as we intend to control all
three resources (CPU, memory and network). CPU is widely regarded as the most
important factor. In [14] the authors propose to place worker agents within a Grid
according not only to CPU load, but also to network bandwidth requirements; they
relate a speed improvement of up to 40%, but the measurements were made in local-
area clusters instead of dynamic sets of Internet hosts. Finally, memory control is
usually ignored, but we contend that it has to be implemented in order to support
typical scientific Grid computations, since they often imply storing and processing
huge amounts of data.

Among the approaches that are not agent-based, the Globus initiative provides
a complete toolkit addressing, among others, issues such as security, information
discovery, resource management and portability. The Globus toolkit is being adopted
as a standard by most multi-organisational Grids [10, 11].



7 Conclusion

Our goal is to customize computations on open Internet Grids. To this end, we
believe that a Grid environment should provide high-level primitives enabling the
reuse and combination of existing programs and distributed collections of data, with-
out forcing the client to dive into low-level programming details; the Unix scripting
approach is our model, and this translates into our abstract deployment descrip-
tor proposal. From the implementation point of view, this translates into a mobile
deployment agent, which synthesizes and enhances the benefits of several previous
approaches: the deployment agent optimizes its own placement on the Grid, and
consequently it reduces the overall load by minimizing the communications needed
for application-level as well as management-level coordination. There are of course
still some open questions. The first pertains to the actual efficiency of the proposed
model, which cannot be entirely determined before the complete implementation
of the distributed control mechanisms. The second concerns human factors such as
validating the economical model (will the donator be able to earn real money?),
or enabling the donator to decide on the lawfulness or ethics of computations sub-
mitted to him. This paper however concentrates on strictly technological aspects,
and claims that the comprehensive combination of a pure Jave implementation and
a secure mobile agent platform is a unique asset for the portability, security and
efficiency required for the success of Internet-based Grid computing.
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