
DISTRIBUTED SEMAPHORE IN A MESSENGER ENVIRONMENT
�

Murhimanya Muhugusa, Giovanna Di Marzo, Christian Tschudin, Jürgen Harms
University of Geneva, e-mail: muhugusa@cui.unige.ch

URL: http://tioswww.unige.ch/tios/msgr/home.html

ABSTRACT

The messenger paradigm advocates the exchange of
programs called messengers between communicating
hosts instead of messages. Each host contains a mes-
senger execution environment called messenger plat-
form. Messengers are expressed in a language un-
derstood by all the platforms. A distributed messen-
ger environment is a collection of messenger platforms
linked through an unreliable network offering only a
datagram service. Provision of coordination services
in such an environment has to be handled in a new way
since threads of controls are mobile (messengers move
from host to host). The classical client/server paradigm
based on a data exchange mechanism is not suitable for
a messenger environment. In this paper we discuss how
communication services might be provided in messen-
ger environments using as an example the distributed
semaphore service in the MØ distributed messenger en-
vironment. A distributed semaphore allows messengers
executing on different hosts to synchronize their execu-
tion independently of their physical location.
Keywords: distributed semaphore, messengers, dis-
tributed mutual exclusion, MØ.

1 INTRODUCTION

Distributed computing is gaining more and more impor-
tance. Different environments for the implementation
and the execution of distributed applications such as
CORBA [2] and DCE [9] have been built on top of exist-
ing operating systems. Modern operating systems and
kernels equally (CHORUS [10], MACH [1], AMOEBA [11])
offer some features for the development of distributed
applications. And recently, mainly in the arena of dis-
tributed AI, software agents are used as the basis for
distributed applications. Most of the above attempts
to master distributed computing are based on a mes-
sage exchange mechanism and the well known RPC

�
This work is supported by the Swiss National Fund for Scien-

tific Research (FNSRS) grant 20-40631.94

paradigm [8]. Distributed software is structured in
clients and servers which exchange messages which
are interpreted using a pre-established protocol.

The messenger paradigm introduced by Tschudin
[12] in the arena of computer communications allows
the communication between hosts without the need of
a pre-established protocol. The host initiating the com-
munication will send to its partner the data and the
necessary rules (code) to interpret it. This is an in-
structional approach as compared to the interpretative
approach of messages. We are studying the impact of
this paradigm on distributed applications [5] and we are
using it in the development of a distributed operating
system [14]

While the RPC paradigm and the client/server pro-
gramming model for distributed computing based on
it are suitable for provision of services when a mes-
sage passing mechanism is used for computer com-
munication, they are not suited in environments where
computer communication is based on the exchange of
programs. This paper presents an approach for service
provision in a messenger environment. However, tech-
niques developed in this paper are also relevant to other
higher-level mobile software agents which may need
inter-node synchronization.

The distributed semaphore service is used in this pa-
per to illustrate the techniques developed for service
provision. The semaphore paradigm has been intro-
duced by Dijkstra [3] to synchronize the execution of
concurrent processes on a mono-processor system. A
semaphore is used to grant exclusive access to a “critical
region” of a program (usually where shared data has to
be accessed without racing). The semaphore paradigm
has been extended for usage on multi-processor systems
[4, 6], usually those with shared memory, to guarantee
a consistent access to shared data. While on this kind of
machines the semaphore is considered to be a low-level
service which is provided at the kernel-level using spe-
cial processor instructions ensuring atomicity (“atomic
test and set” or “spin lock”), the distributed semaphore

service� described in this paper is a high-level (inter-
node) service implementation.

Section 2 presents service provision in a messen-
ger environment. Section 3 introduces the messengers
used to achieve the distributed semaphore service. Sec-
tion 4 is devoted to the discussion of the distributed
semaphore service and we give a brief summary in sec-
tion 5.

2 PROVISION OF SERVICES IN A MESSEN-
GER ENVIRONMENT

In this section we present the basics of messenger en-
vironments, the role of common conventions between
messenger platforms for the provision of services and
an architecture for the provision of services in such
environments.

2.1 A MESSENGER ENVIRONMENT

In a distributed messenger environment, hosts commu-
nicate by exchanging messengers only, i.e., mobile code
fragments. Each host implements a messenger plat-
form responsible for the execution of messengers. The
different platforms are linked through unreliable com-
munication channels and form together the distributed
messenger system. The main characteristics of such a
system are summarized below:

� A messenger having reached in full and correctly
a platform becomes an independent concurrent
thread of execution, i.e., no other thread can stop
it, or kill it. All the platforms share a common
language for expressing messenger behavior and
a common external representation for the physical
exchange of messengers;

� Messengers executing in a platform can share
common data through a global store and can syn-
chronize their execution through process queues;

� All the platforms use common conventions for lo-
cating and accessing local resources and services.

We have implemented two different messenger envi-
ronments: MSGR-S [15] based on SCHEME and MØ [13]
which has inherited from POSTSCRIPT [7] its stack ori-
entation, its postfix notation, its syntax and some of its
operators and data structures. C-like pseudo-code to-
gether with MØ operators and data structures presented
below are used in this paper to describe our algorithms.

In MØ, the global store is represented as a couple
of “dictionaries”: the globdict and the servdict
dictionaries. Other dictionaries can be created by the

dict operator. Data is stored in a dictionary by the
define operator and accessed by the get operator,
in the two cases, using a key. The globdict is not
browsable; i.e, one must know the exact key associ-
ated to a data to access it, but any process can read,
write and modify the dictionary, while the servdict
is browsable, i.e., one can moreover construct the list
of all keys and their associated values. Keys can have
an arbitrary data type but most of the time they will be
arbitrary bit streams created with therandom operator.
The knowndict operator allows to check if a given
data exists in a dictionary. Data defined in a dictio-
nary by the define operator can be removed from the
dictionary with the undef operator by any messenger
having access to it (knowing the key used to define
it). For this reason, MØ provides the secretdef and
secretundef operators for securing data. The for-
mer adds data in a dictionary by associating with it two
keys: a secret-key and a public key. The public key is
used only for accessing the data while the secret-key is
mandatory for removal of the data from the dictionary.
The removal of the data is done by the secretundef
operator. A messenger can then publish data for access
to every messenger or a family of messengers and still
restrict its removal from the dictionary to only those
messengers to which it has handed the data secret-key.

In order to coordinate the access to the global store,
messengers use process queues. Four operators are
used to handle process queues: the enterqueue op-
erator allows a messenger to insert itself in a queue,
the stopqueue operator is used to freeze a queue
and therefore to block all messengers inside it, the
startqueue is used to unblock a queue previously
stopped while the leave operator removes the calling
messenger from its queue. A messenger can be in at
most one queue at a time and once in a queue, a mes-
senger will be blocked until it reaches the head of the
queue. The enterqueue operator can be used with a
timeout value which expresses the maximum amount of
time the messenger may remain blocked in the queue.
Finally we mention the submit operator that is used
to create a new messenger for execution either in the
local or in a remote host.

2.2 THE ROLE OF CONVENTIONS

In our distributed messenger environment, each plat-
form offers only local services. Inter-node services are
implemented with messengers by letting messengers
move through the network looking for the appropriate
resources, data or information to achieve the desired

service.� Hence, a messenger must be able to locate
resources, data and services and use them appropri-
ately. For this, conventions are necessary: (a) com-
mon conventions shared by all the hosts for locating
and accessing the resources available in a platform and
(b) uniform conventions between service providers and
service consumers for publishing/discovering services
and using them appropriately. More conventions can
be used in a network of platforms to achieve the desired
effect.

We propose in the next section, a service architec-
ture based on three sets of conventions: the two sets
of conventions cited above (for locating resources in
a host, for publishing/discovering and using services)
and a set of conventions for managing dynamicity in
a distributed system. By dynamicity we mean the ad-
junct of hosts to a system (service community) or the
removal of hosts from it.

2.3 A SERVICE ARCHITECTURE FOR MESSEN-
GERS

The service architecture we develop here is based on
the assumption that a distributed system is dynamic,
i.e., new hosts can come up, attach themselves to the
running system, while some hosts can go down. The
architecture does not support the case where hosts go
suddenly down due, for example, to a failure or crash.
We restrict ourselves to the simpler case, where each
host leaving the system is given a grace period during
which it can execute the important tasks to maintain the
system in a coherent state. This is the case for example
when hosts have to be shut down for maintenance or
for software upgrade.

LOCATING RESOURCES, PUBLISHING AND DISCOVER-
ING SERVICES

The servdict plays an important role in publish-
ing and locating services in a MØ environment. This
is a public browsable dictionary where messengers can
publish services they offer to other messengers. A mes-
senger publishing a service in this dictionary chooses
a public service name, usually a string, which will be
used by the service consumers to locate the service.
Sinceservdict is a public dictionary and thus acces-
sible to all messengers, service providers must publish
their services in a secure way; i.e, without having other
messengers remove their entries. For that, firstly, the
service provider adds the service name in servdict
with the secretdef operator. This operator takes
as arguments a secret-key, let us say k1, and the ser-
vice name. It creates a public-key k2 using a function

k1

secretdef

secretdef k2 ~

version ~ "0.1"
fullname ~ "distributed semaphore"

down ~ procedure (x)
up ~ procedure (x)

P ~ procedure (x)
V ~ procedure (x)
createque ~ key
...
knowndict~ dict (r|w)

handle1 ~ pqueue ~ key

handle2 ~ pqueue ~ key

global store of a platform

servdict (r|w|x)

knowndict

semadict (r|x) (service access point)

 state ~ 0 state ~ 0

 owner ~ ...
 ...

 owner ~ ...
 ...

k2 ~ "distsema"

globdict (r|w)

 ...

Figure 1: Publishing and locating a service

based on DES and adds in servdict the association
betweenk2 and the service name. The association (k2,
service name) is accessible to all messengers but can
be destroyed only by the secretundef operator if
the secret-key k1 is provided as an argument. Thus
by keeping the k1 key secret, no other messenger can
wipe out the trace of the service being defined. Next,
the service provider creates a private dictionary with
read-only access to other messengers, and adds it in
globdict using the secretdef operator with the
same secret-keyk1. As above, this results in the associ-
ation (k2, private dictionary) in globaldict. Now,
the same key k2 appears both in servdictwhere it is
associated with the service name and in globaldict
where it is associated with the private dictionary. The
service provider will store in the private dictionary all
the necessary information to interface with the service;
i.e, the private dictionary becomes what we can call the
“service access point” for the service being defined.

Figure 1 shows how the distributed semaphore can
be published. In step one, the name distsema is
chosen to identify the distributed semaphore service
and is added in servdict by secretdef provided
with the secret-key k1. In step two, the semadict
dictionary is created, initialized with the appropriate in-
formation to interface with the service being published
and secretdefed in globdict using the same key
k1.

A service� consumer accesses the service through
the service access point. The question is thus how
to locate the service access point of a known service.
The consumer uses the service name to browse the
servdict dictionary and locates the association (k2,
service name). It then uses the k2 key to locate and
access in globaldict the service access point. As
globaldict is not a browsable dictionary, the con-
sumer must first find k2 before accessing the service
access point.

This simple convention for the publication of ser-
vices allows (a) messengers to publish their services
in a secure way, i.e., without having other messengers
wipe out any trace of the services; and by providing
simple primitives in MØ messengers can make portion
of their code accessible in a controlled way to other
messengers and (b) messengers reaching a given plat-
form can discover the available services and interface
with them appropriately.

DYNAMICITY

Our approach to support dynamicity avoids “polling”.
The running hosts do not check periodically the sys-
tem for new hosts coming up or for hosts going down.
Instead, the “attachement convention” is used. Under
this convention, a host coming up announces its inter-
est to attach to the system, i.e., to attach to some of
its services. The other hosts will take the appropriate
actions to extend available services to the new host in a
consistent way. And when a host has to be shut down,
it also announces this fact to the system which will “de-
tach” the host from the system by maintaining system
consistency.

Indeed, a service provider can request to be signaled
whenever a new host wishing to use the service comes
up. For that, the service provider installs in the service
access point a procedure called up. When a new host
comes up it submits “discovery” messengers to other
hosts. These messengers will locate and attach to ser-
vices (i.e, use appropriately) available on remote hosts.
For each service the discovery messenger will execute
its associated up procedure. The execution of the up
procedure will result for example, on a “signal” being
sent to the service provider. It can therefore take the
appropriate actions to extend its service to the new host,
for example by submitting “initialization” messengers
which will populate the new host and initialize the ser-
vice. Similarly, a service provider will install a down
procedure in the service access point to be executed by
hosts going down. The host going down sends “detach”

messengers to remote hosts.
This simple mechanism can be used to maintain the

network topology of the system and therefore to adapt
the routing function and information to the network
topology. The complexity for connectivity (attaching
and detaching), migration and routing has to be handled
by the up/down procedures and the messengers they
create for this purpose.

3 THE DISTRIBUTED SEMAPHORE MES-
SENGERS

The distributed semaphore service is an inter-node ser-
vice which allows messengers to synchronize their ex-
ecution independently of their physical location. It
is a distributed service because different messengers
running on different platforms coordinate their work
to achieve the semaphore. Actually our distributed
semaphore service is a “coherence protocol” which
mimics the functionality of a semaphore in a shared
memory multi-processor system.

3.1 BASIC ASSUMPTIONS

When messengers want to synchronize their execution
or to protect common data against racing, the messen-
gers create a semaphore and use the semaphore service
to manage it. Before entering the critical region of the
program where synchronization is needed or before ac-
cessing the data, a messenger “acquires” the semaphore
by executing the P procedure, ensuring exclusive ac-
cess to the region or data. And after using the data
or leaving the critical region, the messenger must “re-
lease” the semaphore with the V procedure so that other
messengers competing for it can get a chance to acquire
it. A semaphore can be used by messengers executing
on different hosts; each host maintains its own local
copy of the semaphore and the P and V procedures en-
sure that coherence is maintained between all the copies
of the semaphore.

3.2 AN OVERVIEW OF THE PROTOCOL AND THE

MESSENGERS USED

Each semaphore is managed as a binary token and is
uniquely identified in the system by a semaphore han-
dle returned on the host which created the semaphore.
The messenger which requested the semaphore cre-
ation receives the semaphore handle and is responsible
for advertising it to the other messengers needing it.
At any time, a semaphore is owned by one host (plat-
form); and only messengers executing on that platform
can acquire directly the semaphore. If a messenger tries

to acquire� a semaphore owned by a remote platform,
it first sends to the semaphore owner a messenger to
request the semaphore ownership; the semaphore own-
ership changes therefore from host to host according to
the messengers requests to acquire it.

The semaphore owner is found by maintaining on
each host the value of the probable owner of the
semaphore. The “true owner” of the semaphore is
found by following the sequence of probable own-
ers; i.e, a messenger is sent to the semaphore proba-
ble owner and if this host is not the true owner of the
semaphore, the messenger moves itself to the probable
owner and so on, until the messenger will reach the ac-
tual semaphore owner. The discovery of a semaphore
owner and the acquisition of the semaphore ownership
constitute the heart of the coherence protocol.

We will use the notation
���	��
�

own
�����

to express the
fact that on host

�	�
the probable owner of semaphore� is host

���
. If

���	��
��
own

�����
holds, then host

���
is the

true owner of semaphore � .
3.2.1 DATA STRUCTURES

Each platform using a semaphore maintains local data
for the semaphore on which are based all decisions
taken by messengers executing on the host. The prob-
lem thus, is that of maintaining consistency between all
the copies of the semaphore residing on the different
hosts.

A semaphore is represented by the following infor-
mation:

1. The state of the semaphore (FREE, LOCKED
or REMOTE). When a semaphore is FREE or
LOCKED, it is ”owned” by the local host. Oth-
erwise it is owned by a remote host. A LOCKED
semaphore is being used by a messenger while a
FREE semaphore is ready for usage by any mes-
senger having a reference to it;

2. The probable owner of the semaphore; this is the
local host when the state of the semaphore is not
REMOTE;

3. The pqueue queue used to serialize the actions of
the messengers trying to acquire the semaphore;

4. The accessqueue and acqhostqueue
queues for synchronizing access to the local data
for the semaphore to avoid racing;

5. The identity of the (acqhost) host trying to ac-
quire the semaphore ownership.

When a messenger requests the creation of a
semaphore, local data is created for the semaphore,

but remote hosts are not informed of this fact. Upon a
successful creation of a semaphore, the semaphore cre-
ator (host on which the request is executed) becomes
the first semaphore owner and returns a handlewhich
allows all the hosts to determine the semaphore creator.
A remote host will know a semaphore if a messenger
carries there a reference to the semaphore (handle) and
then the same or another messenger requests that an P
or V operation be done there on the semaphore. It is
only at that time that the remote host will create its local
data for the semaphore; and the first probable owner of
the semaphore on the remote host will be the semaphore
creator.

Hereafter, we present in detail theP andV procedures
for interfacing with the distributed semaphore service.

3.3 THE P PROCEDURE IN DETAIL

The P procedure is called to acquire a semaphore.
First the calling messenger inserts itself in the pqueue
queue. This ensures that only one messenger can pro-
ceed on a host in its attempt to acquire the associated
semaphore. Two cases can arise:

1. If the semaphore is FREE, the messenger acquires
it, changes the semaphore state to LOCKED and
stops the pqueue queue so that all other messen-
gers trying to acquire the semaphore on the same
host remain blocked in the queue. These mes-
sengers will eventually be unblocked when a V
operation will be done on the semaphore.

2. If the semaphore is in the REMOTE state, the mes-
senger stops the pqueue and submits a new
messenger (see the msgrP) to the semaphore
owner to acquire the semaphore ownership (see
the remoteP procedure) and waits in a queue to
be unblocked when the semaphore ownership has
been acquired. Then the calling messenger pro-
ceeds as in the first case. All the work of locating
the semaphore owner and acquiring the semaphore
ownership is done by the msgrPmessenger. This
messenger is actually the heart of the protocol and
is described below. First, the code for the service
access procedure P is given.

1 P(key, handle)
2 {
3 serv = searchservice("distsema")
4 if (serv == NULL){
5 define(globdict, key, ERROR)
6 }
7 else {
8 enterqueue(serv.createqueue)
9 semadict = serv.dict

10 if (!known(handle, semadict){
11 # create local data for semaphore
12 sema = dict()
13 sema.pqueue = random()
14 sema.owner = gethost(handle)
15 sema.accessqueue = random()
16 sema.state = REMOTE
17 sema.acqhostqueue = random()
18 sema.acqhost = NULL
19 }
20 leave()
21 enterqueue(sema.pqueue)
22 stopqueue(sema.pqueue)
23 enterqueue(sema.accessqueue)
24 if (sema.owner == THISHOST){
25 sema.state = LOCKED
26 leave()
27 define(globdict,key,OK)
28 }
29 else {
30 leave()
31 key1 = random()
32 remoteP(sema, handle, key1)
33 res = get(globdict, key1)
34 if (res == OK) {
35 enterqueue(sema.accessqueue)
36 sema.state = LOCKED
37 sema.owner = THISHOST
38 leave()
39 }
40 define(globdict, key, res)
41 }
42 }
43 }

The remoteP procedure is straightforward: the
calling messenger submits a msgrP messenger to
the semaphore owner and waits for the result by insert-
ing itself in a stopped queue which has to be restarted
by the acknowledge ackP messenger. If after a time-
out period no result is obtained, a retransmission of the
msgrP messenger occurs.

1 remoteP(sema, handle, key)
2 {
3 myqueue = random()
4 ori = random()
5 define(globdict, ori, THISHOST)
6 define(globdict, key, HOSTID)
7 qack = random()
8 stopqueue(myqueue)
9 enterqueue(sema.accessqueue)

10 dest = sema.owner
11 leave()
12 while(1) {
13 submit(dest, msgrP(ori, qack, myqueue,
14 key, handle, THISHOST))
15 enterqueue(myqueue, timeout)
16 if (!timeout)
17 break
18 }
19 }

The msgrPmessenger sent by the remoteP proce-
dure can be lost; this is also true for theackPmessenger
sent by a msgrP messenger to its origin. For this rea-
son, the remoteP procedure keeps sending msgrP
messengers until an ackP messenger is received by
the local host. Thus multiple copies of the msgrP and

ackPmessengers can reach a host. The different copies
of the same messenger must interact to coordinate their
work.

All copies of the same msgrP messenger share the
same key. The first of these messengers which reaches
a host leaves a kind of signature in the host by defin-
ing the key in the global store. This signature will be
checked by the other messengers to determine if they
are duplicates. The first messenger inserts itself in the
pqueue queue and waits until it reaches the head of the
queue. At this point, the messenger can find that it has
reached the semaphore owner. If this is indeed the case,
the messenger updates the semaphore data structures
and submits an ackP messenger to its origin. Oth-
erwise, the messenger has not reached the semaphore
owner, it moves itself to the probable semaphore owner
and indicates that it is trying to acquire the semaphore
ownership for its origin host by updating the acqhost
entry in the semaphore. Subsequent duplicates of the
messenger will find the signature left by the first mes-
senger and will then act accordingly.

1 msgrP(ori, qack, queue, key, handle, src)
2 {
3 d = getsemadict()
4 if (known(d, handle)) {
5 sema = get(d, handle)
6 enterqueue(sema.accessqueue)
7 if (sema.acqhost == src) { #duplicate msgr
8 if (sema.owner != THISHOST)
9 submit(sema.owner, msgrP(ori, qack,

10 queue, key, handle, src))
11 leave()
12 }
13 else {
14 if (sema.owner == src) { #duplicate msgr
15 leave()
16 val = get(globdict, key)
17 submit(origin(), ackP(ori, val, qack,
18 queue, key, handle, src))
19 }
20 else {
21 leave()
22 if (!known(globdict, key)) {
23 enterqueue(sema.acqhostqueue)
24 if (!known(globdict, key)) {
25 define(globdict, ori, origin())
26 define(globdict, key, HOSTID)
27 enterqueue(sema.pqueue)
28 stopqueue(sema.pqueue)
29 enterqueue(sema.accessqueue)
30 if (sema.owner == THISHOST) {
31 # at destination
32 sema.owner = src
33 sema.state = REMOTE
34 sema.acqhost = NULL
35 leave()
36 startqueue(sema.pqueue)
37 submit(origin(), ackP(ori, OK,
38 qack, queue, key, handle,
39 src))
40 }
41 else {
42 if (sema.acqhost == NULL) {
43 sema.acqhost = src
44 dest = sema.owner

45 }
46 else {
47 if (sema.acqhost == src)
48 dest = sema.owner
49 else
50 dest = sema.acqhost
51 }
52 undef(globdict, key)
53 leave()
54 submit(dest, msgrP(ori, val,
55 qack, queue, key, handle,
56 src))
57 startqueue(sema.pqueue)
58 }
59 }
60 else
61 leave()
62 }
63 }
64 }
65 }
66 else { # send back a nack
67 submit(origin(), ackP(ori, ERROR, qack,
68 queue,
69 key, handle, src))
70 }
71 }

As for the msgrPmessengers, all copies of the same
ackP messenger synchronize their execution through
a common key. The messenger updates the semaphore
data if it is not a duplicate, and if it has reached the final
host, it unblocks the msgrPwaiting for the semaphore
ownership, otherwise it submits a copy of itself to-
wards the final host.

1 ackP(ori, val, qack, queue, key, handle, src)
2 {
3 enterqueue(qack)
4 mykey = get(globdict, key)
5 if (mykey == HOSTID) { # first ack
6 define(globdict, key, val)
7 stopqueue(qack)
8 sema = getsema(handle)
9 enterqueue(sema.accessqueue)

10 sema.acqhost = NULL
11 sema.owner = src
12 leave()
13 if (src == THISHOST)
14 startqueue(queue)
15 startqueue(qack)
16 }
17 if (src != THISHOST)
18 submit(ori, ackP(val, qack, queue, key,
19 handle, src))
20 leave()
21 }

3.4 THE V PROCEDURE IN DETAIL

The V procedure is used to relinquish a semaphore. If
there is no local data for the semaphore, one is created
by the messenger before proceeding. For a semaphore
owned by the local host, (state is LOCKED or FREE),
the semaphore pqueue queue is unblocked and the
result of the operation stored in the global store. For a
REMOTE semaphore, the calling messenger submits

a msgrV messenger to the semaphore owner to re-
linquish the semaphore (see the remoteP procedure),
and waits for the result of the operation. The messenger
will be unblocked by the ackV messenger after the op-
eration has been carried out. The V procedure is similar
to the P procedure except that the messenger executing
the V procedure never enters the pqueue queue and
that it is a msgrV messenger which is submitted to
release a remote semaphore. Therefore the code of this
procedure is not shown here.

The remoteV procedure is similar to the remoteP
procedure described above.

When a msgrV messenger reaches the semaphore
owner, it unblocks the semaphore pqueue queue so
that messengers trying to acquire the semaphore can
do so and sends back to its origin the ackV messenger
which convoys the result of the operation. And when
it reaches a host which is not the semaphore owner, it
forwards a copy of itself towards the semaphore owner.

1 msgrV(queue, key, handle, src)
2 {
3 d = getsemadict()
4 if (! known(d, handle))
5 submit(src, ackV(queue, key, ERROR))
6 else {
7 sema = get(d, handle)
8 enterqueue(sema.accessqueue)
9 if (sema.owner == THISHOST) {

10 sema.state = FREE
11 startqueue(sema.pqueue)
12 leave()
13 submit(src, ackV(queue, key, OK)
14 }
15 else {
16 submit(sema.owner, msgrV(queue, key,
17 handle, src))
18 leave()
19 }
20 }
21 }

The ackV messenger is sent from the semaphore
owner to the host where the messenger wishing to re-
linquish the semaphore is executing. This messenger
is blocked in a queue waiting for the result of the op-
eration. The ackV messenger just stores the result in
global store and unblocks the queue to allow the waiting
messenger to proceed its execution.

4 DISCUSSION

4.1 SOME OBSERVATIONS

The protocol ensures a kind of weak fairness in the
sense that when messengers executing on the same host
compete to acquire a semaphore, the first to enter the
semaphore queue (pqueue) will get the semaphore;
and when the messengers execute on different hosts,

the first� to reach the semaphore owner will get the
semaphore. However, the protocol does not ensure that
the first messenger to execute thePprocedure will reach
first the semaphore owner. This means that starvation;
i.e, a situation where a messenger waits arbitrary long
to acquire the semaphore can result.

Let us consider the case with two hosts
���

and
���

with
��� �
 �

own
� � �

and
��� �
 �

own
� � �

. On
� �

, messen-
ger � � tries to acquire the semaphore and submits
an msgrP messenger � ������� � to the semaphore prob-
able owner; i.e,

���
. The � ������� � messenger reaches

host
�	�

, and acquires the semaphore ownership, up-
dating the ownership relation to reflect this fact. We
have now

������
��
own

�����
and

������
��
own

�����
which is

clearly a loop. Until an ackP messenger will reach
host

���
to confirm semaphore ownership acquisition,

there is no true owner of the semaphore. If a V op-
eration is performed at this time, it can result in a lot
of messengers being exchanged between the two hosts.
Indeed, a msgrV messenger reaching host

���
will find

that the probable semaphore owner is
���

and therefore
will submit another msgrV to release the semaphore
on host

�	�
. But, this last messenger will find that on

host
�	�

, the semaphore probable owner is
���

and will
at its turn submit a copy of itself to

� �
and so on.

However this is only a temporary situation which dis-
appears when a ackP messenger from

���
reaches

���
and updates there the probable semaphore owner.

Before a messenger can actually acquire a
semaphore, the host where it is executing must be
the semaphore owner. Now if a number of messen-
gers executing on two different hosts are competing
for a semaphore, one can imagine a situation where the
semaphore ownership oscillate quickly between the two
hosts because each P operation results in network ac-
tivity. This behavior is similar to thrashing which has
been identified in some distributed memory systems.
As for thrashing, network traffic between the two hosts
can be considerably reduced by letting each host retain
the semaphore ownership for at least a given amount
of time. By retaining the semaphore ownership longer
on a host, messengers executing there can have a better
chance to acquire directly the semaphore; i.e, without
any network traffic being generated.

The choice of the timeout value can influence the
amount of network traffic generated. This problem is
common to all protocols which must ensure reliability
using a retransmission mechanism. A too big timeout
value can result in a loss of efficiency in the situation of
messenger loss because a messenger waits a long time

before it can notice messenger losses. On the contrary,
a too small timeout value can result in unneeded du-
plicate messengers being generated. The choice of this
timeout value is not easy. Ideally this value should be
dynamically adjusted according to the network load. In
our implementation, we have used the simple solution
of incrementing exponentially the timeout value after a
timeout.

An optimization of the P procedure is to bypass a
number of hosts belonging to the sequence of probable
owners of the semaphore. Indeed, when a msgrPmes-
senger trying to acquire the semaphore ownership for
host

� �
reaches a host

� �
, it updates the acqhost field

in the semaphore on this host. All subsequent msgrP
messengers reaching

���
will bypass some hosts in the

ownership sequence by moving directly to
�	�

which is
now a probable owner of the semaphore closer to the
true semaphore owner.

4.2 LIMITATIONS

The protocol presented in this paper works fine in a
static environment. It does not handle either the case
where hosts are added/removed to the system or the
situation of failure. However, with the service architec-
ture presented in this paper, the protocol can be adapted
to handle dynamicity. All the complexity for manag-
ing up/down dynamicity can be handled by the up and
down procedures.

Moreover, the protocol does not handle routing of
messengers. It assumes a kind of single ETHERNET

where each platform can be reached directly from any
other. However the view of single ETHERNET can be
achieved even in the case of multiple linked networks
with an appropriate routing function implemented in-
side “traveling” messengers.

The protocol implements a distributed binary
semaphore. We show below how it can be adapted
and extended to handle the more general non binary
semaphores.

4.3 CORRECTNESS

We give here an informal proof of the correctness of our
protocol. To assess the correctness of the given proto-
col, it is essential to show that (a) semaphore ownership
is maintained consistently; i.e, at any time there cannot
be more than one true owner of a semaphore and (b) that
the true owner of a semaphore is always found. Given
these two assumptions, it becomes simple to see that
the protocol achieves the distributed semaphore service.
Indeed, when the true semaphore owner is found, the
semaphore ownership is transferred to the host where

the messenger� trying to acquire the semaphore is ex-
ecuting. Then, the messenger acquires the semaphore
and blocks the semaphore pqueue queue where all
messengers are inserted when they do the P operation.
This ensures that only one messenger can acquire the
semaphore. And when a V operation is performed,
the true semaphore owner is found and the semaphore
pqueue is restarted freeing effectively the semaphore.

4.3.1 SEMAPHORE OWNERSHIP IS CONSISTENT

Here, we must show that a semaphore cannot be owned
by more than one host. This follows from the way the
semaphore ownership is updated.

Definition 4.1 The semaphore ownership for sema-
phore � is consistent if ���"!#���%$'& with

���	��
 �
own

���"�
and

������
�
own

�����
then

�	�)(*���
; it means there cannot

be more than one true owner for a semaphore.

At semaphore creation time and whenever a host cre-
ates local data for a semaphore, the probable owner
of the semaphore is initialized to be the host where
the semaphore has been created. This ensures that at
creation time semaphore ownership is consistent and
that whenever local data is created for a semaphore,
if semaphore ownership is consistent, it remains con-
sistent. Indeed, creating local data for a semaphore
only adds a new element of the the type

�����+
�
own

�����
(with

���
the host where the semaphore was created,

and
���

the host where local data is being created for the
semaphore) to

 �
own relation. And semaphore owner-

ship is updated only when the true owner of a semaphore
is found. Firstly the probable owner of the semaphore
is updated on the true owner of the semaphore. This
changes the unique element of type

������
 �
own

�����
of

the

��

own relation to an element of type
��� �
�

own
� � �

.
Secondly the ownership is updated in reverse order on
all the hosts belonging to the sequence of hosts which
have been visited while searching for the semaphore
owner. Elements of

��� �
 �
own

� � �
type are updated but

remain of the same type. And finally, update is done
on the new semaphore true owner, changing an element
of

��� �
��
own

� � �
to one of

��� �
��
own

� � �
type. Hence

semaphore ownership is updated consistently.

4.3.2 SEMAPHORE OWNER IS ALWAYS FOUND

The owner of a semaphore changes dynamically with
the requests of messengers to acquire the semaphore.
The owner of a semaphore can change while a messen-
ger is searching for it. This can occur only when mes-
sengers are competing to acquire the semaphore (ex-
ecute the P procedure concurrently). The case where

only one messenger is executing the P procedure is
simple. Since semaphore ownership is consistent, the
semaphore owner will always be found. When two
messengers are executing theP procedure concurrently,
two cases can arise. In the first case, the two messengers
can follow different sequences of hosts of the

��
own

relation and reach the semaphore owner. They then
serialize their actions by inserting themselves in the
pqueue queue. The first messenger to reach the head
of the queue will acquire the semaphore and update the
semaphore ownership. When the second messenger
comes at the head of the queue, it finds that the host
is no longer the semaphore owner and will continue its
way to the semaphore owner. In the second case, the
sequences of hosts followed by the messengers inter-
sect before reaching the semaphore owner. The first
messenger to reach the host

���
where the sequences

intersect will update the acqhost value on this host,
indicating that it is trying to acquire the ownership of
the semaphore for a host

� �
. The messenger will then

continue on its way towards the semaphore owner, fol-
lowing the sequence of hosts defined by the probable
owner relation. When the second messenger reaches
the host

���
, it finds that another messenger originated

from host
���

is trying to acquire the same semaphore.
The messenger will then bypass the remaining sequence
of probable owners and will proceed directly on host���

where it will wait to acquire semaphore ownership
after it has been acquired by

���
.

4.4 IMPLEMENTATION

The protocol presented in this paper has been imple-
mented in the MØ messenger environment. The differ-
ent messenger platforms were linked by UDP channels.
In our implementation, each messenger submitted
to a remote host carries with it its code (all the mes-
sengers fit in one UDP packet and do not have to be
fragmented). An alternative implementation would be
to store the code of the messengers in each platform;
when a messenger comes in a platform it first finds the
code to execute.

The P and V operations are implemented as proce-
dures executed in the scope of the calling messenger.
They are accessible to all messengers but they protect
the data on which they work; i.e., messengers cannot di-
rectly access the semaphore data or the process queues
used to synchronize the execution of the messengers
generated by the P and V procedures.

4.5 E
,

XTENSION TO SEMAPHORES WITH N EN-
TRIES

For a semaphore with N entries, a value field must be
maintained. Our binary semaphore can be extended to a
semaphore with N entries by adding a value field to each
local data representing a semaphore and by maintaining
consistency of this value among all the local values of
the semaphore with the P and V procedures.

One straightforward way for maintaining the
semaphore value consistency is to have only one copy
of the semaphore value be meaningful, for example
that on the true semaphore owner. As for our bi-
nary semaphore, the ownership of the semaphore is
requested before acquiring the semaphore and the value
field updated. And when releasing the semaphore, the
value field is updated only on the true semaphore
owner.

Another approach where each local value represents
the true value of the semaphore is possible. However,
eachP andV procedure must be made visible to all hosts
to allow them to update the value of the semaphore.
This is clearly not efficient since it generates a lot of
network traffic.

5 SUMMARY

Mobile code is now considered as an alternative way
for the implementation of distributed applications. The
messenger environment presented in this paper al-
lows the exchange of programs called messengers be-
tween hosts linked by unreliable channels. Flexibil-
ity is achieved by letting messenger execution envi-
ronments (messenger platforms) provide local services
only. Inter-node services are implemented at a high
level with messengers instead of having hard-wired
protocols in software. Code becomes mobile and re-
places the classical client/server programming model.
A service architecture based on a set of uniform con-
ventions shared between all messenger platforms and
more suited for mobile code has been proposed, and
the distributed semaphore service has been presented
and implemented in that framework. Work remains
to be done to find a uniform and expressive way for
describing the interface for an appropriate usage of a
service.

REFERENCES

[1] M. ACCETTA, R. BARON, W. BOLOSKY,
D. GOLUB, R. RASHID, A. TEVANIAN, and
M. YOUNG. Mach: A New Kernel Foundation

for Unix Development. In Summer Conference.
Usenix Association, 1986.

[2] M. BETZ. OMG’s CORBA. Dr. Dobb’s Special
Report, (225):8–12, Winter 1994/1995.

[3] E. W. DIJKSTRA. Cooperating Sequential Pro-
cesses. Technical report, Technological Univer-
sity, Eindhoven, 1965.

[4] E. W. DIJKSTRA. Hierarchical Ordering of Se-
quential Processes. Acta Informatica, 1(2):115–
138, 1971.

[5] G. DI MARZO, M. MUHUGUSA, C. TSCHU-
DIN, and J. HARMS. The Messenger Paradigm
and its Impact on Distributed Systems. In ICC’95
workshop on Intelligent Computer Communica-
tion, 1995.

[6] A. N. HABERMANN. Synchronisation of Com-
municating Processes. Communication of the
ACM, 15(3):171–176, 1972.

[7] Adobe Systems Incorporated. PostScript Lan-
guage Reference Manual. Addison Wesley, 1991.

[8] B. J. NELSON. Remote Procedure Call. PhD
thesis, Carnegie-Mellon University, 1981.

[9] OSF. Introduction to OSF DCE. Prentice Hall,
1992.

[10] M. ROZIER, V ABROSSIMOV, F. ARMAND,
I. BOULE, M. GIEN, M. GUILLEMONT,
F. HERRMANN, C. KAISER, S. LANGLOIS,
P. LEONARD, and W. NEUHAUSER. Overview
of the CHORUS Distributed Operating System.
Technical Report CS/TR-90-25, Chorus Sys-
tèmes, 1990.

[11] A. S. TANENBAUM, M. F. KAASHOEK,
R. van RENESSE, and H. BAL. The Amoeba Dis-
tributed Operating System-A Status Report. Com-
puter Communications, 14:324–335, July/August
1991.

[12] C. F. TSCHUDIN. On the Structuring of Com-
puter Communications. PhD thesis, Université de
Genève, 1993. Thèse No 2632.

[13] C. F. TSCHUDIN. An Introduction to the M0
Messenger Language. Technical Report No 86
(Cahier du CUI), University of Geneva, 1994.

[14] C. F. TSCHUDIN, G. DI MARZO, M. MUHU-
GUSA, and J. HARMS. Messenger-based Oper-
ating Systems. Technical Report No 90 (Cahier
du CUI), University of Geneva, 1994.

[15] R. LINO VALVERDE. MSGR-S: Un environ-
nement d’exécution de messagers basé sur un
interpréteur Scheme parallèle. Diploma thesis,
University of Geneva, 1994.

