DISTRIBUTED SEMAPHORE IN A MESSENGER ENVIRONMENT®

Murhimanya Muhugusa, Giovanna Di Marzo, Christian Tschudin, Jurgen Harms
University of Geneva, e-mail: nuhugusa@ui . uni ge. ch
URL: http://ti osww. uni ge. ch/ti os/ msgr/ hone. ht m

ABSTRACT

The messenger paradigm advocates the exchange of
programs called messengers between communicating
hosts instead of messages. Each host contains a mes-
senger execution environment called messenger plat-
form. Messengers are expressed in a language un-
derstood by all the platforms. A distributed messen-
ger environment is a collection of messenger platforms
linked through an unreliable network offering only a
datagram service. Provision of coordination services
in such an environment hasto be handled in a new way
since threads of controls are mobile (messengers move
fromhost to host). Theclassical client/server paradigm
based on a data exchange mechanismis not suitablefor
amessenger environment. Inthispaper we discusshow
communication services might be provided in messen-
ger environments using as an example the distributed
semaphore servicein the Mddistributed messenger en-
vironment. A distributed semaphoreallows messengers
executing on different hosts to synchronize their execu-
tion independently of their physical location.
Keywords: distributed semaphore, messengers, dis-
tributed mutual exclusion, M2,

1 INTRODUCTION

Distributed computing isgaining moreand moreimpor-
tance. Different environments for the implementation
and the execution of distributed applications such as
CORBA [2] and DCE [9] have been built on top of exist-
ing operating systems. Modern operating systems and
kernelsequally (CHORUS[10], MACH [1], AMOEBA [11])
offer some features for the development of distributed
applications. And recently, mainly in the arena of dis-
tributed Al, software agents are used as the basis for
distributed applications. Most of the above attempts
to master distributed computing are based on a mes-
sage exchange mechanism and the well known RPC

*Thiswork is supported by the Swiss National Fund for Scien-
tific Research (FNSRS) grant 20- 40631. 94

paradigm [8]. Distributed software is structured in
clients and servers which exchange messages which
are interpreted using a pre-established protocol.

The messenger paradigm introduced by Tschudin
[12] in the arena of computer communications allows
the communication between hosts without the need of
apre-established protocol. The host initiating the com-
munication will send to its partner the data and the
necessary rules (code) to interpret it. This is an in-
structional approach as compared to the interpretative
approach of messages. We are studying the impact of
thisparadigm on distributed applications[5] and weare
using it in the development of a distributed operating
system [14]

While the RPC paradigm and the client/server pro-
gramming model for distributed computing based on
it are suitable for provision of services when a mes-
sage passing mechanism is used for computer com-
munication, they are not suited in environments where
computer communication is based on the exchange of
programs. This paper presents an approach for service
provision in amessenger environment. However, tech-
niques devel oped in this paper are also relevant to other
higher-level mobile software agents which may need
inter-node synchronization.

The distributed semaphore serviceisused in this pa-
per to illustrate the techniques developed for service
provision. The semaphore paradigm has been intro-
duced by Dijkstra [3] to synchronize the execution of
concurrent processes on a mono-processor system. A
semaphoreisusedto grant exclusiveaccesstoa“ critical
region” of aprogram (usually where shared data has to
be accessed without racing). The semaphore paradigm
hasbeen extended for usage on multi-processor systems
[4, 6], usually those with shared memory, to guarantee
aconsistent accessto shared data. While onthiskind of
machinesthe semaphoreis considered to be alow-level
servicewhichis provided at the kernel-level using spe-
cial processor instructions ensuring atomicity (“atomic
test and set” or “spin lock™), the distributed semaphore

service described in this paper is a high-level (inter-
node) service implementation.

Section 2 presents service provision in a messen-
ger environment. Section 3 introduces the messengers
used to achieve the distributed semaphore service. Sec-
tion 4 is devoted to the discussion of the distributed
semaphore service and we give abrief summary in sec-
tion 5.

2 PROVISION OF SERVICES IN A M ESSEN-
GER ENVIRONMENT

In this section we present the basics of messenger en-
vironments, the role of common conventions between
messenger platforms for the provision of services and
an architecture for the provision of services in such
environments.

2.1 A MESSENGER ENVIRONMENT

In adistributed messenger environment, hosts commu-
nicate by exchanging messengersonly, i.e., mobile code
fragments. Each host implements a messenger plat-
form responsible for the execution of messengers. The
different platforms are linked through unreliable com-
munication channels and form together the distributed
messenger system. The main characteristics of such a
system are summarized below:

¢ A messenger having reached in full and correctly
a platform becomes an independent concurrent
thread of execution, i.e., no other thread can stop
it, or kill it. All the platforms share a common
language for expressing messenger behavior and
acommon external representation for the physical
exchange of messengers,

e Messengers executing in a platform can share
common data through a global store and can syn-
chronize their execution through process queues;

e All the platforms use common conventionsfor |o-
cating and accessing local resources and services.

We haveimplemented two different messenger envi-
ronments: MSGR-S [15] based on SCHEME and MJ[13]
which hasinherited from POSTSCRIPT [7] its stack ori-
entation, its postfix notation, its syntax and some of its
operators and data structures. C-like pseudo-code to-
gether with MJ operators and data structures presented
below are used in this paper to describe our algorithms.

In M3, the global store is represented as a couple
of “dictionaries’: the gl obdi ct andtheser vdi ct
dictionaries. Other dictionaries can be created by the

di ct operator. Datais stored in a dictionary by the
def i ne operator and accessed by the get operator,
in the two cases, using akey. The gl obdi ct is not
browsable; i.e, one must know the exact key associ-
ated to a data to access it, but any process can read,
write and modify the dictionary, whilethe ser vdi ct
is browsable, i.e., one can moreover construct the list
of all keys and their associated values. Keys can have
an arbitrary data type but most of the time they will be
arbitrary bit streams created with ther andomoperator.
The knowndi ct operator allows to check if a given
data exists in a dictionary. Data defined in a dictio-
nary by thedef i ne operator can be removed from the
dictionary with the undef operator by any messenger
having access to it (knowing the key used to define
it). For thisreason, Mdprovidesthesecr et def and
secr et undef operators for securing data. The for-
mer adds datain adictionary by associating with it two
keys. asecret-key and apublic key. The public key is
used only for accessing the datawhile the secret-key is
mandatory for removal of the datafrom the dictionary.
Theremoval of thedataisdone by thesecr et undef
operator. A messenger can then publish datafor access
to every messenger or afamily of messengers and still
restrict its removal from the dictionary to only those
messengers to which it has handed the data secret-key.

In order to coordinate the access to the global store,
messengers use process queues. Four operators are
used to handle process queues: the ent er queue op-
erator allows a messenger to insert itself in a queue,
the st opqueue operator is used to freeze a queue
and therefore to block all messengers inside it, the
st art queue is used to unblock a queue previously
stopped while thel eave operator removes the calling
messenger from its queue. A messenger can be in at
most one queue at a time and once in a queue, a mes-
senger will be blocked until it reaches the head of the
gueue. Theent er queue operator can be used with a
timeout val ue which expressesthe maxi mum amount of
time the messenger may remain blocked in the queue.
Finally we mention the submi t operator that is used
to create a new messenger for execution either in the
local or in aremote host.

2.2 THE RoOLE OF CONVENTIONS

In our distributed messenger environment, each plat-
form offersonly local services. Inter-node services are
implemented with messengers by letting messengers
move through the network looking for the appropriate
resources, data or information to achieve the desired

service. Hence, a messenger must be able to locate
resources, data and services and use them appropri-
ately. For this, conventions are necessary: (&) com-
mon conventions shared by all the hosts for locating
and accessing the resources availablein aplatform and
(b) uniform conventions between serviceprovidersand
service consumers for publishing/discovering services
and using them appropriately. More conventions can
be used in anetwork of platformsto achievethedesired
effect.

We propose in the next section, a service architec-
ture based on three sets of conventions: the two sets
of conventions cited above (for locating resources in
a host, for publishing/discovering and using services)
and a set of conventions for managing dynamicity in
adistributed system. By dynamicity we mean the ad-
junct of hosts to a system (service community) or the
removal of hostsfromit.

2.3 A SERVICE ARCHITECTURE FOR MESSEN-
GERS

The service architecture we develop here is based on
the assumption that a distributed system is dynamic,
i.e,, new hosts can come up, attach themselves to the
running system, while some hosts can go down. The
architecture does not support the case where hosts go
suddenly down due, for example, to afailure or crash.
We restrict ourselves to the simpler case, where each
host leaving the system is given a grace period during
whichit can execute theimportant tasks to maintain the
systemin a coherent state. Thisisthe case for example
when hosts have to be shut down for maintenance or
for software upgrade.

LOCATING RESOURCES, PUBLISHING AND DISCOVER-
ING SERVICES

The ser vdi ct plays an important role in publish-
ing and locating services in a Md environment. This
isapublic browsabl e dictionary where messengers can
publish servicesthey offer to other messengers. A mes-
senger publishing a service in this dictionary chooses
a public service name, usualy a string, which will be
used by the service consumers to locate the service.
Sinceser vdi ct isapublicdictionary and thus acces-
sible to all messengers, service providers must publish
their servicesin asecure way; i.e, without having other
messengers remove their entries. For that, firstly, the
service provider adds the service namein ser vdi ct

with the secr et def operator. This operator takes
as arguments a secret-key, let us say k1, and the ser-
vice name. It creates a public-key k2 using afunction

global store of a platform

servdict (r|wlx)
secretdef k2 ~ "distsema’

secretdef ™k2 ~

globdict (r|w)

semadict (r[x) (service access point
fullname ~ " distributed semaphore"
version ~"0.1"

up ~ procedure (x)
down ~procedure (x)
P ~ procedure (x)
\Y ~ procedure (x)
createque ~ key

knowndict~ dict (r|w).

knowndict

Figure 1: Publishing and locating a service

based on DES and addsin ser vdi ct the association
between k2 and the service name. Theassociation (k2,
service name) is accessible to all messengers but can
be destroyed only by the secr et undef operator if
the secret-key k1 is provided as an argument. Thus
by keeping the k1 key secret, no other messenger can
wipe out the trace of the service being defined. Next,
the service provider creates a private dictionary with
read-only access to other messengers, and adds it in
gl obdi ct using the secr et def operator with the
samesecret-key k1. Asabove, thisresultsintheassoci-
ation (k2, private dictionary) in gl obal di ct . Now,
thesamekey k2 appearsbothinser vdi ct whereitis
associated with the servicenameandingl obal di ct
where it is associated with the private dictionary. The
service provider will store in the private dictionary all
the necessary information to interface with the service;
i.e, the private dictionary becomeswhat we can call the
“service access point” for the service being defined.

Figure 1 shows how the distributed semaphore can
be published. In step one, the name di st sena is
chosen to identify the distributed semaphore service
andisaddedinser vdi ct by secr et def provided
with the secret-key k1. In step two, the senadi ct
dictionary is created, initialized with the appropriatein-
formation to interface with the service being published
andsecr et defedingl obdi ct using the same key
k1.

A service consumer accesses the service through
the service access point. The question is thus how
to locate the service access point of a known service.
The consumer uses the service name to browse the
ser vdi ct dictionary and locates the association (k 2,
service name). It then uses the k2 key to locate and
access in gl obal di ct the service access point. As
gl obal di ct isnot a browsable dictionary, the con-
sumer must first find k2 before accessing the service
access point.

This simple convention for the publication of ser-
vices allows (a) messengers to publish their services
in a secure way, i.e., without having other messengers
wipe out any trace of the services; and by providing
simple primitives in MJ messengers can make portion
of their code accessible in a controlled way to other
messengers and (b) messengers reaching a given plat-
form can discover the available services and interface
with them appropriately.

DYNAMICITY

Our approach to support dynamicity avoids “polling”.
The running hosts do not check periodically the sys-
tem for new hosts coming up or for hosts going down.
Instead, the “attachement convention” is used. Under
this convention, a host coming up announces its inter-
est to attach to the system, i.e, to attach to some of
its services. The other hosts will take the appropriate
actionsto extend available servicesto thenew hostin a
consistent way. And when a host has to be shut down,
it also announcesthisfact to the system which will “de-
tach” the host from the system by maintaining system
consistency.

Indeed, a service provider can request to be signaled
whenever a new host wishing to use the service comes
up. For that, the service provider installsin the service
access point a procedure called up. When a new host
comes up it submits “discovery” messengers to other
hosts. These messengers will locate and attach to ser-
vices(i.e, use appropriately) available on remote hosts.
For each service the discovery messenger will execute
its associated up procedure. The execution of the up
procedure will result for example, on a “signal” being
sent to the service provider. It can therefore take the
appropriateactionsto extend itsserviceto the new host,
for example by submitting “initialization” messengers
which will populate the new host and initialize the ser-
vice. Similarly, a service provider will install a down
procedure in the service access point to be executed by
hostsgoing down. Thehost going down sends*detach”

messengers to remote hosts.

This simple mechanism can be used to maintain the
network topology of the system and therefore to adapt
the routing function and information to the network
topology. The complexity for connectivity (attaching
and detaching), migration and routing hasto be handled
by the up/ down procedures and the messengers they
create for this purpose.

3 THE DISTRIBUTED SEMAPHORE MES-
SENGERS

The distributed semaphore service is an inter-node ser-
vice which allows messengers to synchronize their ex-
ecution independently of their physical location. It
is a distributed service because different messengers
running on different platforms coordinate their work
to achieve the semaphore. Actually our distributed
semaphore service is a “coherence protocol” which
mimics the functionality of a semaphore in a shared
memory multi-processor system.

3.1 BASIC ASSUMPTIONS

When messengers want to synchronize their execution
or to protect common data against racing, the messen-
gers create a semaphore and use the semaphore service
to manage it. Before entering the critical region of the
program where synchronization is needed or before ac-
cessing thedata, amessenger “acquires’ the semaphore
by executing the P procedure, ensuring exclusive ac-
cess to the region or data. And after using the data
or leaving the critical region, the messenger must “re-
lease” the semaphorewith the V procedure so that other
messengers competing for it can get achanceto acquire
it. A semaphore can be used by messengers executing
on different hosts; each host maintains its own local
copy of the semaphore and the P and V procedures en-
surethat coherenceismaintained between all the copies
of the semaphore.

3.2 AN OVERVIEW OF THE PROTOCOL AND THE
MESSENGERS USED

Each semaphore is managed as a binary token and is
uniquely identified in the system by a semaphore han-
dle returned on the host which created the semaphore.
The messenger which requested the semaphore cre-
ation receives the semaphore handle and is responsible
for advertising it to the other messengers needing it.
At any time, a semaphore is owned by one host (plat-
form); and only messengers executing on that platform
can acquiredirectly the ssmaphore. |If amessenger tries

to acquire a semaphore owned by a remote platform,
it first sends to the semaphore owner a messenger to
request the semaphore ownership; the semaphore own-
ership changes therefore from host to host according to
the messengers requests to acquireit.

The semaphore owner is found by maintaining on
each host the value of the probable owner of the
semaphore. The “true owner” of the semaphore is
found by following the sequence of probable own-
ers; i.e, a messenger is sent to the semaphore proba-
ble owner and if this host is not the true owner of the
semaphore, the messenger movesitself to the probable
owner and so on, until the messenger will reach the ac-
tual semaphore owner. The discovery of a semaphore
owner and the acquisition of the semaphore ownership
constitute the heart of the coherence protocol.

We will usethe notation (2; Rgwn f;) to expressthe
fact that on host &; the probable owner of semaphore
sishost h;. If (h; Rgwn h:) holds, then host #; isthe
true owner of semaphore s.

3.2.1 DATA STRUCTURES

Each platform using a semaphore maintains local data
for the semaphore on which are based all decisions
taken by messengers executing on the host. The prob-
lemthus, isthat of maintaining consistency between all
the copies of the semaphore residing on the different
hosts.

A semaphore is represented by the following infor-
mation:

1. The state of the semaphore (FREE, LOCKED
or REMOTE). When a semaphore is FREE or
LOCKED, it is "owned” by the local host. Oth-
erwiseit isowned by aremote host. A LOCKED
semaphore is being used by a messenger while a
FREE semaphore is ready for usage by any mes-
senger having areferenceto it;

2. The probable owner of the semaphore; thisis the
local host when the state of the semaphore is not
REMOTE;

3. Thepqueue queueused to serialize the actions of
the messengers trying to acquire the semaphore;

4. The accessqueue and acghost queue
queues for synchronizing access to the local data
for the semaphore to avoid racing;

5. Theidentity of the (acqhost) host trying to ac-
quire the semaphore ownership.

When a messenger requests the creation of a
semaphore, local data is created for the semaphore,

but remote hosts are not informed of this fact. Upon a
successful creation of asemaphore, the semaphore cre-
ator (host on which the request is executed) becomes
thefirst semaphore owner and returnsahandl e which
allowsall the hoststo determine the semaphore creator.
A remote host will know a semaphore if a messenger
carriesthere areference to the semaphore (handle) and
then the same or another messenger requests that an P
or V operation be done there on the semaphore. It is
only at that timethat the remote host will createitslocal
data for the semaphore; and thefirst probable owner of
the semaphore on the remote host will be the semaphore
creator.

Hereafter, wepresent indetail the P and V procedures
for interfacing with the distributed semaphore service.

3.3 THE P PROCEDURE IN DETAIL

The P procedure is called to acquire a semaphore.
First the calling messenger insertsitself inthepqueue
gueue. This ensures that only one messenger can pro-
ceed on a host in its attempt to acquire the associated
semaphore. Two cases can arise:

1. If the semaphoreis FREE, the messenger acquires
it, changes the semaphore state to LOCKED and
stopsthe pqueue queue so that all other messen-
gers trying to acquire the semaphore on the same
host remain blocked in the queue. These mes-
sengers will eventually be unblocked when a V
operation will be done on the semaphore.

2. If the semaphoreisin the REMOTE state, the mes-
senger stops the pqueue and subni ts a new
messenger (see the nmsgr P) to the semaphore
owner to acquire the semaphore ownership (see
ther enot eP procedure) and waits in a queue to
be unblocked when the semaphore ownership has
been acquired. Then the calling messenger pro-
ceeds asin thefirst case. All thework of locating
the semaphore owner and acquiring the semaphore
ownership isdone by thenmsgr P messenger. This
messenger is actually the heart of the protocol and
is described below. First, the code for the service
access procedure P is given.

P(key, handl e)
serv = searchservice("di stsema")
if (serv == NULL){
define(gl obdi ct, key, ERROR
el se {
ent er queue(serv. cr eat equeue)
semadi ct = serv.dict

© 00N A WN PP

10 if (!known(handl e, semadict){
1 # create local data for semaphore
12 sema = dict()

13 senma. pqueue = randon()

14 senma. owner = get host (handl e)
15 senma. accessqueue = randomn()
16 sema. state = REMOTE

17 senma. acqhost queue = randon()
18 senma. acqhost = NULL

19 }

20 | eave()

21 ent er queue(sema. pqueue)

22 st opqueue(senma. pqueue)

23 ent er queue(sema. accessqueue)
24 if (sema.owner == THI SHOST) {

25 sema. state = LOCKED

26 | eave()

27 define(gl obdi ct, key, OK)

28

29 el se {

30 | eave()

31 keyl = random()

32 renmot eP(senm, handl e, keyl)
33 res = get (gl obdict, keyl)

34 if (res == K) {

35 ent er queue(sema. accessqueue)
36 sema. state = LOCKED

37 sema. owner = THI SHOST

38 | eave()

39 }

40 define(gl obdi ct, key, res)
41

a2 }

43}

The r enot eP procedure is straightforward: the
calling messenger subni ts a nsgr P messenger to
the semaphore owner and waits for the result by insert-
ing itself in a stopped queue which has to be restarted
by the acknowledge ack P messenger. If after atime-
out period no result is obtained, aretransmission of the
nmsgr P messenger occurs.

renmot eP(senmn, handl e, key)

{
myqueue = randon()
ori = random()
THI SHOST)
define(gl obdi ct, key, HOSTID)

gack = random()
st opqueue(myqueue)

1
2
3
4
5 define(gl obdict, ori,
6
7
8
9 ent er queue(sema. accessqueue)

10 dest = sema. owner

1 | eave()

12 while(1l) {

13 submi t (dest, msgrP(ori, gack, myqueue
14 key, handl e, THI SHOST))

15 ent er queue(myqueue, timeout)

16 if (!timeout)

17 br eak

18 }

19 }

Thenmsgr P messenger sent by ther enot eP proce-
durecanbelogt; thisisalsotruefor theac k P messenger
sent by ansgr P messenger to itsorigin. For thisrea
son, the r enot eP procedure keeps sending nsgr P
messengers until an ackP messenger is received by
the local host. Thus multiple copies of thensgr P and

ackPmessengerscanreachahost. Thedifferent copies
of the same messenger must interact to coordinate their
work.

All copies of the same nsgr P messenger share the
same key. Thefirst of these messengers which reaches
a host leaves a kind of signature in the host by defin-
ing the key in the global store. This signature will be
checked by the other messengers to determine if they
are duplicates. The first messenger insertsitself in the
pqueue queueand waitsuntil it reachesthe head of the
gueue. At this point, the messenger can find that it has
reached the semaphoreowner. If thisisindeed the case,
the messenger updates the semaphore data structures
and submi t s an ackP messenger to its origin. Oth-
erwise, the messenger has not reached the semaphore
owner, it movesitself to the probabl e semaphore owner
and indicates that it is trying to acquire the semaphore
ownership for itsorigin host by updating theacghost
entry in the semaphore. Subsequent duplicates of the
messenger will find the signature left by the first mes-
senger and will then act accordingly.

msgr P(ori, qack, queue, key, handle, src)
d = getsenadict()
if (known(d, handle)) {
sema = get(d, handl e)
ent er queue(sema. accessqueue)
if (sema.acqhost == src) { #duplicate nsgr
if (sema.owner != THI SHOST)
submi t (sena. owner, nsgrP(ori
queue, key, handle, src))

| eave()

© 00N WN PP

gack,

P
@ N Rk O

el se {
if (sema.owner == src) { #duplicate nsgr
| eave()
val = get (gl obdict, key)
submit(origin(), ackP(ori, val
queue, key, handle, src))
}

el se {
| eave()
if (!known(globdict, key)) {
ent er queue(sema. acghost queue)
if (!known(globdict, key)) {

define(globdict, ori, origin())

define(gl obdi ct, key, HOSTI D)

ent er queue(sema. pqueue)

st opqueue(senma. pqueue)

ent er queue(sema. accessqueue)

if (sema.owner == THI SHOST) {
at destination
sema. owner = src
sema. state = REMOTE
senma. acqhost = NULL
| eave()
start queue(sema. pqueue)
submit(origin(), ackP(ori, OK

gack, queue, key, handle
src))

PR R
N o oo~

gack,

bbmwwmmgwmmmmmmmmmmmmm»—np
P O © N O WP O O©O®NoURWNRPRO O ®

el se {
if (sema.acghost == NULL) {
senma. acqhost = src
dest = sema. owner

&N

45

46 el se {

47 if (sema.acghost == src)
48 dest = sema. owner

49 el se

50 dest = senm. acghost

51 }

52 undef (gl obdi ct, key)

53 | eave()

54 submit (dest, nsgrP(ori, val,
55 gack, queue, key, handl e,
56 src))

57 start queue(sema. pqueue)

58 }

59 }

60 el se

61 | eave()

62

63 }

64 }

65

66 el se { # send back a nack

67 submit(origin(), ackP(ori, ERROR gack,
68 queue,

69 key, handle, src))

70 }

7}

Asforthensgr P messengers, all copiesof the same
ackP messenger synchronize their execution through
acommon key. The messenger updates the semaphore
dataif itisnot aduplicate, and if it hasreached thefinal
host, it unblocks the msgr P waiting for the semaphore
ownership, otherwise it submi t's a copy of itself to-
wards the final host.

1 ackP(ori, val, qack, queue, key, handle, src)
2 {

3 ent er queue(gack)

4 mykey = get (gl obdict, key)

5 if (nykey == HOSTID) { # first ack
6 define(gl obdi ct, key, val)

7 st opqueue(gack)

8 sema = get sema(handl e)

9 ent er queue(sema. accessqueue)

10 senma. acqhost = NULL

11 senm. owner = src

12 | eave()

13 if (src == TH SHOST)

14 start queue(queue)

15 start queue(gack)

16 }
17 if (src != TH SHOST)

18 submit(ori, ackP(val, qack, queue, key,
19 handl e, src))

20 | eave()

21}

3.4 THEV PROCEDURE IN DETAIL

The V procedure is used to relinquish a semaphore. If
thereis no local datafor the semaphore, oneis created
by the messenger before proceeding. For a semaphore
owned by the local host, (state is LOCKED or FREE),
the semaphore pqueue queue is unblocked and the
result of the operation stored in the global store. For a
REMOTE semaphore, the calling messenger subni ts

a msgr V messenger to the semaphore owner to re-
linguish the semaphore (seether enpt eP procedure),
andwaitsfor theresult of the operation. The messenger
will be unblocked by the ack V messenger after the op-
eration has been carried out. TheV procedureissimilar
to the P procedure except that the messenger executing
the V procedure never enters the pqueue queue and
that it isanmsgr V messenger which is submi t ted to
release aremote semaphore. Thereforethe code of this
procedureis not shown here.

Ther enot eV procedureissimilar tother enot eP
procedure described above.

When a nmsgr V messenger reaches the semaphore
owner, it unblocks the semaphore pqueue queue so
that messengers trying to acquire the semaphore can
do so and sends back toits origin the ackV messenger
which convoys the result of the operation. And when
it reaches a host which is not the semaphore owner, it
forwardsacopy of itself towardsthe semaphore owner.

1 nsgrV(queue, key, handle, src)

2 {

3 d = getsenadict()

4 if (! known(d, handle))

5 subm t (src, ackV(queue, key, ERROR))
6 el se {

7 sema = get(d, handl e)

8 ent er queue(sema. accessqueue)

9 if (sema.owner == THI SHOST) {

10 sema. state = FREE

1 start queue(sema. pqueue)

12 | eave()

13 subm t (src, ackV(queue, key, OK)
14 }

15 el se {

16 submi t (senma. owner, nsgrV(queue, key,
17 handl e, src))

18 | eave()

19

20 }

21}

The ackV messenger is sent from the semaphore
owner to the host where the messenger wishing to re-
linquish the semaphore is executing. This messenger
is blocked in a queue waiting for the result of the op-
eration. The ackV messenger just stores the result in
global storeand unblocksthe queueto allow thewaiting
messenger to proceed its execution.

4 DISCUSSION

4.1 SOME OBSERVATIONS

The protocol ensures a kind of weak fairness in the
sense that when messengers executing on the same host
compete to acquire a semaphore, the first to enter the
semaphore queue (pqueue) will get the semaphore;
and when the messengers execute on different hosts,

the first to reach the semaphore owner will get the
semaphore. However, the protocol does not ensure that
thefirst messenger to executethe P procedurewill reach
first the semaphore owner. This means that starvation;
i.e, asituation where a messenger waits arbitrary long
to acquire the semaphore can resullt.

Let us consider the case with two hosts %; and A;
with (hZ RSOWH hz) and (hj R?JWH hz) On h]‘, messen-
ger m; tries to acquire the semaphore and submi ts
an msgr P messenger msgrp; to the semaphore prob-
able owner; i.e, h;. The msgrp; messenger reaches
host #;, and acquires the semaphore ownership, up-
dating the ownership relation to reflect this fact. We
have now (hZ R?)Wﬂhj) and (h]‘ RSOWH hz) which is
clearly aloop. Until an ackP messenger will reach
host %; to confirm semaphore ownership acquisition,
there is no true owner of the semaphore. If a 'V op-
eration is performed at this time, it can result in alot
of messengers being exchanged between the two hosts.
Indeed, ansgr V messenger reaching host #; will find
that the probable semaphore owner is 4; and therefore
will submi t another nsgr V to release the semaphore
on host h;. But, this last messenger will find that on
host #;, the semaphore probable owner is £; and will
at its turn submi t a copy of itself to ~; and so on.
However thisis only a temporary situation which dis-
appears when a ackP messenger from £; reaches h;
and updates there the probable semaphore owner.

Before a messenger can actually acquire a
semaphore, the host where it is executing must be
the semaphore owner. Now if a number of messen-
gers executing on two different hosts are competing
for asemaphore, one can imagine a situation wherethe
semaphoreownership oscillate quickly betweenthetwo
hosts because each P operation results in network ac-
tivity. This behavior is similar to thrashing which has
been identified in some distributed memory systems.
Asfor thrashing, network traffic between the two hosts
can be considerably reduced by letting each host retain
the semaphore ownership for at least a given amount
of time. By retaining the semaphore ownership longer
on a host, messengers executing there can have a better
chance to acquire directly the semaphore; i.e, without
any network traffic being generated.

The choice of the timeout value can influence the
amount of network traffic generated. This problem is
common to al protocols which must ensure reliability
using a retransmission mechanism. A too big timeout
valuecan resultin alossof efficiency in the situation of
messenger |oss because a messenger waits along time

before it can notice messenger losses. On the contrary,
a too small timeout value can result in unneeded du-
plicate messengers being generated. The choice of this
timeout value is not easy. ldeally this value should be
dynamically adjusted according to the network load. In
our implementation, we have used the simple solution
of incrementing exponentially the timeout value after a
timeout.

An optimization of the P procedure is to bypass a
number of hosts belonging to the sequence of probable
ownersof the semaphore. Indeed, whenansgr P mes-
senger trying to acquire the semaphore ownership for
host /; reachesahost 4;, it updatestheacghost field
in the semaphore on this host. All subsequent nsgr P
messengers reaching & ; will bypass some hosts in the
ownership sequence by moving directly to ; whichis
now a probable owner of the semaphore closer to the
true semaphore owner.

4.2 LIMITATIONS

The protocol presented in this paper works fine in a
static environment. It does not handle either the case
where hosts are added/removed to the system or the
situation of failure. However, with the service architec-
ture presented in this paper, the protocol can be adapted
to handle dynamicity. All the complexity for manag-
ing up/down dynamicity can be handled by the up and
down procedures.

Moreover, the protocol does not handle routing of
messengers. It assumes a kind of single ETHERNET
where each platform can be reached directly from any
other. However the view of single ETHERNET can be
achieved even in the case of multiple linked networks
with an appropriate routing function implemented in-
side “traveling” messengers.

The protocol implements a distributed binary
semaphore. We show below how it can be adapted
and extended to handle the more general non binary
semaphores.

4.3 CORRECTNESS

We givehereaninformal proof of the correctnessof our
protocol. To assess the correctness of the given proto-
col, itisessential to show that (a) semaphore ownership
is maintained consistently; i.e, at any time there cannot
be morethan onetrue owner of asemaphoreand (b) that
the true owner of a semaphore is always found. Given
these two assumptions, it becomes simple to see that
theprotocol achievesthedistributed semaphoreservice.
Indeed, when the true semaphore owner is found, the
semaphore ownership is transferred to the host where

the messenger trying to acquire the semaphore is ex-
ecuting. Then, the messenger acquires the semaphore
and blocks the semaphore pqueue queue where all
messengers are inserted when they do the P operation.
This ensures that only one messenger can acquire the
semaphore. And when a V operation is performed,
the true semaphore owner is found and the semaphore
pgqueue isrestarted freeing effectively the semaphore.

4.3.1 SEMAPHORE OWNERSHIP IS CONSISTENT

Here, we must show that asemaphore cannot be owned
by more than one host. This follows from the way the
semaphore ownership is updated.

Definition 4.1 The semaphore ownership for sema-
phore s isconsistent if Yh;, h; € H with (h; Rgwn fis)
and (h; Rdwn h;) then h; = h;; it meansthere cannot
be more than one true owner for a semaphore.

At semaphore creation time and whenever a host cre-
ates local data for a semaphore, the probable owner
of the semaphore is initialized to be the host where
the semaphore has been created. This ensures that at
creation time semaphore ownership is consistent and
that whenever local data is created for a semaphore,
if semaphore ownership is consistent, it remains con-
sistent. Indeed, creating local data for a semaphore
only adds a new element of the the type (2; Réwn #2;)
(with A; the host where the semaphore was created,
and h; the host wherelocal datais being created for the
semaphore) to Rgyn relation. And semaphore owner-
shipisupdated only when thetrue owner of asemaphore
isfound. Firstly the probable owner of the semaphore
is updated on the true owner of the semaphore. This
changes the unique element of type (h; Rgwn ;) of
the Rgwn relation to an element of type (7; Rgwn f:q)-
Secondly the ownership is updated in reverse order on
all the hosts belonging to the sequence of hosts which
have been visited while searching for the semaphore
owner. Elementsof (h; Rgwnh;) type are updated but
remain of the same type. And finally, update is done
on the new semaphoretrue owner, changing an element
of (h; Rdwn ;) to one of (h; Rgwn h:) type. Hence
semaphore ownership is updated consistently.

4.3.2 SEMAPHORE OWNER IS ALWAYS FOUND

The owner of a semaphore changes dynamically with
the requests of messengers to acquire the semaphore.
The owner of asemaphore can change while a messen-
ger is searching for it. This can occur only when mes-
sengers are competing to acquire the semaphore (ex-
ecute the P procedure concurrently). The case where

only one messenger is executing the P procedure is
simple. Since semaphore ownership is consistent, the
semaphore owner will always be found. When two
messengersare executing the P procedure concurrently,
two casescanarise. Inthefirst case, thetwo messengers
can follow different sequences of hosts of the Rgwn
relation and reach the semaphore owner. They then
serialize their actions by inserting themselves in the
pqueue queue. The first messenger to reach the head
of the queue will acquire the semaphore and update the
semaphore ownership. When the second messenger
comes at the head of the queue, it finds that the host
isno longer the semaphore owner and will continueits
way to the semaphore owner. In the second case, the
sequences of hosts followed by the messengers inter-
sect before reaching the semaphore owner. The first
messenger to reach the host /; where the sequences
intersect will update the acqhost value on this host,
indicating that it is trying to acquire the ownership of
the semaphore for ahost /;. The messenger will then
continue on its way towards the semaphore owner, fol-
lowing the sequence of hosts defined by the probable
owner relation. When the second messenger reaches
the host #;, it finds that another messenger originated
from host #; is trying to acquire the same semaphore.
Themessenger will then bypasstheremaining sequence
of probable owners and will proceed directly on host
h; where it will wait to acquire semaphore ownership
after it has been acquired by A;.

44 |MPLEMENTATION

The protocol presented in this paper has been imple-
mented in the Md messenger environment. The differ-
ent messenger platformswere linked by ubp channels.
In our implementation, each messenger submi t ted
to a remote host carries with it its code (all the mes-
sengers fit in one UDP packet and do not have to be
fragmented). An aternative implementation would be
to store the code of the messengers in each platform;
when a messenger comes in a platform it first finds the
code to execute.

The P and V operations are implemented as proce-
dures executed in the scope of the calling messenger.
They are accessible to all messengers but they protect
thedataon which they work; i.e., messengerscannot di-
rectly access the semaphore data or the process queues
used to synchronize the execution of the messengers
generated by the P and V procedures.

45 EXTENSION TO SEMAPHORES WITH N EN-
TRIES

For a semaphore with N entries, a value field must be
maintained. Our binary semaphorecan beextendedtoa
semaphorewith N entriesby adding avaluefieldto each
local datarepresenting asemaphore and by maintaining
consistency of thisvalue among all the local values of
the semaphore with the P and V procedures.

One straightforward way for maintaining the
semaphore value consistency isto have only one copy
of the semaphore value be meaningful, for example
that on the true semaphore owner. As for our bi-
nary semaphore, the ownership of the semaphore is
requested before acquiring the semaphore and thevalue
field updated. And when releasing the semaphore, the
val ue field is updated only on the true semaphore
owner.

Another approach where each local value represents
the true value of the semaphore is possible. However,
each P and V procedure must be madevisibleto all hosts
to allow them to update the value of the semaphore.
Thisis clearly not efficient since it generates a lot of
network traffic.

5 SUMMARY

Mobile code is now considered as an alternative way
for theimplementation of distributed applications. The
messenger environment presented in this paper al-
lows the exchange of programs called messengers be-
tween hosts linked by unreliable channels. Fexibil-
ity is achieved by letting messenger execution envi-
ronments (messenger platforms) provide local services
only. Inter-node services are implemented at a high
level with messengers instead of having hard-wired
protocols in software. Code becomes mobile and re-
places the classical client/server programming model.
A service architecture based on a set of uniform con-
ventions shared between all messenger platforms and
more suited for mobile code has been proposed, and
the distributed semaphore service has been presented
and implemented in that framework. Work remains
to be done to find a uniform and expressive way for
describing the interface for an appropriate usage of a
service.

REFERENCES

[1] M. ACCETTA, R. BARON, W. BOLOSKY,
D. GOLUB, R. RASHID, A. TEVANIAN, and
M. YOUNG. Mach: A New Kernel Foundation

for Unix Development. In Summer Conference.
Usenix Association, 1986.

[2] M. BETZ. OMG's CORBA. Dr. Dobb’s Special
Report, (225):8-12, Winter 1994/1995.

[3] E. W. DIKSTRA. Cooperating Sequential Pro-
cesses. Technical report, Technological Univer-
sity, Eindhoven, 1965.

[4] E. W. DIJKSTRA. Hierarchical Ordering of Se-
quential Processes. Acta Informatica, 1(2):115—
138, 1971.

[5] G.DI MARZO, M. MUHUGUSA, C. TSCHU-
DIN, and J. HARMS. The Messenger Paradigm
and its Impact on Distributed Systems. In1CC’ 95
workshop on Intelligent Computer Communica-
tion, 1995.

[6] A.N. HABERMANN. Synchronisation of Com-
municating Processes. Communication of the
ACM, 15(3):171-176, 1972.

[7] Adobe Systems Incorporated. PostScript Lan-
guage Reference Manual. Addison Wesley, 1991.

[8] B. J. NELSON. Remote Procedure Call. PhD
thesis, Carnegie-Mellon University, 1981.

[9] OSE Introduction to OSF DCE. Prentice Hall,
1992.

[10] M. ROZIER, V ABROSSIMOV, F. ARMAND,
. BOULE, M. GIEN, M. GUILLEMONT,
F. HERRMANN, C. KAISER, S. LANGLOIS,
P.LEONARD, and W. NEUHAUSER. Overview
of the CHORUS Distributed Operating System.
Technical Report CS/TR-90-25, Chorus Sys
temes, 1990.

[11] A. S. TANENBAUM, M. F KAASHOEK,
R.van RENESSE, and H. BAL. The Amoeba Dis-
tributed Operating System-A Status Report. Com-
puter Communications, 14:324-335, July/August
1991.

[12] C. F. TSCHUDIN. On the Sructuring of Com-
puter Communications. PhD thesis, Universitéde
Geneve, 1993. These No 2632.

[13] C. E TSCHUDIN. An Introduction to the MO
Messenger Language. Technical Report No 86
(Cahier du CUI), University of Geneva, 1994.

[14] C. E TSCHUDIN, G. DI MARZO, M. MUHU-
GUSA, and J. HARMS. Messenger-based Oper-
ating Systems. Technical Report No 90 (Cahier
du CUI), University of Geneva, 1994.

[15] R. LINO VALVERDE. MSGR-S: Un environ-
nement d’exécution de messagers basé sur un
interpréteur Scheme paralléle. Diploma thesis,
University of Geneva, 1994.

