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CUDA

Digging further into 
the programming manual

Schedule

� Application Programming Interface (API)

� text only part, sorry

� Image utilities (simple CUDA examples)

� Performace considerations

� Matrix multiplication example

� SDK “browse-through”

API

� A minimal set of extensions to the C language that 
allow the programmer to target portions of the 
source code for execution on the device 

� Runtime library

� A host component that provides functions to control 
and access one or more compute devices from the 
host, e.g. memory allocation.

� A device component that provides device-specific 
functions, e.g. thread synchronization.

� A common component that provides built-in vector 
types and a subset of the C standard library that are 
supported in both host and device code.

Language extensions

� Roughly speaking only four additions to 
standard C

� Function type qualifiers to specify whether a 
function executes on the host or on the device 

� Variable type qualifiers to specify the memory 
location on the device

� A new directive to specify how a kernel is 
executed on the device

� Four built-in variables that specify the grid and 
block dimensions and the block and thread 
indices

nvcc

� CUDA compiler to handle the 
standard C extensions

� Each source file containing these 
extensions must be compiled with the 
CUDA compiler nvcc

� Easily integrated with Visual Studio in 
Windows or makefiles in Linux

Function type qualifiers (1)

� __device__ 

� The __device__ qualifier declares a 
function that is 

� Executed on the device

� Callable from the device only
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Function type qualifiers (2)

� __global__ 

� The __global__ qualifier declares a 
function as being a kernel 

� Executed on the device

� Callable from the host only

Function type qualifiers (3)

� __host__

� The __host__ qualifier declares a 
function that is 

� Executed on the host

� Callable from the host only

� Default if no function qualifier is specified

� Can be used in combination with 
__device__

Function type qualifiers -
restrictions

� __device__ functions are always inlined

� __device__ and __global__ do not support recursion

� __device__ and __global__ cannot declare static variables 
inside their bodies

� __device__ and __global__ cannot have a variable number of 
inputs

� __device__ functions cannot have their address taken but 
function pointers to __global__ functions are supported

� The __global__ and __host__ qualifiers cannot be used together

� __global__ functions must have void return type

� Any call to a __global__ function must specify its execution 
configuration

� A call to a __global__ function is asynchronous, meaning it 
returns before the device has completed its execution

� __global__ function parameters are currently passed via shared 
memory to the device and limited to 256 bytes. 

Variable type qualifiers (1)

� __device__

� The __device__ qualifier declares a 
variable that resides on the device

� Resides in global memory space

� Has the lifetime of an application

� Is accessible from all the threads within the 

grid and from the host through the runtime 
library

Variable type qualifiers (2)

� __constant__

� The __constant__ qualifier declares a 
variable that resides on the device

� Resides in constant memory space

� Has the lifetime of an application

� Is accessible from all the threads within the 

grid and from the host through the runtime 
library

Variable type qualifiers (3)

� __shared__

� The __shared__ qualifier declares a 
variable that resides on the device

� Resides in the shared memory space of a 
thread block

� Has the lifetime of the block

� Is only accessible from threads within the 
block
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Variable type qualifiers -
restrictions

� __shared__ and __constant__ cannot be used in 
combination with each other

� __shared__ and __constant__ variables have 
implied static storage

� __device__ and __constant__ variables are only 
allowed at file scope

� __constant__ variables cannot be assigned to from 
the device, only from the host

� __shared__ variables cannot have an initialization as 
part of their declaration

Variable type qualifiers –
the default case

� An automatic variable declared in device 
code without any of these qualifiers 
generally resides in a register

� However in some cases the compiler might 
choose to place it in local memory

� This is often the case for large structures or 
arrays that would consume too much 
register space, and arrays for which the 
compiler cannot determine that they are 
indexed with constant quantities

Execution configuration

� Any call to a __global__ function must specify the execution 
configuration for that call. 

� The execution configuration defines the dimension of the grid and 
blocks that will be used to execute the function on the device. 

� It is specified by inserting an expression of the form          
<<< Dg, Db, Ns >>> between the function name and the 
parenthesized argument list, where: 
� Dg is of type dim3 and specifies the dimension and size of the grid, 

such that Dg.x*Dg.y*Dg.y equals the number of blocks being 
launched

� Db is of type dim3 and specifies the dimension and size of each block, 
such that Db.x*Db.y*Db.z equals the number of threads per block

� Ns is of type size_t and specifies the number of bytes in shared 
memory that is dynamically allocated per block for this call in addition 
to the statically allocated memory. Ns is an optional argument which 
defaults to 0. 

� The arguments to the execution configuration are evaluated before 
the actual function arguments. 

Execution configuration –
example

� A function declared as 

� __global__ void Func(float* parameter); 

� must be called like this

� Func<<< Dg, Db, Ns >>>(parameter); 

Built-in variables

� gridDim
� This variable is of type dim3 and contains the dimensions of the grid. 

� blockIdx
� This variable is of type uint3 and contains the block index within the 

grid.

� blockDim
� This variable is of type dim3 and contains the dimensions of the block. 

� threadIdx
� This variable is of type uint3 and contains the thread index within the 

block. 

� Restrictions 
� It is not allowed to take the address of any of the built-in variables.

� It is not allowed to assign values to any of the built-in variables. 

Common runtime component

� Built-in vector types
� For both host and device

� char1, char2, char3, char4

� uchar1, uchar2, uchar3, uchar4

� short1, short2, short3, short4

� ushort1, ushort2, ushort3, ushort4

� int1, int2, int3, int4

� uint1 , uint2, uint3, uint4

� long1, long2, long3, long4, 

� ulong1, ulong2, ulong3, ulong4, 

� float1, float2, float3, float4 

� Doubles expected in the generation GPUs

� Constructor of the form make_<type_name>(…);
� For example int2 make_int2(int x, int y); 
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Mathematical 
functions

<math.mdi>

Textures

� “Tiled” memory format with cache

� Hardware interpolation

� Read-only (at present)

� Read from kernels through texture 
fetches from texture references

� Linear memory vs CUDA arrays?

� Linear memory:
� One dimensional only

� No filtering

Device runtime components

� Synchronization function

� void __syncthreads();

� Type conversion

� unsigned int __float2uint_[rn,rz,ru,rd](float); 

� float __int2float_[rn,rz,ru,rd](int); 

� float __uint2float_[rn,rz,ru,rd](unsigned int); 

� Type casting
� float __int_as_float(int);

� int __float_as_int(float);

� Atomic functions

� Performs a read-modify-write operation on one 32 bit word 
residing in global memory
� E.g. unsigned int atomicAdd(unsigned int* address, unsigned int val);

� At present limited support for integer types only!

Host runtime components

� Device

� Multiple devices supported

� Memory

� Linear or CUDA arrays

� OpenGL and DirectX interoperability

� For visualization of results

� Asynchronicity

� __global__ functions and most runtime 
functions return to the application before the 
device has completed the requested task

Image utilities

<image_utilities.mdi>

Performance Guidelines

How to get the most 
out of the device
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Instruction performance

� To process an instruction for a warp 
of threads, a multiprocessor must: 

� Read the instruction operands for each 
thread of the warp, 

� Execute the instruction, 

� Write the result for each thread of the 
warp. 

Instruction Performance

� The effective instruction throughput depends on the 
nominal instruction throughput as well as the memory 
latency and bandwidth. It is maximized by: 

� Minimizing the use of instructions with low 
throughput

� Maximizing the use of the available memory 
bandwidth for each category of memory

� Allowing the thread scheduler to overlap memory 
transactions with mathematical computations as 
much as possible, which requires that: 
� The program executed by the threads is of high 

arithmetic intensity, i.e a high number of arithmetic 
operations per memory operation; 

� There are many threads that can be run concurrently

Instruction Throughput

� To issue one instruction for a warp, a 
multiprocessor takes 4 clock cycles for 

� floating-point add

� floating-point multiply

� floating-point multiply-add

� integer add

� bitwise operations

� compare

� min, max, 

� type conversion instruction; 

Instruction Throughput

� To issue one instruction for a warp, a 
multiprocessor takes16 clock cycles 
for 

� reciprocal

� reciprocal square root

� 32-bit integer multiplication;

Instruction Throughput

� Integer division and modulo operation are 
particularly costly and should be avoided if 
possible 

� Nvidia doesn’t tell how costly though…

� Other functions are implemented as 
combinations of several instructions

� Floating-point square root is implemented as a 
reciprocal square root followed by a reciprocal, 
so it takes 32 clock cycles for a warp. 

� Floating-point division takes 36 clock cycles.

Control Flow Instructions

� Any flow control instruction 

� (if, switch, do, for, while) 

� can significantly impact the effective 
instruction throughput by causing 
threads of the same warp to diverge

� Serialization vs. parallelization
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Memory Instructions

� Memory instructions include any 
instruction that reads from or writes 
to shared or global memory. 

� A multiprocessor takes 4 clock cycles 
to issue one memory instruction for a 
warp. 

� When accessing global memory, there 
are, in addition, 400 to 600 clock 
cycles of memory latency!!!

Memory Bandwidth –
Global Memory

� Uncached

� One can fetch 32-bit, 64-bit, or 128-bit 
words into registers in a single 
instruction 

� Use coalescence whenever possible

Memory Bandwidth –
Constant Memory

� Cached

� Only at cache misses does it cost a read 
from device memory

Memory Bandwidth –
Texture Memory

� Cached

� Only at cache misses does it cost a read 
from device memory

� The texture cache is optimized for 2D 
spatial locality 

� BUT there is a cost associated to copying 
into the a CUDA array

Memory Bandwidth –
Shared Memory

� On-chip

� As fast as registers

� Avoid bank conflicts

� shared memory is divided into equally-sized 
memory modules, called banks, which can 

be accessed simultaneously 

� any memory read or write request made of 

n addresses that fall in n distinct memory 
banks can be serviced simultaneously 

Shared Memory –
no bank conflicts
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2-way and 8-way 
bank conflicts

Memory Bandwidth –
Registers

� On-chip

� Generally, accessing a register is zero 
extra clock cycles per instruction

Number of threads per block

� There should be at least as many blocks as 
there are multiprocessors in the device. 

� Running only one block per multiprocessor 
can force the multiprocessor to idle during 
thread synchronization and device memory 
reads.

� The shared memory available to a block 
decreases with the number of active blocks

� The number of threads per block should be 
chosen as a multiple of the warp size!!! 

Number of threads per block

� Allocating more threads per block is 
better for efficient time slicing, but the 
more threads per block, the fewer 
registers are available per thread. 

� CUDA occupancy calculator

Current generation hardware

<G8x_specs.mdi>

Matrix multiplication

An examle from the CUDA 
programming guide
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Ax=b

� Computing the product C of two 
matrices A and B of dimensions (wA, 
hA) and (wB, wA) 

� Each thread block is responsible for 
computing one square sub-matrix Csub of 
C; 

� Each thread within the block is 
responsible for computing one element 
of Csub. 

Split matrix into blocks

CUDA programming guide Fig. 6-1.

Matrix multiplication code

<mat_mult.mdi>

Browse-through SDK

As time permits…


