
1

CUDA

Quick overview

Reading

� NVIDIA CUDA. Programming Guide.

� Available online from 

http://developer.nvidia.com/object/cuda.html

About CUDA

� CUDA
� Compute Unified Device Architecture

� General purpose computation on comodity
graphics hardware (GPUs)

� Available for free download from the Nvidia
website (drivers and SDK).

� Availble on Nvidia Geforce 8 and Quadro FX 
4600/5600 series of GPUs
� Nvidia promises support and increased

functionality on future generation GPUs

� Available for Windows XP 32 bit and Linux 32/64 
bit. Mac and Windows 64 bit/Vista support 
upcoming

Floating point operations per 
second (FLOPS). GPU vs. CPU

CUDA Programming Guide Fig. 1-1.

Transistors for data processing
rather than cache/flow control

� The GPU utilizes parallel 
computation

� Execution on many 
elements concurrently

� Single Instruction –
Multiple Data (SIMD) 
architecture, i.e. limited 
flow control requirements

� Memory latency hidden by 
computation, i.e. limited 
cache requirements

CUDA Programming Guide Fig. 1-2.

CUDA philosophy

� Up until now

� The GPU could only be programmed through a 
graphics API imposing a steep learning curve an 
unnecessary overhead

� The GPU memory could be read in a general way 
(gather) but not written generally (no scatter).

� CUDA

� A hardware and programming model that 
overcomes these problems and expose the GPU 
as a truly generic data-parallel computing 
device. 



2

Software stack

� Hardware driver

� Application 
Programming Interface 
and Runtime System

� Extension to the C 

programming language!

� High-level 
mathematical libraries

� User application

CUDA Programming Guide Fig. 1-3.

Some terminology

� GPU – compute device

� CPU – host

� data-parallel, compute-intensive portions 
of applications running on the host are 
off-loaded onto the device

Some terminology (2)

� Both the host and the device maintain 
their own DRAM, referred to as host 
memory and device memory, respectively. 

� One can copy data from one DRAM to the other 
through optimized API calls that utilize the 
device’s high-performance Direct Memory 
Access (DMA) engines. 

Some terminology (3)

� kernel

� a portion of an application that is 
executed many times, but independently 
on different data, can be isolated into a 
function that is executed on the device 
as many different threads

Thread batching

Thread block

� A batch of threads that 
operates with a limited 
amount of shared 
memory

� Syncronization points 
used to coordinate 
shared memory access

� Each thread knows its 
1D, 2D, or 3D thread id

CUDA Programming Guide Fig. 2-1.

Thread batching

Grid of thread blocks

� A set of blocks of the same 
size that execute the same 
kernel

� The number of threads in a 
single block is limited. Many 
more threads available in a 
grid

� No inter-thread 
communication!!!

� Each block is identified by 
its 1D, 2D, or 3D block id

CUDA Programming Guide Fig. 2-1.



3

Memory 
model

� Read-write per-thread 
registers

� Read-write per-thread 
local memory

� Read-write per-block 
shared memory

� Read-write per-grid 
global memory

� Read-only per-grid 
constant memory

� Read-only per-grid 
texture memory

CUDA Programming Guide Fig. 2-2.

Hardware 
implementation

� A Set of SIMD 
multiprocessors 
with on-chip 
shared memory

CUDA Programming Guide Fig. 3-1.

Hardware 
implementation

� SIMD behaviour
through groups of 
threads called warps

� One or more thread 
blocks are executed on 
each multi-processor 
using time-slicing

� The issue order of the 
warps within a block is 
undefined

� The issue order of the 
blocks within a grid of 
thread blocks is 
undefined 

CUDA Programming Guide Fig. 3-1.

In Summary

CUDA Programming Guide Fig. 3-1.CUDA Programming Guide Fig. 2-1.

Single- and multi-devices available

� One, two, or four “plug-in” devices

www.nvidia.com

To put it short

CPU
For x=0 to image 

size

For y=0 to image 
size

<< 
compute(x,y) >>

end

end

GPU

<< compute(threadIdx) >>



4

Debugging

� Release

� Debug

� emuRelease

� emuDebug

� You cannot overestimate the 
importance of the debug facilities


