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1. The Cellular Automata Approach

The computational science community has always been faced with the challenge

of bringing efficient numerical tools to solve problems of increasing difficulty. Now-

adays, a lot of effort is devoted to investigate and understand the so-called complex

systems, and to simulate all kinds of phenomena originating from the interaction

of many components.

Cellular automata turns out to be a very fruitful approach to address many

aspects of complex systems. They provide a framework to understand complexity,

untractability, undecidability, but also offer a very efficient numerical way to model

and simulate specific phenomena for which more traditional computational tech-

niques are hardly applicable.

The goal of this article is to provide the reader with a selection of possible

applications of the cellular automata approach. It is mostly based on the research

made by the authors and co-workers and has not the ambition of being an exhaustive

description of the field, or an attempt to establish the pros and the cons of this

approach compared to other numerical tools. Yet, many bibligraphical references

are given in order to help in placing this work in the large framework of topics it

addresses.
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We try to make this paper self-consistent and we hope it will give the essential

ingredients to have a in-depth understanding of the powerfulness of the cellular

automata approach in very many fields of science. We invite the reader to con-

sult the Web site http://cui.unige.ch/∼chopard/CA/Animations/img-root.html in

order to view a short movie of several of the models discussed in this review.

1.1. Introduction

Cellular automata (often termed CA) are an idealization of a physical system in

which space and time are discrete. In addition, the physical quantities (or state

of the automaton) take only a finite set of values. Since it was invented by von

Neumann in the late 1940s, the cellular automata approach has been applied to a

large range of scientific problemsa,b (see for instance 50, 61, 90, 107, 112, 137, 139

and 5, 6, 16, 33, 155, 165, 169, 186, 189).

The original motivation of von Neumann was to extract the abstract mechanisms

leading to self-reproduction of the biological organisms [22]. In other words the

problem is to devise a system having the capability (and the recipe) to produce

another organism of equivalent complexity with only its own ressource.

Following the suggestions of S. Ulam [174], von Neumann addressed this ques-

tion in the framework of a fully discrete universe made up of cells. Each cell is

characterized by an internal state, which typically consists of a finite number of

information bits. Von Neumann suggested that this system of cells evolves, in dis-

crete time steps, like simple automata which only know of a simple recipe to com-

pute their new internal state. The rule, determining the evolution of this system

is the same for all cells and is a function of the states of the neighbor cells. Simi-

larly to what happens in any biological system, the activity of the cells takes place

simultaneously. However, the same clock drives the evolution of each cell and the

updating of the internal state of each cell occurs synchronously.

Such a fully discrete dynamical systems (cellular space) as invented by von

Neumann are now referred to as a cellular automaton.

After the work of von Neumann, other authors have followed the same line of

research and nowadays the problem is still of interest [146] and has led to interesting

developments for new computer architectures [111].

Many other applications of CA’s to physical science have been considered. In

1970, the mathematician John Conway proposed his famous game of life [71]. His

motivation was to find a simple rule leading to complex behaviors. He imagined

a two-dimensional square lattice, like a checkerboard, in which each cell can be

either alive (state one) or dead (state zero). The updating rule of the game of life

is as follows: a dead cell surrounded by exactly three living cells gets back to life; a

living cell surrounded by less than two or more than three neighbors dies of isolation

aMinnesota IMA cellular automata bibliography. http://www.ima.umn.edu/bibtex/ca.bib.
bSanta-fe cellular automata bibliography. ftp://alife.santafe.edu/pub/topics/cas/ca-faq.bib.
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or overcrowdedness. Here, the surrounding cells corresponds to the neighborhood

composed of the four nearest cells (north, south, east and west), plus the four second

nearest neighbors, along the diagonals. It turns out that the game of life automaton

has an unexpectedly rich behavior. Complex structures emerge out of a primitive

“soup” and evolve so as to develop some skills.

As for von Neumann’s rule, the game of life is a cellular automata capable of

universal computations: it is always possible to find an initial configuration of the

cellular space reproducing the behavior of any electronic gate and, thus, to mimic

any computation process. Although this observation has little practical interest, it

is very important from a theoretical point of view since it assesses the ability of

CAs to be a non-restrictive computational technique.

A very important feature of CAs is that they provide simple models of complex

systems. They exemplify the fact that a collective behavior can emerge out of the

sum of many, simply interacting, components. Even if the basic and local interac-

tions are perfectly known, it is possible that the global behavior obeys new laws

that are not obviously extrapolated from the individual properties, as if the whole

is more than the sum of all the parts. This properties makes cellular automata a

very interesting approach to model physical systems and in particular to simulate

complex and non-equilibrium phenomena.

The studies undertaken by S. Wolfram in the 1980s [188, 189] clearly estalishes

that a CA (the famous Wolfram’s rules) may exhibits many of the behaviors

encountered in continuous systems, yet in a much simpler mathematical framework.

A further step is to recognize that CAs are not only behaving similarly to some

dynamical processes, they can also represent an actual model of a given physical

system, leading to macroscopic predictions that could be checked experimentally.

This fact follows from statistical mechanics which tells us that the macroscopic

behavior of many systems is quite disconnected from its microscopic reality and

that only symmetries and conservation laws survives the change of observation

level, it is well known that the flows of a fluid, a gas or even a granular media are

very similar at a macroscopic scale, in spite of their different microscopic nature.

An interesting example is the FHP fluid model proposed by Frisch, Hasslacher

and Pomeau in 1986 [67] which can be viewed as a fully discrete molecular dynamics

and yet behaves as predicted by the Navier–Stokes equation when the observa-

tion time and length scales are much larger than the lattice and automaton time

step.

Cellular automata fluids like the FHP model (or lattice gas automata (LGA)

as these models are often termed), cannot directly compete with standard com-

putational fluid dynamics techniques for high Reynolds flows. However, they have

been very successful in modeling complex situations for which traditional comput-

ing techniques are hardly applicable. Flows in porous media [1, 26, 75], immiscible

flows and instabilities [15, 74, 152], spreading of a liquid droplet and wetting phe-

nomena [33, 52], granular flows [99, 134] microemulsion [13] erosion and transport

problems [33, 181] are some examples pertaining to fluid dynamics.
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Other physical situations, like pattern formation, reaction-diffusion processes

[17, 39, 45], nucleation-aggregation growth phenomena, traffic process [41, 184, 185]

are very well suited to the cellular automata approach.

The cellular automata paradigm presents some weaknesses inherent to its dis-

crete nature. Lattice Boltzmann (LB) models have been proposed to remedy some

of these problems, using real-valued states instead of Boolean variables. It turns

out that LB models are indeed a very powerful approach which combines numerical

efficiency with the advantage of having a model whose microscopic components are

intuitive.

This paper is organized as follows. In the remainder of Sec. 1 a precise definition

of a cellular automata is given. We present some argument to justify the approach

and, finally, the advantages and drawbacks of the method are outlined. In Sec. 2,

a sampler of CA rules are presented in order to illustrate the methodology and

give an account of the large variety of possible applications. Section 3 shows, for

the case of a fluid, how to derive rigorously the macroscopic behavior of a cellular

automata model, starting from its Boolean dynamics. Section 4 discusses the lat-

tice Boltzmann (LB) method and presents an application to compute deposition

patterns in snow transport. Section 5 is devoted to reaction-diffusion systems and

some examples of pattern formations. In Sec. 6 we introduce multiparticles models

that concile some of the advantages of the CA and LB approaches. Finally, Sec. 7

proposes a LB model for wave propagation in heterogeneous media, as well as its

application to model a fracture process and wave localization.

1.2. Definition

In order to give a definition of a cellular automaton, we first present a simple

example. Although it is very basic, the rule we discuss here exhibits a surprisingly

rich behavior. It was proposed initially by Edward Fredkin in the 1970s [7] and is

defined on a two-dimensional square lattice.

Each site of the lattice is a cell which is labeled by its position ~r = (i, j) where

i and j are the row and column indices. A function ψt(~r ) is associated to the

lattice to describe the state of each cell at iteration t. This quantity can be either

0 or 1.

The cellular automata rule specifies how the states ψt+1 are to be computed

from the states at iteration t. We start from an initial condition at time t = 0 with

a given configuration of the values ψ0(~r ) on the lattice. The state at time t = 1

will be obtained as follows

(1) Each site ~r computes the sum of the values ψ0(~r
′) on the four nearest neighbor

sites ~r ′ at north, west, south and east. The system is supposed to be periodic in

both i and j directions (like on a torus) so that this calculation is well defined

for all sites.

(2) If this sum is even, the new state ψ1(~r ) is 0 (white) and, else, it is 1 (black).
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(a) (b) (c)

Fig. 1. The ⊕ rule on a 256× 256 periodic lattice. (a) initial configuration. (b) and (c) configu-
rations after tb = 93 and tc = 110 iterations, respectively.

The same rule (steps 1 and 2) is repeated over to find the states at time t =

2, 3, 4, . . . .

From a mathematical point of view, this cellular automata parity rule can be

expressed by the following relation:

ψt+1(i, j) = ψt(i+ 1, j)⊕ ψt(i− 1, j)⊕ ψt(i, j + 1)⊕ ψt(i, j − 1) , (1.1)

where the symbol ⊕ stands for the exclusive OR logical operation. It is also the

sum modulo 2: 1⊕ 1 = 0⊕ 0 = 0 and 1⊕ 0 = 0⊕ 1 = 1.

When this rule is iterated, very nice geometric patterns are observed, as shown

in Fig. 1. This property of generating complex patterns starting from a simple rule is

generic of many cellular automata rules. Here, complexity results from some spatial

organization which builds up as the rule is iterated. The various contributions of

successive iterations combine together in a specific way. The spatial patterns that

are observed reflect how the terms are combined algebraically.

This example shows that despite the simplicity of the local rule, the global

behavior of a CA model can be quite complex. In the present case, the mechanism

yielding these complex patterns can be unraveled by working out how successive

iterations combine several copies of the initial configuration, all shifted by a different

amount [33].

Based on this example we now give a definition of a cellular automata. Formally

a cellular automata is made of

(i) A regular lattice of cells covering a portion of a d-dimensional space.

(ii) A set Φ(~r, t) = {Φ1(~r, t),Φ2(~r, t), . . . ,Φm(~r, t)} of Boolean variables attached

to each site ~r of the lattice and giving the local state of each cell at the time

t = 0, 1, 2, . . . .

(iii) A rule R = {R1, R2, . . . , Rm} which specifies the time evolution of the states

Φ(~r, t) in the following way

Φj(~r, t+ ∆t) = Rj(Φ(~r , t),Φ(~r + ~δ1, t),Φ(~r + ~δ2, t), . . . ,Φ(~r + ~δq, t)) (1.2)

where ~r + ~δk designate the cells belonging to a given neighborhood of cell ~r.
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The example discussed in the previous section is a particular case in which the

state of each cell consists of a single bit Φ1(r, t) = ψt(~r ) of information and the

rule is the addition modulo 2.

In the above definition, the rule R is identical for all sites and is applied simulta-

neously to each of them, leading to a synchronous dynamics. It is important to

notice that the rule is homogeneous, that is it cannot not depend explicitly on the

cell position ~r . However, spatial (or even temporal) inhomogeneities can be intro-

duced anyway by having some Φj(~r ) systematically in some given locations of the

lattice to mark particular cells on which a different rule apply. Boundary cells are a

typical example of spatial inhomogeneities. Similarly, it is easy to alternate between

two rules by having a bit which is 1 at even time steps and 0 at odd time steps.

The neighborhood (i.e. the spatial region around each cell used to compute

the next state) is usually made of the adjacent cells of the central cell. It is often

restricted to the nearest or next to nearest neighbors, otherwise the complexity of

the rule is too large. For a two-dimensional cellular automaton, two neighborhoods

are often considered: the von Neumann neighborhood which consists of a central

cell (the one which is to be updated) and its four geographical neighbors North,

West, South and East. The Moore neighborhood contains, in addition, the second

nearest neighbor North-East, North-West, South-East and South-East, that is a

total of nine cells.

According to the above definition, a cellular automaton is deterministic. The

rule R is some well defined function and a given initial configuration will always

evolve identically. However, as we shall see later, it may be very convenient for

some applications to have a certain degree of randomness in the rule. For instance,

it may be desirable that a rule selects one outcome among several possible states,

with a probability p. Cellular automata whose updating rule is driven by some

external probabilities are called probabilistic cellular automata. On the other hand,

those which strictly comply with the definition given above, are referred to as

deterministic cellular automata.

Probabilistic cellular automata are a very useful generalization because they

offer a way to adjust the parameters of a rule in a continuous range of values,

despite the discrete nature of the cellular automata world. This is very convenient

when modeling physical systems in which, for instance, particles are annihilated or

created at some given rate.

1.3. CA as a model of the physical world

A natural way to describe a physical system is to propose a model of what we think

is happening. During this process we usually retain only the ingredients we believe

to be essential in order to capture the behavior we are interested in. Using an

appropiate mathematical machinery, such a model can then be expressed in terms

a set of equations whose solution gives the desired answers on the system. The

description in terms of equations is very powerful and corresponds to a rather high
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level of abstraction. For a long time, this methodology has been the only tractable

way for scientists to address a problem.

Another approach which has been made possible by the advent of fast computers

is to stay at the level of the model. The idea is that all the information is already

contained in the model and that a computer simulation will be able to answer any

possible question on the system by just running the model for some time. Thus

there is no need to use a complicated mathematical tool to obtain a high level

of description. We just need to express the model in a way which is suitable to

an effective computer implementation. In the framework of CAs, this last step is

usually very intuitive and requires little development time.

The degree of reality of the model depends on the level of description we expect.

When we are interested in the global or macroscopic properties of a system (and this

is the case here), we already mentioned that, except for the symmetries and con-

servation laws, the microscopic details are often not relevant. It is therefore a clear

advantage to invent a much simpler microscopic reality, which is more appropriate

to our numerical means of investigation.

A cellular automata model can be seen as a fictitious universe which has its

own microscopic reality but, nevertheless, has the same macroscopic behavior as

the real system we are interested in. The example we shall give in the next section

will illustrate this statement.

1.4. Limitations, advantage, drawbacks and extension

Modeling a system at a microscopic level of description has significant advantages.

The interpretation of the cellular automata dynamics in terms of simple micro-

scopic rules offers a very intuitive and powerful approach to model phenomena that

are very difficult to include in more traditional approaches (such as differential

equations). For instance, boundary conditions are often naturally implemented in

a cellular automata model because it has a natural interpretation at this level

of description (e.g. particles bouncing back on an obstacle). For instance, the

phenomena of wetting of a solid substrate by a spreading liquid illustrates the

difficulty of defining appropriate boundary conditions at the level of the Navier–

Stokes equation. Yet, in the framework of a CA description, this can be achieved

in a simple way [33].

Numerically, an advantage of the CA approach is its simplicity and its ade-

quacy to computer architectures and parallel machines. In addition, working with

Boolean quantities prevents numerical instabilities since an exact computation is

made. There is no truncation or approximation in the dynamics itself. Finally, a CA

model is an implemetation of an N-body system where all correlations are taken

into account, as well as spontaneous fluctuations arising in a system made up of

many particles.

On the other hand, cellular automata models have several drawbacks related

to their fully discrete nature. An important one is the statistical noise requiring a
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systematic averaging processes. Another one is the limited flexibility for adjusting

parameters of a rule in order to describe a wider range of physical situations.

At the end of the 1980s, McNamara and Zanetti [121] Higueras, Jimenez and

Succi [83] have shown the advantage of extending the Boolean dynamics of the auto-

maton to directly work on real numbers representing, somehow, the probability for a

cell to have a given state. This approach, called the lattice Boltzmann (LB) method,

is numerically much more efficient than the Boolean dynamics and provides an new

computational model much more appropriate to simulate high Reynolds flows and

many other relevant applications (for instance glacier flow [4] and fracture pro-

cesses). On the other hand, the LB approach re-introduces the risk of numerical

instabilities and, also, requires some hypotheses of factorization of the joint prob-

ability in order to write the interaction. We will return to the this approach in

Sec. 4.

Another generalization of the original definition of a CA is the multiparticle

method in which the number of state of each cell is infinite so that an arbitrary

number of particles can stay simultaneously at each site. This offers much more

flexibility to tune the parameter of the rule and reduces considerably the statistical

noise. A multiparticle model goes in the same direction as the LB models but it does

not need a factorization assumption and is not sensitive to numerical instability.

Unfortunately, as explained in Sec. 7, it requires more implementation effort than

the LB approach and is also numerically less efficient.

Finally, we should remark that the cellular automata approach is not a rigid

framework but should allow for many extensions according to the problem at hand.

The CA methodology is a philosophy of modeling where one seeks a description in

terms of simple but essential mechanisms. Its richness and interest of comes from

the microscopic contents of its rule for which there is, in general, a clear physical

or intuitive interpretation of the dynamics directly at the level of the cell.

2. Examples of Simple Rules

In this section we consider several CA rules in order to illustates the ideas we have

introduced in Sec. 1. Although the rules we will present here have clear physical

contents, some of them should be considered as toy models because their ability

to describe the macroscopic behavior of a real physical system does not withstand

detailed analysis. However, our goal is to present the flavor of the CA appraoch but

not to give a proof that the rule we propose is rigorously related to a given process.

2.1. A growth model

A natural class of cellular automata rules consists of the so-called majority rules.

The updating selects the new state of each cell so as to conform to the value

currently held by the majority of the neighbors. Typically, in these majority rules,

the state is either 0 or 1.
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(a) (b) (c)

Fig. 2. Evolution of the annealing rule. The inherent “surface tension” present in the rule tends
to separate the black phases s = 1 from the white phase s = 0. The snapshots (a), (b) and (c)
correspond to t = 0, t = 72 and t = 270 iterations, respectively. The extra gray levels indicate
how “capes” have been eroded and “bays” filled: dark gray shows the black regions that have been
eroded during the last few iterations and light gray marks the white regions that have been filled.

A very interesting behavior is observed with the twisted majority rule proposed

by G. Vichniac [176]: in two-dimensions, each cell considers its Moore neighborhood

(i.e itself plus its eight nearest neighbors) and computes the sum of the cells having

a value 1. This sum can be any value between 0 and 9. The new state sij(t+ 1) of

each cell is then determined from this local sum, according to the following table

sumij(t) 0 1 2 3 4 5 6 7 8 9

sij(t+ 1) 0 0 0 0 1 0 1 1 1 1 .
(2.1)

As opposed to the plain majority rule, here, the two middle entries of the table

have been swapped. Therefore, when there is a slight majority of 1 around a cell,

it turns to 0. Conversely, if there is a slight majority of 0, the cell becomes 1.

Surprisingly enough this rule describes the interface motion between two phases,

as illustrated in Fig. 2. Vichniac has observed that the normal velocity of the

interface is proportional to its local curvature, as required by the Allen–Cahn [77]

equation. Of course, due to its local nature, the rule cannot detect the curvature

of the interface directly. However, as the the rule is iterated, local information

is propagated to the nearest neighbors and the radius of curvature emerges as a

collective effect.

This rule is particularly interesting when the initial configuration is a random

mixture of the two phases, with equal concentration. Otherwise, some pathological

behaviors may occur. For instance, an initial square of 1’s surrounded by zero’s will

not evolve: right angles are not eroded but stable structures.

2.2. Ising-like dynamics

The Ising model is extensively used in physics. Its basic constituents are spins si
which can be in one of two states: si ∈ {−1, 1}. These spins are organized on a regu-

lar lattice in d-dimensions and coupled in the sense that each pair (si, sj) of neighbor
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spins contributes an amount −Jsisj to the energy of the system. Intuitively, the

dynamics of such a system is that a spin flips (si → −si) if this is favorable in view

of the energy of the local configuration.

Vichniac [176], in the 1980s, has proposed a CA rule, called the Q2R, simulating

the behavior of an Ising spin dynamics. The model is as follows:

We consider a two-dimensional square lattice such that each site holds a spin si
which is either up (si = 1) or down (si = 0) (instead of ±1). The coupling between

spins is assumed to come from the von Neumann neighborhood (i.e. north, west

south and east neighbors).

In this simple model, the spins will flip (or not flip) during their discrete time

evolution according to a local energy conservation principle. This means we are

considering a system which cannot exchange energy with its surroundings. The

model will be a microcanonical cellular automata simulation of Ising spin dynamics,

without a temperature but with a critical energy.

A spin si can flip at time t to become 1 − si at time t + 1 if and only if this

move does not cause any energy change. Accordingly, spin si will flip if the number

of its neighbors with spin up is the same as the number of its neighbors with spin

down. However, one has to remember that the motion of all spins are simultaneous

in a cellular automata. The decision to flip is based on the assumption that the

neighbors are not changing. If they are allowed to flip too, (because they obey the

same rule), then energy may not be conserved.

A way to cure this problem is to split the updating in two phases and consider

a partition of the lattice in odd and even sites (e.g. the white and black squares of

a chess-board in 2D): first, one flips the spins located at odd positions, according

to the configuration of the even spins. In the second phase, the even sublattice is

updated according to the odd one. The spatial structure (defining the two sub-

lattices) is obtained by adding an extra bit b to each lattice site, whose value is

0 for the odd sublattice and 1 for the even sublattice. The flipping rule described

earlier is then regulated by the value of b. It takes place only for those sites for

which b = 1. Of course, the value of b is also updated at each iteration according to

b(t+ 1) = 1− b(t), so that at the next iteration, the other sublattice is considered.

In two-dimensions, the Q2R rule can be the expressed by the following expressions

sij(t+ 1) =

{
1− sij(t) if bij = 1 and si−1,j + si+1,j + si,j−1 + si,j+1 = 2

sij(t) otherwise
(2.2)

and

bij(t+ 1) = 1− bij(t) , (2.3)

where the indices (i, j) label the Cartesian coordinates and sij(t = 0) is either one

or zero.

The question is now how well does this cellular automata rule perform to de-

scribe an Ising model. Figure 3 show a computer simulation of the Q2R rule, starting

from an initial configuration with approximately 11% of spins sij = 1 (Fig. 3(a)).
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(a) (b)

(c) (d)

Fig. 3. Evolution of a system of spins with the Q2R rule. Black represents the spins down sij = 0
and white the spins up sij = 1. The four images (a), (b), (c) and (d) show the system at four
different times ta = 0 < tb < tc � td.

After a transient phase (Figs. 3(b) and 3(c)), the system reaches a stationary state

where domains with “up” magnetization (white regions) are surrounded by domains

of “down” magnetization (black regions).

In this dynamics, energy is exactly conserved because that is the way the rule

is built. However, the number of spins down and up may vary. In the present

experiment, the fraction of spins up increases from 11% in the initial state to about

40% in the stationary state. Since there is an excess of spins down in this system,

there is a resulting macroscopic magnetization.

It is interesting to study this model with various initial fractions ρs of spins

up. When starting with a random initial condition, similar to that of Fig. 3(a), it

is observed that, for many values of ρs, the system evolves to a state where there

is, in the average, the same amount of spin down and up, that is no macroscopic
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magnetization. However, if the initial configuration presents a sufficiently large

excess of one kind of spins, then a macroscopic magnetization builds up as time goes

on. This means there is a phase transition between a situation of zero magnetization

and a situation of positive or negative magnetization.

It turns out that this transition occurs when the total energy E of the system is

low enough (a low energy means that most of the spins are aligned and that there

is an excess of one species over the other), or more precisely when E is smaller

than a critical energy Ec. In that sense, the Q2R rule captures an important aspect

of a real magnetic system, namely a non-zero magnetization at low energy (which

can be related to a low temperature situation) and a transition to a non-magnetic

phase at high energy.

However Q2R also exhibits unexpected behavior that are difficult to detect from

a simple observation. There is a breaking of ergodicity: a given initial configuration

of energy E0 evolves without visiting completely the region of the phase space

characterized by E = E0.

This is illustrated by the following simple 1D example, where a ring of four spins

with periodic boundary condition are considered.

t : 1001

t+ 1 : 1100

t+ 2 : 0110

t+ 3 : 0011

t+ 4 : 1001 .

(2.4)

After four iterations, the system cycles back to its original state. The configuration

of this example has E0 = 0. As we observed, it never evolves to 0111, which is also

a configuration of zero energy. This non-ergodicity means that not only is energy

conserved during the evolution of the automaton, but also another quantity which

partitions the energy surface into independent regions.

2.3. Competition models and cell differentiation

In Sec. 2.1 we have discussed a majority rule in which the cells imitate their neigh-

bors. In some sense, this corresponds to a cooperative behavior between the cells. A

quite different situation can be obtained if the cells obey a competitive dynamics.

For instance we may imagine that the cells compete for some resources at the

expense of their nearest neighbors. A winner is a cell of state 1 and a loser a cell of

state 0. No two winner cells can be neighbors and any loser cell must have at least

one winner neighbor (otherwise nothing would have prevented it to also win).

It is interesting to note that this problem has a direct application in biology, to

study cell differentiation. It has been observed in the development of the drosophila

that about 25% of the cells forming the embryo are evolving to the state of neu-

roblast, while the remaining 75% does not. How can we explain this differentiation

and the observed fraction since, at the beginning of the process all cells can be
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assumed equivalent? A possible mechanism [109] is that some competition takes

place between the adjacent biological cells. In other words, each cell produces some

substance S but the production rate is inhibited by the amount of S already present

in the neighboring cells. Differentiation occurs when a cell reaches a level of S above

a given threshold.

The competition CA model we propose to describe this situation is the follow-

ing. Due to the analogy with the biological system, we shall consider a hexagonal

lattice which is a reasonable approximation of the cell arrangement observed in

the drosophila’embryo. We assume that the values of S can be 0 (inhibited) or 1

(active) in each lattice cell.

• A S = 0 cell will grow (i.e. turn to S = 1) with probability pgrow provided that

all its neighbors are 0. Otherwise, it stays inhibited.

• A cell in state S = 1 will decay (i.e. turn to S = 0) with probability pdecay if

it is surrounded by at least one active cell. If the active cell is isolated (all the

neighbors are in state 0) it remains in state 1.

The evolution stops (stationary process) when no S = 1 cell feels any more inhibi-

tion from its neighbor and when all S = 0 cells are inhibited by their neighborhood.

Then, cells with S = 1 are those which will differentiate.

What is the expected fraction of these S = 1 cells in the final configuration?

Clearly, the maximum value is 1/3 which, according to the inhibition condition

we imposed, is the close-packed situation on the hexagonal lattice. On the other

hand, the minimal value is 1/6, corresponding to a situation where the lattice is

partitioned in blocks with one active cell surrounded by 5 inhibited cells. In practice

we do not expect any of these two limits to occur spontanously after the automaton

evolution. On the contrary, we should observe clusters of close-packed active cells

surrounded by defects, i.e. regions of low density of active cells (see Fig. 4).

(b)(a)

Fig. 4. Final (stationary) configuration of the competition CA model. (a) A typical situation with
about 23% of active cells, obtained with almost any value of panihil and pgrowth. (b) Configuration
obtained with panihil = 1 and pgrowth = .8 and yielding a fraction of 28% of active cells; one
clearly sees the close-packed regions and the defects.
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CA simulations give a very interesting result, namely that the fraction s of active

cells when the stationary state is reached is

.23 ≤ s ≤ .24

almost irrespectively of the values chosen for panihil and pgrowth. This is exactly

what we expect from the biological observations made on the drosophila’s embryo.

Thus, cell differentiation can be explained by a geometrical competition without

having to specify the inhibitory couplings between adjacent cell and the production

rate (i.e. the values of panihil and pgrowth): the result is quite robust against any

possible choices.

In our CA model, there are, however, some pathological results when either

panihil or pgrowth equals to one. For instance for panihil = 1 and pgrowth = .8, we

obtain s ≈ .28. This situation is illustrated in Fig. 4(b).

2.4. Traffic models

Cellular automata models for road traffic have received a great deal of interest dur-

ing the past few years (see Refs. 41, 125, 126, 156, 158, 184, 185, 190 for instance).

2.4.1. One-dimensional models

One-dimensional models for single lane car motions are quite simple and elegant.

The road is represented as a line of cells, each of them being occupied or not by

a vehicle. All cars travel in the same direction (say to the right). Their positions

are updated synchronously. During the motion, each car can be at rest or jump

to the nearest neighbor site, along the direction of motion. The rule is simply

that a car moves only if its destination cell is empty. This means that the drivers

are short-sighted and do not know whether the car in front will move or is also

stuck by another car. Therefore, the state of each cell si is entirely determined by

the occupancy of the cell itself and its two nearest neighbors si−1 and si+1. The

motion rule can be summarized by the following table, where all eight possible

configurations (si−1sisi+1)t → (si)t+1 are given

(111)︸ ︷︷ ︸
1

(110)︸ ︷︷ ︸
0

(101)︸ ︷︷ ︸
1

(100)︸ ︷︷ ︸
1

(011)︸ ︷︷ ︸
1

(010)︸ ︷︷ ︸
0

(001)︸ ︷︷ ︸
0

(000)︸ ︷︷ ︸
0

. (2.5)

This cellular automaton rule turns out to be Wolfram’s rule 184 [188, 190].

This simple dynamics captures an interesting feature of real car motion: traffic

congestion. Suppose we have a low car density ρ in the system, for instance some-

thing like

· · · 0010000010010000010 · · · . (2.6)

This is a free traffic regime in which all the cars are able to move. The average

velocity 〈v〉 defined as the number of motions divided by the number of cars is then

〈vf 〉 = 1 , (2.7)
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where the subscript f indicates a free state. On the other hand, in a high density

configuration such as

· · · 110101110101101110 · · · (2.8)

only 6 cars over 12 will move and 〈v〉 = 1/2. This is a partially jammed regime.

If the car positions were uncorrelated, the number of moving cars (i.e the number

of particle-hole pairs) would be given by Lρ(1−ρ), where L is the system size. Since

the number of cars is ρL, the average velocity would be

〈vuncorrel〉 = 1− ρ . (2.9)

However, in this model, the car occupancy of adjacent sites is highly correlated

and the vehicles cannot move until a hole has appeared in front of them. The car

distribution tries to self-adjust to a situation where there is one spacing between

consecutive cars. For densities less than one-half, this is easily realized and the

system can organize to have one car every other site.

Therefore, due to these correlations, Eq. (2.9) is wrong in the high density

regime. In this case, since a car needs a hole to move to, we expect that the number

of moving cars simply equals the number of empty cells [190]. Thus, the number of

motions is L(1− ρ) and the average velocity in the jammed phase is

〈vj〉 =
1− ρ
ρ

. (2.10)

A richer version of the above CA traffic model is due to Nagel and Schreckenberg

[126, 184, 185]. The cars may have several possible velocities u = 0, 1, 2, . . . , umax.

Let ui be the velocity of car i and di the distance, along the road, separating cars

i and i+ 1. The updating rule is:

• The cars accelerate when possible: ui → u′i = ui + 1, if ui < umax.

• The cars slow down when required: u′i → u′′i = di − 1, if u′i ≥ di.
• The cars have a random behavior: u′′i → u′′′i = u′′i − 1, with probability pi if

u′′i > 0.

• Finally the cars move u′′′i sites ahead.

This rule caputres some important behaviors of real traffic on a highway: velocity

fluctuations due to a non-deterministic behavior of the drivers, and “stop-and-go”

waves observed in high density traffic regime (i.e. some cars get stopped for no

specific reasons.

2.4.2. A 2D traffic model

A CA traffic model can also be defined for the situation of a street network, where

several lanes may cross provided that the rule is extended to deal with cars entering

the same road junction. In the case of an urban traffic, we may restrict ourselves

to a one speed CA.



October 10, 2002 11:16 WSPC/169-ACS 00060

16 B. Chopard, et al.

Our approach is to model a road intersection as a rotary. Cars in the rotary

have priority over those willing to enter. It is easy to add traffic lights in such a

model by blocking the entry to the rotary to to car coming from a given road. Note

that road crossings may be a bottleneck limiting the traffic flow and, thus, causing

congestion.

Let us consider the case of a Manhattan-like city. We assume that horizontal

roads consist of two lanes, one for eastward motion and the other for westward

motion. Similarly, vertical streets are composed of northbound and southbound

lanes. Road junctions are formed by central points around which the traffic moves

always in the same direction.

A four-corner junction is shown in Fig. 5. The four middle cells constitute the

rotary. A vehicle on the rotary (like b or d) can either rotate counterclockwise or

exit. A local flag tf is used to decide the motion of a car in a rotary. If tf = 0,

the vehicle (like d) exits in the direction allowed by the color of its lane (see figure

caption). If tf = 1, the vehicle moves counterclockwise, like b. The value of the local

turn flag tf can be updated according to the modeling needs: it can be constant for

some amount of time to impose a particular motion at a given junction, completely

random, random with some bias to favor a direction of motion, or may change

deterministically according to any user specified rule.

a b

cd

e

f g

h

Fig. 5. Example of a traffic configuration near a junction. The four central cells represent a rotary
which is traveled counterclockwise. The grey levels indicate the different traffic lanes: white is a
northbound lane, light grey an eastbound lane, grey a southbound lane and, finally, dark grey
is a westbound lane. The dots labeled a, b, c, d, e, f , g and h are cars which will move to the
destination cell indicated by the arrows, as determined by the cell turn flag tf . Cars without an
arrow are forbidden to move.
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(a) (b)

Fig. 6. Traffic configuration after 600 iterations, for a car density of 30%. Streets are white,
buildings grey and the black pixels represent the cars. The Situation (a) corresponds to an equally
likely behavior at each rotary junction, whereas image (b) mimics the presence of traffic lights.
In the second case, queues are more likely to form and the global mobility is less than in the first
case.

Figure 6 shows a typical traffic configurations. In Fig. 6(a), a vehicle has a

probability 1/2 to exit at each rotary cell. In Fig. 6(b), the turn flag tf has an

initial random distribution on the rotary. This distribution is fixed for the first 20

iterations and then flips to tf = 1− tf for the next 20 steps an so on. In this way, a

junction acts as a kind of traffic light, which for some amount of time, allows only

a given flow pattern. We observed that the global traffic pattern is different in the

two cases: in case (a), the car distribution is quite homogeneous along the streets.

On the other hand, in case (b), cars get queued at some junctions while some other

streets remain empty.

The behavior of the above traffic model can be described analytically [41]. The

first important fact is that a rotary junction has a maximum possible flow of cars.

Thus, the number of vehicles able to enter a rotary per unit time cannot be larger

than a given value determined by the rule of motion. Therefore, there is a critical

average density ρcrit
1 above which the traffic is not free but constrained by this

maximum rotary flow. As a result, car queues are formed at road junctions.

The second key observation is that, in the regime above ρcrit
1 , the system self-

organizes in three different regions of fixed car densities: the queues that form before

a junction, the road segments after a junction, characterized by a low traffic density

and the region inside a rotary. The three densities associated to these different

regions correspond to a jammed density ρj , a free traffic density ρf and a rotary

density ρr, respectively.

As the overall car number is increased, ρj , ρf and ρr remains constant: the

result of increasing the number of cars is to extend the length ` of the car queues,

without changing the density in the three regions. The reason for fixed densities is

that, due to the flow diagram of rule 184 [190], there are only two possible densities
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ρf and ρj compatible with a given traffic flow ρ〈v〉, along a road segment. Thus,

the only way to absorb an excess of cars is to increase the size of the queue.

When one keeps adding cars in the system, there is a second critical average

density ρcrit
2 for which the length of some queues becomes larger than the distance

separating two consecutive street intersections. The up-traffic rotary output gets

disturbed and, from a maximum-flow traffic regime, one gets into a strongly jammed

phase.

Provided that the turning decision at rotaries is random and not time correlated,

one typically obtains [41]

ρf =
1

4
, ρj =

3

4
, ρr =

1

2
. (2.11)

Assuming that the queue length is ` along all road segments and that the separation

between two consecutive junctions is L (the network period), we can relate the

average car density ρ to ` by the relation [190]

4(L− 2− `)ρf + 4`ρj + 4ρr = 4Lρ . (2.12)

Equation (2.12) simply reflects that the total number of cars is distributed in three

regions: queues of length ` and density ρj , free traffic segments of length L− `− 2

and density ρf and rotaries of size four and density ρr.

In the case of large L, the queue length can be approximated by

`

L
=

ρ− ρf
ρj − ρf

. (2.13)

Equation (2.13) provides a way to determine the critical densities ρcrit
1 and ρcrit

2 .

For ρ < ρf , ` is negative, which should be interpreted in the sense that no queue

is formed. This is the free traffic regime. Thus, ρcrit
1 = ρf = 1/4 and the average

velocity is 〈v〉 = 1, independent of ρ.

On the other hand, for ρf < ρ < ρj , car queues form but their lengths are

smaller than the distance between successive intersections. This is the maximum

flow regime. In this case, we have ρ〈v〉 = J = const = 1/4, that is 〈v〉 = 1/(4ρ).

Finally, for ρ > ρj = ρcrit
2 , the queues reach their maximum length L and the

rotary exits are hindered. This is the strongly jammed traffic regime. The traffic

velocity is governed by the motion of holes and obeys Eq. (2.10), namely 〈v〉 =

(1 − ρ)/ρ. If 〈v〉 is taken as the order parameter, both of these transitions are

second order.

Figure 7(a) shows the velocity-density diagram obtained from CA simulations,

for the situation we just described. We have considered various road spacings for our

measurements (i.e the distance L separating consecutive intersections). The larger

the spacing the better the agreement with the analytical description. Note that for

small L, the correlation along the lane cannot build up and 〈v〉 obeys Eq. (2.9).

In Fig. 7(b), we also show the velocity-density diagram in the case the drivers

choose the rotary exit at random but stick to this decision even if the exit they

have chosen is not free.
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(a) (b)

Fig. 7. Average velocity versus average density for the cellular automata street network, for
(a) time-uncorrelated turning strategies and (b) a fixed driver’s decision. The different curves
correspond to different distances L between successive road junctions. The dashed line is the
analytical prediction. Junction deadlock is likely to occur in (b), resulting in a completely jammed
state.

The present CA model can be adapted to simulate traffic in more realistic

situations. We have considered the case of the city of Geneva and its suburbs [56, 35].

The simulations uses the full road network (4000 km, 3145 road segments and 1066

junctions with a number of 800765 cells) and a large set of origin and destination

pairs (about 50 000) for the cars traveling during the rush hour.

The precise departure time of each vehicle is not known from observations. It is

natural to assume that the distribution of these departure times is not uniform. Here

we assume that this distribution has the form shown in Fig. 8 and is characterized

by two parameters: (i) the duration I of the departure period and (ii) the ratio

p2/p1 specifying the degree of non-uniformity. Empirically we choose p2/p1 = 6

and I = 45 minutes (so that almost all cars have arrived after 90 minutes).

I
3

I
32

time
0 I

Probability

p2

p1

Fig. 8. Distribution of departure times used in the simulation of the city of Geneva traffic.
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Due to the lack of data concerning the real evolution of the traffic state in the

city of Geneva, we did not investigate systematically the effect of varying p2/p1 and

I. Rather, we focused on the problem of measuring the time necessary for a test

car to travel from a given origin A to a given destination B. This time is of direct

interest to the drivers because it determines, for instance, when they must leave

their house in order to be on time at their workplace. This is also a quantity which

is easily compared with reality by actually driving from A to B.

The interesting fact is that the travel time is a fluctuating quantity. If one

repeats the same trip under the same condition (for instance the next day, at the

same time), the drive is likely to be longer or shorter. This fact is well known

from everyday experience and is also well reproduced in the CA model because the

probability distribution of the departure times gives the necessary randomness to

produce fluctuations when the simulation is repeated.

Our main result is that the amplitude of the variations of the travel times

depends very much on the departure time of the test car and on its trip. In the

simulations, we studied the four trips shown in Fig. 9.

Origin
Destination

1

3

2

4
3

1
4

2

Fig. 9. The road network of Geneva used in our simulation and the four selected trips considered
to measure the travel time of a test car.
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Fig. 10. Expectation time and “risk” of trips 2 and 3 of Fig. 9. The horizontal axis corresponds
to the departure time of a test vehicle within interval I. The dashed line shows the average driving
time and the shaded region indicates the amplitude of the variation of this time (computed as the
standard deviation). Note that the times shown here are pretty realistic, thus giving an indirect
validation of our simulations for the case of Geneva.

The measured times obtained from the simulation for trips 2 and 3 are shown

in Fig. 10. The results for trip 1 and 4 are similar.

For trip 3, the average time needed to reach the desired destination is not

constant: it is maximal if the driver leaves 15 to 20 minutes after the start of the

rush hour. It is minimal if the diver leaves at the very beginning or the very end

of interval I. On the other hand, the average time for trip 2 is quite stable. These

two situations differ by the fact that trip 3 uses heavily loaded sections with many

crossings while trip 2 uses higher capacity sections.

We also observe that, for trip 3, it is impossible to make accurate predictions on

the time needed to reach the destination point. Variations of up to 30% show up.

We call this variation the riskc associated to the trip (for a given departure time)

to describe the fact that an expected outcome is likely not to occur. In practice,

for trip 3, in which the variation is high, there is a large risk to arrive late the

at destination, or to be too early, which may not be acceptable either. This also

means that it is not possible to establish an accurate schedule for taxis or public

transportation, unless dedicated lanes are available.

Finally, Fig. 11 shows the dependence of 〈v〉, the average car velocity in the

network, as a function of the average car density ρ. Since the traffic load is

not stationary but concentrated within about one and a half hour, the steady-

state density-velocity diagram (as shown for instance in Fig. 7) is no longer

valid and must be replaced by a “dynamic” diagram which shows a significant

hysteresis.

cIn finance, the term risk is also used to describe the standard deviation of a random quantity.
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Fig. 11. Dynamical flow diagram for p2/p1 = 6. As time goes on (t ∈ [0, I]), the car density first
increases and the upper branch of the diagram is formed; then, when the density decreases, the
lower branch is measured.

2.5. A simple gas: the HPP model

The HPP rule is a simple example of an important class of cellular automata models:

lattice gas automata (LGA). The basic ingredient of such models are point particles

that move on a lattice, according to appropriate rules so as to mimic a fully discrete

“molecular dynamics.”

The HPP lattice gas automata is traditionally defined on a two-dimensional

square lattice. Particles can move along the main directions of the lattice, as shown

in Fig. 12. The model limits to 1 the number of particles entering a given site

Fig. 12. Example of a configuration of HPP particles.
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with a given direction of motion. This is the exclusion principle which is common

in most LGA. Consequently, four bits of information in each site are enough to

describe the system during its evolution. For instance, if at iteration t site ~r has

the following state s(~r, t) = (1011), it means that three particles are entering the

site along direction 1, 3 and 4, respectively.

The cellular automata rule describing the evolution of s(~r, t) is often split into

two steps: collision and motion (or propagation). The collision phase specifies how

the particles entering the same site will interact and change their trajectories. The

purpose of the HPP rule is to model a gas of colliding particles and, thus, essential

features of this step are borrowed from real microscopic interactions, namely local

conservation of momentum and particle number. Since the collision phase amounts

to rearranging the particles in different direction, it ensures that the exclusion

principle will be satisfied, provided that it was at time t = 0.

During the propagation phase, the particles actually move to the nearest

neighbor site they are traveling to. Figure 13 illustrates the HPP rules. This decom-

position into two phases is a quite a convenient way to partition the space so that

the collision rule is purely local.

(a)

(b)

(c)

time t time t+1

Fig. 13. The HPP rule: (a) a single particle has a ballistic motion until it experiences a collision;
(b) and (c) the two non-trivial collisions of the HPP model: two particles experiencing a head
on collision are deflected in the perpendicular direction. In the other situations, the motion is
ballistic, that is the particles are transparent to each other when they cross the same site.
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According to our Boolean representation of the particles at each site, the collision

part for the two head on collisions are expressed as

(1010)→ (0101) , (0101)→ (1010) (2.14)

all the other configurations being unchanged. During the propagation phase, the

first bit of the state variable is shifted to the east neighbor cell, the second bit to

the north and so on.

The aim of this rule is to reproduce some aspect of the real interactions between

particles, namely that momentum and particle number are conserved during a col-

lision. From Fig. 13, it is easily checked that these properties are obeyed: a pair of

zero momentum particles along a given direction is transformed into another pair

of zero momentum along the perpendicular axis.

The HPP rule captures another important ingredient of the microscopic nature

of a real interaction: invariance under time reversal. Figures 13(b) and 13(c) show

that, if at some given time, the directions of motion of all particles are reversed, the

system will just trace back its own history. Since the dynamics of a deterministic

cellular automaton is exact, this fact allows us to demonstrate the properties of

physical systems to return to their original situation when all the particles reverse

their velocity.

Figure 14 illustrates the time evolution of a HPP gas initially confined in the left

compartment of a container. There is an aperture on the wall of the compartment

and the gas particles will flow so as to fill the entire space available to them. In order

to include a solid boundary in the system, the HPP rule is modified as follows: when

(a)

(b)

(a)

(b)

Fig. 14. Time evolution of a HPP gas. (a) From the initial state to equilibrium. (b) Illustration
of time reversal invariance: in the rightmost image of (a), the velocity of each particle is reversed
and the particles naturally return to their initial position.
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a site is a wall (indicated by an extra bit), the particles no longer experience the

HPP collision but bounce back from where they came. Therefore, particles cannot

escape a region delimited by such a reflecting boundary.

If the system of Fig. 14 is evolved, it reaches an equilibrium after a long enough

time and no macroscopic trace of its initial state is any longer visible. However,

no information has been lost during the process (no numerical dissipation) and the

system has the memory of where it comes from. Reversing all the velocities and

iterating the HPP rule makes all particles go back to the compartment in which

they were initially located.

This behavior is only possible because the dynamics is perfectly exact and that

no numerical errors are present in the numerical scheme. If one introduces externally

some errors (for instance, one can add an extra particle in the system) before the

direction of motion of each particle is reversed, then reversibility is lost.

The HPP rule is important because it contains the basic ingredients of many

models we are going to discuss below. However, the capability of this rule to model

a real gas of particles is poor, due to a lack of isotropy and spurious invariants. We

shall see in Sec. 3 that a remedy to this problem is to use a different lattice.

2.6. Random walk

The HPP rule we discussed in the previous section can be easily modified to produce

many synchronous random walks. Instead of experiencing a mass and momentum

conserving collision, each particle now selects, at random, a new direction of motion

among the possible values permitted by the lattice. Since several particles may enter

the same site (up to four, on a two-dimensional square lattice), the random change

of directions should be such that there are never two or more particle exiting a site

in the same direction. This would otherwise violate again the exclusion principle.

The solution is to shuffle the directions of motion or, more precisely, to perform

a random permutation of the velocity vectors, independently at each lattice site

and at each time step. Figure 15 illustrate this probabilistic evolution rule. Note

that at a macroscopic level of description, the random walk rule corresponds to a

diffusion process (see Sec. 6.3.1).

As an example of the use of the present random walk cellular automata rule,

we discuss an application to growth processes. In many cases, growth is governed

by a spatial quantity such as an electric field, a local temperature, or a particle

density field [177]. Aggregation constitutes an important mechanism: like particles

stick to each other as they meet and, as a result, form a complicated pattern with

a branching structure.

A prototype model of aggregation is the so-called DLA model (diffusion-limited

aggregation), introduced by Witten and Sander [183] in the early 1980s. Since

its introduction, the DLA model has been investigated in great detail. However,

diffusion-limited aggregation is a far from equilibrium process which is not described

theoretically by first principles only. Spatial fluctuations that are typical of the DLA
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p0 p p2 p

Fig. 15. How the entering particles are deflected at a typical site, as a result of the diffusion rule.
The four possible outcomes occur with respective probabilities p0, p1, p2 and p3. The figure shows
four particles, but the mechanism is data-blind and any one of the arrows can be removed when
fewer entering particles are present.

growth are difficult to take into account and a numerical approach is necessary to

complete the analysis.

DLA-like processes can be readily modeled by our diffusion cellular automata,

provided that an appropriate rule is added to take into account the particle-particle

aggregation. The first step is to introduce rest particles to represent the particles of

the aggregate. Therefore, in a two-dimensional system, a lattice site can be occupied

by up to four diffusing particles, or by one “solid” particle. Our approach has some

differences compared with the original Witten and Sanders model. All particles

reside on a lattice and move simultaneously. They can stick to different part of the

cluster and we do not launch them, one after the other, from a region far away from

the cluster. For this reason, we may expect some quantitative variation from the

original DLA properties.

Figure 16 shows a two-dimensional DLA-like cluster grown by the cellular auto-

mata dynamics. At the beginning of the simulation, one or more rest particles

are introduced in the system to act as aggregation seeds. The rest of the sys-

tem is filled with particles with average concentration ρ. When a diffusing particle

becomes a nearest neighbor to a rest particle, it stops and sticks to it by trans-

forming into a rest particle. Since several particle can enter the same site, we may

choose to aggregate all of them at once (i.e. a rest particle is actually composed of

several moving particles), or to accept the aggregation only when a single particle is

present.
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Fig. 16. Two-dimensional cellular automata DLA-like cluster (black), obtained with ps = 1, an
aggregation threshold of 1 particle and a density of diffusing particles of 0.06 per lattice direction.
The gray dots represent the diffusing particles not yet aggregated.

In addition to this question, the sticking condition is important. If any diffus-

ing particle always sticks to the DLA cluster, the growth is very fast and can be

influenced by the underlying lattice anisotropy. It is therefore more appropriate to

stick with some probability ps. Since up to four particles may be simultaneously

candidates for the aggregation, we can also use this fact to modify the sticking

condition. A simple way is to require that the local density of particles be larger

than some threshold (say 3 particles) to yield aggregation. The cluster shown in

Fig. 16 has fractal dimension df = 1.78 which is not very different from the genuine,

off-lattice DLA fractal dimension [170, 177] df = 1.70.

The cellular automata approach is also well suited to study dynamical properties

such as the DLA growth rate. The standard numerical experiment is to distribute

uniformly the initial diffusing particles on the lattice with a single aggregation seed

in the middle. As time t goes on, more and more particles get solidified and the
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Fig. 17. Formation rate of cellular automata DLA clusters in two- and three-dimensions. The
lattice has periodic boundary conditions.

cluster mass M(t) increases. Our simulations indicate (see Fig. 17) that this process

has an intermediate regime governed by a power law

M(t) =∼ tα ,

where

α ≈ 2

in both two and three dimensions. Although these results are not sufficient to

conclude definitely that the 2-D and 3-D exponents are the same, an explanation

would be that in 3-D there is more surface to stick to than in 2-D, but also more

space to explore before diffusing particles can aggregate. These two effects may just

compensate.

2.7. The traveling ant

The ant rule is a cellular automata invented by Chris Langton [164] and Greg Turk

which models the behavior of a hypothetical animal (ant) having a very simple

algorithm of motion. The ant moves on a square lattice whose sites are either white

or grey. When the ant enters a white cell, it turns 90 degrees to the left and paints

the cell in gray. Similarly, if it enters a gray cell, it paints it in white and turn 90

degree to the right.

It turns out that the motion of this ant exhibits a very complex behavior.

Suppose the ant starts in a completely white space. After a series of about 500

steps where it essentially keeps returning to its initial position, it enters a chaotic

phase during which its motion is unpredictable. Then, after about 10000 steps of

this very irregular motion, the ant suddenly performs a very regular motion which

brings it far away from where it started.
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t=6900 t=10431 t=12000

Fig. 18. The Langton’s ant rule. The motion of a single ant starts with a chaotic phase of about
10000 time steps, followed by the formation of a highway. The figure shows the state of each lattice
cell (gray or white) and the ant position (marked by the black dot). In the initial condition all
cells are white and the ant is located in the middle of the image.

Figure 18 illustrates the ant motion. The path the ant creates to escape the

chaotic initial region has been called a highway [142]. Although this highway is

oriented at 45 degrees with respect to the lattice direction, it is traveled by the ant

in a way which makes one very much think of a sewing machine: the pattern is a

sequence of 104 steps which is repeated indefinitely.

The Langton ant is a good example of a cellular automata whose rule is very

simple and yet generates a complex behavior which seems beyond our understand-

ing. Somehow, this fact is typical of the cellular automata approach: although we

do know everything about the fundamental laws governing a system (because we

set up the rules ourselves!), we are often unable to explain its macroscopic behavior.

There is anyway a global property of the ant motion: the ant visits an unbounded

region of space, whatever the initial space texture is (configuration of gray and white

cells).

The proof (due to Bunimovitch and Troubetzkoy) goes as follows: supposed the

region the ant visits is bounded. Then, it contains a finite number of cells. Since the

number of iterations is infinite, there is a domain of cells that are visited infinitely

often. Moreover, due to the rule of motion, a cell is either entered horizontally

(we call it a H cell) or vertically (we call it a V cell). Since the ant turns by

90 degrees after each step, a H cell is surrounded by four V cells and conversely. As

a consequence, the H and V cells tile the lattice in a fixed checkerboard pattern.

Now, we consider the upper rightmost cell of the domain, that is a cell whose right

and upper neighbor is not visited. This cell exists if the trajectory is bounded. If this

cell is a H cell (and it is so for ever), it has to be entered horizontally from the left

and exited vertically downward and, consequently becomes gray. However, after the

ant has left, the cell is white and there is a contradiction. The same contradiction

appears if the cell is a V cell. Therefore, the ant trajectory is not bounded.
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As it has been described, the above rule is defined only when a single ant

moves on the lattice. We can easily generalize it when many ants are simultaneously

present so that up to four of them may enter the same site at the same time, from

different sides

Following the same idea as in the HPP rule, we will introduce ni(~r , t) as a

Boolean variable representing the presence (ni = 1) or the absence (ni = 0) of an

ant entering site ~r at time t along lattice direction ~ci, where ~c1, ~c2, ~c3 and ~c4 stand

for direction right, up, left and down, respectively. If the color µ(~r , t) of the site

is gray (µ = 0), all entering ants turn 90 degrees to the right. On the other hand,

if the site is white(µ = 1), they all turn 90 degrees to the left. The color of each

cell is modified after one or more ants have gone through. Here, we chose to switch

µ→ 1− µ only when an odd number of ant are present.

When several ant travel simultaneously on the lattice, cooperative and destruc-

tive behaviors are observed. First, the erratic motion of several ants favors the

formation of a local arrangement of colors allowing the creation of a highway. One

has to wait much less time before the first highway appears. Second, once a highway

is being created, other ants may use it to travel very fast (they do not have to follow

the complicated pattern of the highway builder. In this way, the term “highway”

is very appropriate. Third, a destructive effect occurs as the second ant gets to the

highway builder. It breaks the pattern and several situations may be observed. For

instance, both ants may enter a new chaotic motion; or the highway is traveled in

the other direction (note that the rule is time reversal invariant) and destroyed.

Figure 19 illustrates the multi-ant behavior.

t=2600 t=4900 t=8564

Fig. 19. Motion of several Langton’s ants. Gray and white indicate the colors of the cells at the
current time. Ant locations are marked by the black dots. At the initial time, all cells are white
and a few ants are randomly distributed in the central region, with random directions of motion.
The first highway appears much earlier than when the ant is alone. In addition the highway can
be used by other ants to travel much faster. However, the “highway builder” is usually prevented
from continuing its construction as soon as it is reached by the following ants. For instance, the
highway heading north-west after 4900 steps get destroyed. A new highway emerges later on from
the rest, as we see from the snapshot at time t = 8564.
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The problem of an unbounded trajectory pauses again with this generalized

motion. The assumption of Bunimovitch–Troubetzkoy’s proof no longer holds in

this case because a cell may be both a H or a V cell. Indeed, two different ants may

enter the same cell one vertically and the other horizontally. Actually, the theorem

of an unbounded motion is wrong in several cases where two ants are present.

Periodic motions may occur when the initial positions are well chosen.

For instance, when the relative location of the second ant with respect to the

first one is (∆x,∆y) = (2, 3), the two ants returns to their initial position after 478

iterations of the rule (provided they started in an uniformly white substrate, with

the same direction of motion). A very complicated periodic behavior is observed

when (∆x,∆y) = (1, 24): the two ant start a chaotic-like motion for several thou-

sands of steps. Then, one ant builds a highway and escape from the central region.

After a while, the second ant finds the entrance of the highway and rapidly catches

the first one. After the two ants meet, they start undoing their previous paths and

return to their original position. This complete cycle takes about 30000 iterations.

More generally, it is found empirically that, when ∆x+ ∆y is odd and the ants

enter their site with the same initial direction , the two-ant motion is likely to be

periodic. However, this is not a rule and the configuration (∆x,∆y) = (1, 0) yields

an unbounded motion, a diamond pattern of increasing diameter which is traveled

in the same direction by the two ants.

It turns out that the periodic behavior of a two-ant configuration is not so

surprising. The rule we defined is reversible in time, provided that there is never

more than one ant at the same site. Time reversal symmetry means that if the

direction of motion of all ants are reversed, they will move backward through their

own sequence of steps, with an opposite direction of motion. Therefore, if at some

point of their motion the two ants cross each other (on a lattice link, not on a

site), the first ant will go through the past of the second one, and vice versa. They

will return to the initial situation (the two ants being exchanged) and build a

new pattern, symmetrical to the first one, due to the inversion of the directions of

motion. The whole process then cycles for ever. Periodic trajectories are therefore

related to the probability that the two ants will, at a some time, cross each other

in a suitable way. The conditions for this to happen are fulfilled when the ants sit

on a different sublattice (black or white sites on the checkerboard) and exits two

adjacent sites against each other. This explain why a periodic motion is likely to

occur when ∆x+ ∆y is odd.

2.8. Population dynamics

In addition to physical, chemical or biological systems, the CA approach is interest-

ing for the study of simple population models. Several different problems can be

envisaged, such as the simulation of ecosystems or the social behavior in a popula-

tion of interacting individuals. Here we consider an example of the latter situation.

The social behavior of the group of persons is certainly related to the fact that

each individual has its own autonomy and perception of the environment. On the
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other hand, the behavior of a whole population may also reflect some “mechanical”

or spontaneous response of an individual to the situation it is confronted with. We

may hope that the collective behavior that may emerge from such a proceess could

be captured by some CA model, provided that one is able to find the rule to which

each individual obeys. At least it is worthwhile to check whether a given social

behavior can be explained with such mechanisms before incriminating the fact that

each individual is free to think and act in its own way.

Here we address the generic problem of the competing fight between two different

groups over a fixed area. We present a “voter model” which describes the dynamical

behavior of a population with bimodal conflicting interests and study the conditions

of extinction of one of the initial groups [69].

This model can be thought of as describing the smoker–non-smoker fight: in a

small group of persons, a majority of smokers will usually convince the few others

to smoke and vice versa. The point is really when an equal number of smokers and

non-smokers meet. In that case, it may be assumed that a social trend will decide

between the two attitudes. In the US, smoking is viewed as a disadvantage whereas,

in France, it is rather well accepted. In other words, there is a bias that will select

the winning party in an even situation. In our example, whether one studies the

French or US case, the bias will be in favor of the smokers or the non-smokers,

respectively.

The same mechanism can be associated with the problem of competing stan-

dards. The choice of one or the other standard is often driven by the opinion of the

majority of people one meets. But, when the two competing systems are equally

represented, the intrinsic quality of the product will be decisive. Price and techno-

logical advance then play the role of a bias.

Here we consider the case of four-person confrontations in a spatially extended

system in which the actors (species A or B) move randomly. Initially, the B species

is present with density b0 and the A species with density 1− b0. The B individuals

are supposed to have a qualitative advantage over the As but are less numerous.

The question we want to address is what is the minimal density b0 which make

the Bs win over the As (i.e. invade the entire system at the expense of the A

individuals). The process of spatial contamination of opinion plays a crucial role in

this dynamics.

The CA rule we propose here [69] to describe this proceess is derived from a

model by Galam [68], in which the four individuals involved in a tournament are

randomly chosen among the current population, whose composition in A or B type

of persons evolves after each confrontation. The density threshold for an invading

emergence of B is bc = 0.23 if the B group has a qualitative bias over A. With a

spatial distribution of the species, even if b0 < bc, B can still win over A provided

that it strives for confrontation. Therefore a qualitative advantage is found not

to be enough to win. A geographic as well a definite degree of aggressiveness are

instrumental to overcome the less fitted majority.
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The model we use to describe the two populations A and B influencing each

other or competing for some unique resources, is based on the diffusion automaton

proposed in Sec. 2.6. The particles have two possible internal states (±1), coding

for the A or B species, respectively.

The individuals move on a two-dimensional square lattice. At each site, there

are always four individuals (any combination of A’s and B’s is possible). These four

individuals all travels in a different lattice direction (north, east, south and west).

The interaction takes place in the form of “fights” between the four individuals

meeting on the same site. At each fight, the group nature (A or B) is updated

according to the majority rule, when possible, otherwise with a bias in favor of the

best fitted group:

• The local majority species (if any) wins:

nA+mB →
{

(n+m)A if n > m

(n+m)B if n < m
,

where n+m = 4.

• When there is an equal number of A and B on a site, B wins the confrontation

with probability 1/2 + β/2. The quantity β ∈ [0, 1] is the bias accounting for

some advantage (or extra fitness) of species B.

The above rule is applied with probability k. Thus, with probability 1 − k the

group composition does not change because no fight occurs. Between fights both

population agents perform a random walk on the lattice.

The behavior of this model is illustrated in Fig. 20. The current configuration

is shown at three different time steps. We can observe the growth of dense clusters

of B invading the system.

It is clear that the model richness comes from the even confrontations. If only

odd fights would happen, the initial majority population would always win after

some short time. The key parameters of this model are (i) k, the aggressiveness

(probability of confrontation), (ii) β, the B’s bias of winning a tie and (iii) b0, the

initial density of B.

t=10 t=30 t=70

Fig. 20. Configurations of the voter CA model, at three different times. The A and B species
are represented by the gray and white regions, respectively. The parameters of the simulation are
b0 = 0.1, k = 0.5 and β = 1.
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The strategy according to which a minority of B’s (with yet a technical, genetic,

persuasive advantage) can win against a large population of A’s is not obvious.

Should they fight very often, try to spread or accept a peace agreement? We study

the parameter space by running the cellular automaton.

In the limit of low aggressiveness (k → 0), the particles move a long time

before fighting. Due to the diffusive motion, correlation between successive fights

are destroyed and B wins provided that b0 > 0.23 and β = 1. This is the mean-

field level of our dynamical model which corresponds to the theoretical calculations

made in Ref. 68.

More generally, we observe that B can win even when b0 < 0.23, provided it

acts aggressively, i.e. by having a large enough k. Thus, there is a critical density

bdeath(k) < 0.23 such that, when b0 > bdeath(k), all A are eliminated in the final

outcome. Below bdeath, B loses unless some specific spatial configurations of B’s are

present.

Therefore the growth of species B at the expense of A is obtained by a spatial

organization. Small clusters that may accidentally form act as nucleus from which

the B’s can develop. In other words, above the mean-field threshold bc = 0.23 there

is no need to organize in order to win but, below this value only condensed regions

will be able to grow. When k is too small, such an organization is not possible (it is

destroyed by diffusion) and the strength advantage of B does not lead to success.

Figure 21 summarizes, as a function of b0 and k, the regions where either

A or B succeeds. It is found that the separation curve satisfies the equation

(k + 1)7(b0 − 0.077) = 0.153.
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Fig. 21. Phase diagram for our socio-physical model with β = 1. The curve delineates the regions
where, on the left, A wins with high probability and, on the right, B wins with probability one.
The outcome depends on b0, the initial density of B and k, the probability of a confrontation.
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It is also interesting to study the time needed to annihilate completely the loser.

Here, time is measured as the number of fights per site (i.e. kt where t is the iteration

time of the automaton). We observe that the dynamics is quite fast and a few units

of time are sufficient to yield a collective change of opinion.

Following the same methodology, more complicated interactions between indi-

viduals can be investigated. The case of a non-constant bias is quite interesting

and is described in Ref. 69. In conclusion, although this model is very simple, it

abstracts the complicated behavior of real life agents by capturing some essential

ingredients. For this reason, the results we have presented may shed light on the

generic mechanisms observed in a social system of opinion making.

In particular we see that the correlations existing between successive fights may

strongly affect the global behavior of the system and that an organization is the key

feature to obtain a definite advantage over the other population. This observation

is important. For instance, during a campaign against smoking or an attempt to

impose a new system, it is much more efficient (and cheaper) to target the effort

on small nuclei of persons rather than sending the information in an uncorrelated

manner.

3. From Micro-Physics to Macro-Physics

In the previous section, we have discussed several cellular automata rules which are

relevant to the description of physical processes. The question is of course how close

these models are to the reality they are supposed to simulate.

In general, space and time are not discrete and, in classical physics, the state

variables are continuous. Thus, it is crucial to show how a cellular automata rule

is connected to the laws of physics or to the usual quantities describing the phe-

nomena which are modeled. This is particularly important if the cellular automata

is intended to be used as a numerical scheme to solve practical problems.

Lattice gas automata have a large potential of applications in hydrodynamics

and reaction-diffusion processes. The purpose of this section is to present the tech-

niques that are used to establish the connection between the macroscopic physics

and the microscopic discrete dynamics of the automaton. The problem one has to

address is the statistical description of a system of many interacting particles. The

methods we shall discuss here are very close, in spirit, to those applied in kinetic

theory: the N-body dynamics is described in terms of macroscopic quantities like

the particle density or the velocity field. The derivation of a Boltzmann equation

is a main step in this process.

To illustrate the method we first present the so-called FHP CA fluid model

because this system features all the relevant steps of the derivation.

3.1. The FHP model

The FHP rule is a model of a two-dimensional fluid which has been introduced

by Frisch, Hasslacher and Pomeau [67], in 1986. We will show here how the
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p=1/2

p=1/2

Fig. 22. The two-body collision in the FHP model. In the right part of the figure, the two possible
outcomes of the collision are shown in dark and light gray, respectively. They both occur with
probability one-half.

fully discrete microscopic dynamics maps onto the macroscopic behavior of hydro-

dynamics.

The model describes the motion of particles traveling in a discrete space and

colliding with each other, very much in the same spirit as the HPP lattice gas

discussed in Sec. 2.5. The main difference is that, for isotropy reasons that will

become clear below, the lattice is hexagonal (i.e. each site has six neighbors, as

shown in Fig. 22).

The FHP model is an abstraction, at a microscopic scale, of a fluid. It is expected

to contain all the salient features of real fluid. It is well known that the continuity

and Navier–Stoke equations of hydrodynamics express the local conservation of

mass and momentum in a fluid. The detailed nature of the microscopic interactions

does not affect the form of these equations but only the values of the coefficients

(such as the viscosity) appearing in them. Therefore, the basic ingredients one has to

include in the microdynamics of the FHP model is the conservation of particles and

momentum after each updating step. In addition, some symmetries are required so

that, in the macroscopic limit, where time and space can be considered as continuous

variables, the system is isotropic.

As in the case of the HPP model, the microdynamics of FHP is given in terms

of Boolean variables describing the occupation numbers at each site of the lattice

and at each time step (i.e. the presence or the absence of a fluid particle). The FHP

particles move in discrete time steps, with a velocity of constant modulus, pointing

along one of the six directions of the lattice. The dynamics is such that no more

than one particle enters the same site at the same time with the same velocity.

This restriction (the exclusion principle) ensures that six Boolean variables at each

lattice site are always enough to represent the microdynamics.

Interactions take place among particles entering the same site at the same time

and result in a new local distribution of particle velocities. In order to conserve

the number of particle and the momentum during each interaction, only a few con-

figurations lead to a non-trivial collision (i.e a collision in which the directions of
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Fig. 23. The three-body collision in the FHP model.

motion have changed). For instance, when exactly two particles enter the same site

with opposite velocities, both of them are deflected by 60 degrees so that the out-

put of the collision is still a zero momentum configuration with two particles. As

shown in Fig. 22, the deflection can occur to the right or to the left, indifferently.

For symmetry reasons, the two possibilities are chosen randomly, with equal

probability.

Another type of collision is considered: when exactly three particles collide with

an angle of 120 degrees between each other, they bounce back (so that the momen-

tum after collision is zero, as it was before collision). Figure 23 illustrates this rule.

Several variants of the FHP model exist in the literature [50], including some with

rest particles, like the FHP-II and FHP-III models.

For the simplest case we are considering here, all interactions come from the two

collision processes described above. For all other configurations (i.e those which are

not obtained by rotations of the situations given in Figs. 22 and 23) no collision

occurs and the particles go through as they were transparent to each other.

Both two- and three-body collisions are necessary to avoid extra conservation

laws. The two-particle collision removes a pair of particles with a zero total momen-

tum and moves it to another lattice direction. Therefore, it conserves momentum

along each line of the lattice. On the other hand, three-body interactions deflect

particles by 180 degrees and cause the net momentum of each lattice line to change.

However, three-body collisions conserve the number of particles within each lattice

line.

3.2. Microdynamics

The full microdynamics of the FHP model can be expressed by evolution equations

for the occupation numbers: we introduce ni(~r , t) as the number of particles (which

can be either 0 or 1) entering site ~r at time t with a velocity pointing along direction

~ci, where i = 1, 2, . . . , 6 labels the six lattice directions. The unit vectors ~ci are

shown in Fig. 24.
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c5 c6

Fig. 24. The direction of motion ~ci.

We also define the time step as ∆t and the lattice spacing as ∆r. Thus, the six

possible velocities ~v i of the particles are related to their directions of motion by

~v i =
∆r

∆t
~ci .

Without interactions between particles, the evolution equations for the ni would

be given by

ni(~r + ∆r~ci, t+ ∆t) = ni(~r , t) , (3.1)

which expresses that a particle entering site ~r with velocity along ~ci will continue

in straight line so that, at the next time step, it will enter site ~r + ∆r~ci with still

the same direction of motion. However, due to collisions, a particle can be removed

from its original direction or another one can be deflected into direction ~ci.

For instance, if only ni and ni+3 are 1 at site ~r , a collision occurs and the

particle traveling with velocity ~v i will then move with either velocity ~v i−1 or ~v i+1

(note that the operations on index i are wrapped onto the value 1, 2, . . . , 6). The

quantity

Di = nini+3(1− ni+1)(1− ni+2)(1− ni+4)(1− ni+5) (3.2)

indicates, when Di = 1 that such a collision will take place. Therefore,

ni −Di

is the number of particles left in direction ~ci due to a two-particle collision along

this direction.

Now, when ni = 0, a new particle can appear into direction ~ci, as the result

of a collision between ni+1 and ni+4 or a collision between ni−1 and ni+2. It is

convenient to introduce a random Boolean variable q(~r , t) which decides whether

the particles are deflected to the right (q = 1) or to the left (q = 0) when a two-body

collision takes place. Therefore, the number of particle created into direction ~ci is

qDi−1 + (1− q)Di+1 .



October 10, 2002 11:16 WSPC/169-ACS 00060

Cellular Automata: An Approach to Model Complex Systems 39

Particles can also be created into (or removed from) direction ~ci because of a three-

body collision. The quantity which expresses the occurrence of a three-body collision

with particles ni, ni+2 and ni+4 is

Ti = nini+2ni+4(1− ni+1)(1− ni+3)(1− ni+5) . (3.3)

As before, the result of a three-body collision is to modify the number of particles

in direction ~ci as

ni − Ti + Ti+3 .

Thus, in full generality, the microdynamics of a LGA is written as

ni(~r + ∆r~ci, t+ ∆t) = ni(~r , t) + Ωi(n(~r , t)) , (3.4)

where Ωi is called the collision term.

For the FHP model, Ωi is defined so as to reproduce the collisions, that is

Ωi(n) = −Di + qDi−1 + (1− q)Di+1 − Ti + Ti+3 . (3.5)

Using the full expression for Di and Ti, we obtain

Ωi(n) = −nini+2ni+4(1− ni+1)(1− ni+3)(1− ni+5)

+ ni+1ni+3ni+5(1− ni)(1− ni+2)(1− ni+4)

− nini+3(1− ni+1)(1− ni+2)(1− ni+4)(1− ni+5)

+ (1− q)ni+1ni+4(1− ni)(1− ni+2)(1− ni+3)(1− ni+5)

+qni+2ni+5(1− ni)(1− ni+1)(1− ni+3)(1− ni+4) . (3.6)

These equations are easy to code in a computer and yield a fast and exact imple-

mentation of the model. As an example, Fig. 25 illustrates a sound wave in the FHP

gas at rest. Note that, usually, the so-called FHP-III model [66], which include a

rest particle and a more complete set of collisions, is prefered when simulating a

fluid, due to better physical properties.

Fig. 25. Development of a sound wave in a FHP gas, due to an over particle concentration in
the middle of the system.
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3.3. The macroscopic variables

In a lattice gas automaton, the physical quantities of interest are not so much

the Boolean variables ni but macroscopic quantities or average values, such as, for

instance, the average density of particles and the average velocity field at each point

of the system. These quantities are defined from the ensemble average Ni(~r , t) =

〈ni(~r , t)〉 of the microscopic occupation variables. Ni(~r , t) is also the probability of

having a particle entering site ~r , at time t, with velocity ~v i = (∆r/∆t)~ci.

In general, a LGA is characterized by the number z of lattice directions and

the spatial dimensionality d. For a square lattice in d = 2 dimensions, we have

z = 4, whereas, for a hexagonal lattice, z = 6. It is also convenient to add a

(z+ 1)th direction, i = 0, corresponding to a population of rest particles for which,

obviously, ~v 0 = 0.

Following the usual definition of statistical mechanics, the local density of par-

ticles is the sum of the average number of particles traveling along each direction ~ci

ρ(~r , t) =
z∑
i=0

Ni(~r , t) . (3.7)

Similarly, the particle current, which is the density ρ times the velocity field ~u , is

expressed by

ρ(~r , t)~u(~r , t) =
z∑
i=1

~v iNi(~r , t) . (3.8)

Another quantity which will play an important role in the up coming derivation is

the momentum tensor Π defined as

Παβ =
z∑
i=1

viαviβNi(~r , t) , (3.9)

where the greek indices α and β label the d spatial components of the vectors.

The quantity Π represents the flux of the α-component of momentum transported

along the β-axis. This term will contain the pressure contribution and the effects

of viscosity.

3.4. Multiscale Chapman Enskog expansion

It is important to show that the discrete CA world is, at some appropriate scale

of observation, governed by admissible equations: the physical conservation laws

and the symmetry of the space are to be present and the discreteness of the lattice

should not show up. The connection between the microscopic Boolean dynamics

and the macroscopic, continuous world has to be established in order to assess the

validity of the model.

In what follows we restrict the discussion to the case where all speeds ~v i have

the same modulus and no particle at rest exists.



October 10, 2002 11:16 WSPC/169-ACS 00060

Cellular Automata: An Approach to Model Complex Systems 41

The starting point to obtain the macroscopic behavior of the CA fluid is to

derive an equation for the Ni’s. Averaging the microdynamics (3.4) yields

Ni(~r + ∆r~ci, t+ ∆t)−Ni(~r , t) = 〈Ωi〉 , (3.10)

where Ωi is the collision term of the LGA under study. It is important to notice

that Ωi(n) has some generic properties, namely

z∑
i=1

Ωi = 0 ,
z∑
i=1

~v iΩi = 0 (3.11)

expressing the fact that particle number and momentum are conserved during the

collision process (the incoming sum of mass or momentum equals the outgoing sum).

If more conservation laws exists (e.g. energy), the collision term should reflect them.

It is also expected that no extra quantities are conserved in addition to the physical

ones. This is usually not the case: spurious invariants are found in several lattice

models [19, 33, 94, 191, 127] and they may affect the physical behavior.

Equation (3.10) is still discrete in space and time. The Ni’s vary between 0 and

1 and, at a scale L� ∆r, T � ∆t, one can expect them to be smooth functions of

the space and time coordinates. Therefore, Eq. (3.10) can be Taylor expanded up

to second order and gives

∆t∂tNi + ∆r(~ci · ∇)Ni +
∆2
t

2
∂2
tNi +

∆2
r

2
(~ci · ∇)2Ni

+ ∆r∆t(~ci · ∇)∂tNi = 〈Ωi〉 . (3.12)

The macroscopic limit of a LGA dynamics will require the solution of this equation.

However, under the present form, there is little hope to solve it. Several approx-

imations will be needed. At some point, it will be necessary to use the so-called

Boltzmann assumption saying that Ni and Nj are uncorrealated if i 6= j, and to

approximate 〈Ωi(n)〉 as Ωi(N) (with all random Boolean variables replaced by their

average values).

Then, we will have to solve a non-linear equation, which can be handled provided

that we use a perturbation technique. For this purpose, we need a small parameter

ε. As we said we are interested to observe the system at a macroscopic scale L� ∆r.

Thus, we introduce a new space variable ~r 1 such that

~r 1 = ε~r , ∂~r = ε∂~r 1
(3.13)

with ε� 1.

Unfortunately, the equation we obtain by substituting into Eq. (3.12) ∂~r with

its expression in terms of ~r 1 cannot be solved with a naive perturbation method.

It is necessary to introduce several time scales, otherwise divergences will occur.

Following the procedure of the so-called multiscale expansion (see for instance

Ref. 138), we introduce the extra time variables t1 and t2, as well as new func-

tions N ε
i depending on ~r 1, t1 and t2

N ε
i = N ε

i (t1, t2, ~r1) .
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Suppose that now we formally substitute into Eq. (3.12)

Ni → N ε
i , ∂t → ε∂t1 + ε2∂t2 , ∂r → ε∂~r 1

(3.14)

together with the corresponding expressions for the second order derivatives.

Rigorously, we have no reason to consider only two time scales. However this will be

enough here and, from a physical standpoint, we may anticipate that t1 will be the

scale giving the convective phenomena, while t2 will describe dissipative processes.

After substitution in Eq. (3.14), we then obtain new equations for the new

functions N ε
i . The advantage is that, now, these equations can be solved by a

pertubation method and the divergences removed [138]. Thus, we may write

N ε
i = N

(0)
i + εN

(1)
i + ε2N

(2)
i + · · · . (3.15)

In addition we notice that, on the region,

t1 = εt , t2 = ε2t ,

we precisely have the equality

∂t = ε∂t1 + ε2∂t2 (3.16)

and our new equations have for solutions

N ε
i (εt, ε

2t, ε~r 1) = Ni(t, ~r ) .

From now on, we shall omit the superscript ε on Ni because we are only interested

in what happens when t1 = εt and t2 = ε2t.

3.5. Chapman Enskog procedure

The Chapman–Enskog method is the standard procedure used in statistical

mechanics to solve an equation like Eq. (3.12) with a perturbation parameter ε.

Assuming that < Ωi(n) > can be factorized into Ωi(N), we write the contributions

of each order in ε. According to multiscale expansion (3.15), the right-hand side of

Eq. (3.12) reads

Ωi(N) = Ωi(N
(0)) + ε

z∑
j=1

(
∂Ωi(N

(0))

∂Nj

)
N

(1)
j +O(ε2) .

Using expressions (3.15), (3.16) and (3.13) for Ni, ∂t and ∂~r in the left-hand side

of (3.12) yields the following conditions for the first two orders in ε

O(ε0) : Ωi(N
(0)) = 0 (3.17)

and

O(ε1) : ∂t1N
(0)
i + ∂1αviαN

(0)
i =

1

∆t

z∑
j=1

(
∂Ωi(N

(0))

∂Nj

)
N

(1)
j , (3.18)

where the subscript 1 in spatial derivatives (e.g. ∂1α) indicates a differential operator

expressed in the variable ~r 1.
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The first equation determines the N
(0)
i ’s. Once they are known, they can be

substituted into the second equation in order to obtain a solution for the N
(1)
i .

Unfortunately, this procedure is not as simple as it first looks, because the matrix

(∂Ω/∂N) (whose elements are ∂Ωi/∂Nj) is not invertible, due to the conservation

laws (3.11). Indeed ∑
i

(
∂Ωi
∂Nj

)
=

∂

∂Nj

∑
i

Ωi = 0

and, similarly ∑
i

viα

(
∂Ωi
∂Nj

)
= 0 .

Thus, the columns of the matrix (∂Ω/∂N) are linear combinations of each other

and the determinant is zero. The above two equations can also be written as:(
∂Ω

∂N

)T
E0 = 0 ,

(
∂Ω

∂N

)T
Eα = 0 , 1 ≤ α ≤ d , (3.19)

where the quantities E0 and Eα are called the collisional invariants and are vectors

of Rz defined as:

E0 = (1, . . . , 1) ,

Eα = (v1α, . . . , vzα) .
(3.20)

The reason the Eα are called collisional invariants is because they described the

conserved quantities of the dynamics, namely

N · E0 = ρ , N · Eα = ρuα , (3.21)

where · denotes the scalar product in Rz.

In order for Eq. (3.18) to have a solution, it is necessary that ∂t1N
(0)
i +

∂1αviαN
(0)
i be in the image space of (∂Ω/∂N). It is well known from linear algebra

that the image of a matrix is orthogonal (in the sense of the scalar product) to the

kernel of its transpose

Im

(
∂Ω

∂N

)
=

[
Ker

(
∂Ω

∂N

)T]⊥
. (3.22)

Therefore, the solubility condition of Eq. (3.18) requires that ∂t1N
(0)
i +∂1αviαN

(0)
i

be orthogonal to E0, E1 and E2. We shall see in the next section that this condition

is satisfied (Eqs. 3.25) and (3.26)).

Finally, note that when a solution to Eq. (3.18) exists, it is not unique (again,

due to the fact that (∂Ω/∂N) is not invertible). For this reason, we also impose the

extra conditions that the macroscopic quantities ρ and ρ~u are entirely given by the

zero order of expansion (3.15)

ρ =
z∑
i=1

N
(0)
i , ρ~u =

z∑
i=1

~v iN
(0)
i (3.23)
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and, therefore

z∑
i=1

N
(`)
i = 0 ,

z∑
i=1

~v iN
(`)
i = 0 , for ` ≥ 1 . (3.24)

In other words, this amounts to asking that the solution N (1) is also orthogonal to

the collisional invariants and belongs to Im(∂Ω/∂N).

3.6. Balance equations

Before we solve equations (3.17) and (3.18), remember that we are interested in the

behavior of the macroscopic quantities ρ and ρ~u . Conservation laws (3.11) imply

some important balance equation for these variables.

Summing Eq. (3.12) over i yields zero for the right-hand side. The same is true

if we first multiply (3.12) with ~v i before summing. If, again, we express (3.12) in

terms of ~r 1, t1, t2 and N
(`)
i we obtain (using Eq. (3.23)) the following result at

order ε:

O(ε) : ∂t1ρ+ div1 ρ~u = 0 (3.25)

and

O(ε) : ∂t1ρuα + ∂1βΠ
(0)
αβ = 0 . (3.26)

The quantity Π
(0)
αβ =

∑
i ~v iα~v iβN

(0)
i is the zero order approximation of the momen-

tum tensor defined in Eq. (3.9). One recognizes in Eq. (3.25) the usual continuity

equation, while Eq. (3.26) expresses momentum conservation and corresponds to

the Euler’s equation of hydrodynamics, in which dissipative effects are absent.

The same calculation can be repeated for the order O(ε2). Remembering rela-

tions (3.24), we find

∂t2ρ+
∆t

2
∂2
t1
ρ+

∆t

2
∂1α∂1βΠ

(0)
αβ + ∆t∂t1∂1αρuα = 0 (3.27)

and

∂t2ρuα + ∂1βΠ
(1)
αβ +

∆t

2
∂2
t1
ρua +

∆t

2
∂1β∂1γS

(0)
αβγ + ∆t∂t1∂1βΠ

(0)
αβ = 0 , (3.28)

where S is the third-order tensor

Sαβγ =
z∑
i=1

viαviβviγNi . (3.29)

These last two equations can be simplified using relations (3.25) and (3.26). Let us

first consider the case of Eq. (3.27). One has

∆t

2
∂2
t1
ρ = −∆t

2
∂t1∂1αρua (3.30)
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and, therefore

∆t

2
∂2
t1ρ+

∆t

2
∂1α∂1βΠ

(0)
αβ + ∆t∂t1∂1αρuα

=
∆t

2
∂1α

[
∂t1ρua + ∂1βΠ

(0)
αβ

]
= 0 . (3.31)

Thus, Eq. (3.27) reduces to

∂t2ρ = 0 . (3.32)

Similarly, since

∆t

2
∂2
t1
ρua = −∆t

2
∂t1∂1βΠ

(0)
αβ ,

Eq. (3.28) becomes

∂t2ρuα + ∂1β

[
Π

(1)
αβ +

∆t

2

(
∂t1Π

(0)
αβ + ∂1γS

(0)
αβγ

)]
= 0 . (3.33)

This last equation contains the dissipative contributions to the Euler equation

(3.26). The first contribution is Π
(1)
αβ which is the dissipative part of the momentum

tensor. The second part, namely ∆t

2

(
∂t1Π

(0)
αβ + ∂1γS

(0)
αβγ

)
comes from the second

order terms of the Taylor expansion of the discrete Boltzmann equation. These

terms account for the discreteness of the lattice and have no counterpart in stan-

dard hydrodynamics. As we shall see, they will lead to the so-called lattice viscosity.

The order ε and ε2 can be grouped together to give the general equations

governing our system. Summing Eqs. (3.33) and (3.26) with the appropriate power

of ε as factor gives

∂tρuα +
∂

∂rβ

[
Παβ +

∆t

2

(
ε∂t1Π

(0)
αβ +

∂

∂rγ
S

(0)
αβγ

)]
= 0 , (3.34)

where we have used that ∂t = ε∂t1 + ε2∂t2 and ∂α = ε∂1α. Similarly, Eqs. (3.25)

and (3.32) yield

∂tρ+ div ρ~u = 0 (3.35)

which is the standard continuity equation. Equation (3.34) corresponds to the

Navier–Stokes equation. With the present form, it is not very useful because the

tensors Π and S are not given in terms of the quantities ρ and ~u . To go further,

we will have to solve Eqs. (3.17) and (3.18) to find an expression for N
(0)
i and

N
(1)
i as a function of ρ and ~u . However, for the time being, it is important to

remember that the derivation of the continuity equation (3.35) and the Navier–

Stokes equation (3.34) are solely based on very general considerations, namely that∑
Ωi =

∑
~v iΩi = 0. The specific collision rules of the LGA under study (FHP

for instance) do not affect the structure of these balance equations. However, the

details of the collision rule will play a role for the explicit expression of Π and S.
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3.7. Local equilibrium

We now turn to the problem of solving Eq. (3.17), together with conditions (3.23)

in order to find N
(0)
i as a function of ρ and ρ~u .

The solutionsN
(0)
i which make the collision term Ω vanish are known as the local

equilibrium solutions. Physically, they correspond to a situation where the rate of

each type of collision equilibrates. Since the collision time ∆t is much smaller than

the macroscopic observation time, it is reasonable to expect, in first approximation,

that an equilibrium is reached locally.

Provided that the collision behaves reasonably, it is found [66] that the generic

solution is

N
(0)
i =

1

1 + exp(−A− ~B · ~v i)
. (3.36)

This expression has the form of a Fermi–Dirac distribution. This is a consequence

of the exclusion principle we have imposed in the cellular automata rule (no more

than one particle per site and direction). This form is explicitly obtained for the

FHP model by assuming that the rate of direct and inverse collisions are equal,

namely

Ti
(
N (0)

)
= Ti+3

(
N (0)

)
and

1

2
Di

(
N (0)

)
=

1

2
Di+1

(
N (0)

)
,

1

2
Di

(
N (0)

)
=

1

2
Di−1

(
N (0)

)
.

The quantities A and ~B in Eq. (3.36) are functions of the density ρ and the velocity

field ~u and are to be determined according to Eqs. (3.23). In order to carry out this

calculation, N
(0)
i is Taylor expanded, up to second order in the velocity field ~u (i.e.

second order in the Mach number). One obtains (see Ref. 33 for full details in the

case the FHP model).

N
(0)
i = aρ+

bρ

v2
~v i · ~u +

ρG(ρ)

v4
Qiαβuαuβ , (3.37)

where v = ∆r/∆t and

Qiαβ = viαviβ −
v2

d
δαβ . (3.38)

The coefficients entering this expression can be determined from (3.23). First

we assume that the lattice velocities have the following important properites

z∑
i=1

~v i = 0 , (3.39)

z∑
i=1

viαviβ = v2C2δαβ , (3.40)
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z∑
i=1

viαviβviγ = 0 , (3.41)

z∑
i=1

viαviβviγviδ = v4C4(δαβδγδ + δαγδβδ + δαδδβγ) , (3.42)

These conditions express the isotropy of tensors up to fourth order on the lattice.

These properties are necessary in order for the CA fluid flow to be isotropic (i.e.

independent of a specific lattice orientation), up to order u2. They hold for the

hexagonal lattice with C2 = 3 and C4 = 3/4 (see Refs. 33, 187), but Eq. (3.42) is

wrong for a 2-D square lattice and that is the reason why the FHP model is defined

on a hexagonal lattice.

From Eq. (3.40), one has
∑
i viαviα = v2C2δαα = v2dC2. On the other hand, if

all ~v i have same modulus v, a direct calculation gives
∑
i viαviα = zv2. Thus

C2 =
z

d
.

Similarly, using Eq. (3.42),

z∑
i=0

viαviβviγviγ = v4C4(dδαβ + δαβ + δαβ) = v4(d+ 2)C4δαβ .

Again, if all ~v i are of same length,
∑z
i=0 viαviβviγviγ = v2

∑z
i=0 viαviβ and, from

Eq. (3.40), it is equal to v4C2. Therefore,

C4 =
C2

d+ 2
=

z

d(d+ 2)
.

Using the above properties, it is easy to see that
∑
iQiαβ =

∑
iQiαβviγ = 0.

Thus the determination of the values of a and b is staightforward from Eq. (3.23);

ρ =
z∑
i=1

N
(0)
i = azρ , ρ~uα =

z∑
i=1

~v iαN
(0)
i = bC2ρuα .

Hence,

a =
1

z
, b =

1

C2
=
d

z
.

The function G is obtained from the fact that N
(0)
i is the Taylor expansion of a

Fermi-Dirac distribution. For FHP, it is found that [33, 66]

G(ρ) =
2

3

(3− ρ)
(6− ρ) .

The fact that G(p) is not equal to 1 and depends on ρ expresses the lack of Galilean

invariance of the CA fluid. Note that adding several rest particles to the model is

a way to restore gradually this invariance.
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We may now compute the local equilibrium part of the momentum tensor, Π
(0)
αβ .

This calculation requires multiplying Eq. (3.37) by viαviβ and summing over i.

Π
(0)
αβ =

∑
i

N
(0)
i viαviβ

= ρaC2v
2δαβ −

C2ρ

d
G(ρ)u2δαβ + C4ρG(ρ)(u2δαβ + 2uαuβ)

=

(
aC2v

2ρ−
[
C2

d
− C4

]
ρG(ρ)u2

)
δαβ + 2C4ρG(ρ)uαuβ . (3.43)

The quantity

p =

(
aC2v

2ρ−
[
C2

d
− C4

]
ρG(ρ)u2

)
(3.44)

is called the pressure term and 2C4G(ρ)ρuαuβ the convective part of the momentum

tensor. Thus the microdynamics gives an explicit expression for the pressure. The

term aC2v
2ρ corresponds to a perfect gas contribution, at fixed temperature. It is

usually written as

p = ρc2s , (3.45)

where cs is the speed of sound. From this relation, we may identify

c2s = aC2v
2 = v2/d .

The other term, containing a u2 dependence is not physical and imply a spurious

behavior. This contribution can be suppressed in LB models (see Sec. 4).

Note that in the FHP model, the temperature is not defined and the balance

equation for the kinetic energy is identical to the mass conservation equation, since

all particles have the same velocities. Temperature has been introduced in multi-

speed lattice gas models, through the equipartition theorem [32, 73, 49].

3.8. Correction to local equilibrium

The next step is to compute the terms involved in the Navier–Stokes equation (3.34)

∂tρuα +
∂

∂rβ

[
Π

(0)
αβ + εΠ

(1)
αβ +

∆t

2

(
ε∂t1Π

(0)
αβ +

∂

∂rγ
S

(0)
αβγ

)]
= 0 . (3.46)

We shall restrict ourselves to first order in the velocity field u.

The lattice viscosity: From Eq. (3.43) we have

Π
(0)
αβ = c2sρδαβ +O(u2) .

Since ∂t1ρ = − div1 ρ~u (from Eq. (3.25)), one has ε∂t1ρ = − div ρ~u and

∆t

2

∂

∂rβ
ε∂t1Π

(0)
αβ =

∆tc
2
s

2

∂

∂rβ
ε∂t1ρδαβ = −∆tc

2
s

2

∂ div ρ~u

∂rα
. (3.47)
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To compute the term involving

S
(0)
αβγ =

z∑
i=1

viαviβviγN
(0)
i ,

we first notice that the only contribution to N
(0)
i given by Eq. (3.37) will be N

(0)
i =

[ρb/v2]~v i · ~u because the other terms contain an odd number of ~v i. Thus, using

Eq. (3.42),

S
(0)
αβγ = v2C4bρ(δαβuγ + δαγuβ + δβγuα)

and

∆t

2

∂2

∂rβrγ
S

(0)
αβγ =

∆tv
2

2
C4b∇2ρuα + ∆tv

2C4b
∂

∂rα
div ρ~u . (3.48)

Substituting the results (3.47) and (3.48) into the Navier–Stokes equation (3.46)

yields

∂tρuα +
∂

∂rβ
Π

(0)
αβ = − ∂

∂rβ
εΠ

(1)
αβ −

∆tv
2

2
C4b∇2ρuα

−∆t

[
v2C4b−

c2s
2

]
∂

∂rα
div ρ~u . (3.49)

The last term vanishes since v2C4b− c2s/2 = 0 and the other term has the form of

a viscous effect νlattice∇2ρ~u , where

νlattice = −C4b
∆tv

2

2
= − ∆tv

2

2(d+ 2)
. (3.50)

where νlattice is a negative viscosity. The origin of this contribution is the discreteness

of the lattice (S
(0)
αβγ and ∂t1Π

(0)
αβ comes from the Taylor expansion). For this reason,

this term is referred to as a lattice contribution to the viscosity. The fact that it

is negative is of no consequence because the last contribution −∂βεΠ(1)
αβ which we

still have to calculate will be positive and larger than the present one.

The collisional viscosity: The usual contribution to viscosity is due to the colli-

sion between the fluid particles. This contribution is captured by the term ∂βεΠ
(1)
αβ

in Eq. (3.49). In order to compute it, we first have to solve Eq. (3.18) for N
(1)
i . To

lowest order in the velocity flow ~u , we have

1

∆t

z∑
j=1

(
∂Ωi(N

(0))

∂Nj

)
N

(1)
j

= ∂t1N
(0)
i + ∂1αviαN

(0)
i

= −∂N
(0)
i

∂ρ
div1 ρ~u −

∂N
(0)
i

∂ρuα
∂1βΠ

(0)
αβ + ∂1αviαN

(0)
i , (3.51)
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where we have expressed the time derivative of N
(0)
i in terms of the derivatives with

respect to ρ and ρuα

∂t1N
(0)
i =

∂N
(0)
i

∂ρ
∂t1ρ+

∂N
(0)
i

∂ρuα
∂t1ρuα (3.52)

and used Eqs. (3.25) and (3.26) to express ∂t1ρ and ∂t1ρuα. These substitutions

will ensure that the right-hand side of Eq. (3.51) is the image of (∂Ω/∂N).

As we did for the lattice viscosity, we shall only consider the first order in the

velocity flow ~u . The omitted terms are expected to be of the order O(u3). From

the expressions (3.37) and (3.43), we have for the lowest order in ~u

N
(0)
i = aρ+

b

v2
viαρuα and Π

(0)
αβ = c2sρδαβ .

Thus

∂N
(0)
i

∂ρ
= a and

∂N
(0)
i

∂ρuα
=
bviα

v2
,

and we can rewrite Eq. (3.51) as

1

∆t

z∑
j=1

(
∂Ωi(N

(0))

∂Nj

)
N

(1)
j = −a div1 ρ~u −

bviα

v2
∂1βΠ

(0)
αβ + ∂1αviαN

(0)
i

=
b

v2

(
viαviβ −

v2

d
δαβ

)
∂1βρuα

=
b

v2
Qiαβ∂1βρuα . (3.53)

From this result, it is now clear that Eq. (3.51) will have a solution since, as noticed

previously, the z-dimensional vectors Qαβ of component Qiαβ are orthogonal to the

collisional invariants E0 and Eγ . Since E0 and Eα are in the kernel of (∂Ω/∂N)T ,

then Qαβ is in the image space of (∂Ω/∂N) (see Eq. (3.22)).

We now consider the left-hand side of Eq. (3.51), for ~u = 0 (remember that we

want to obtain the first contribution to N
(1)
i .

An interesting observation is that, in general, the vectors Qαβ are eigenvectors

of the matrix (∂Ω/∂N). Thus we write(
∂Ω(N (0)

∂N

)
~u=0

Qαβ = −ΛQαβ ,

where −Λ is the associated eigenvalue (for FHP, it is found that Λ = 3s(1 − s)3,

with s = ρ/6). This yields immediately the solution for N (1) as a multiple of Qαβ .

Since Qαβ is orthogonal to the collisional invariants, N (1) will clearly satisfy the

extra conditions (3.24). Thus we have

N
(1)
i = −∆tb

Λv2
Qiαβ∂1βρuα . (3.54)
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We may now compute the correction εΠ(1) to the momentum tensor. Since ε∂1β =

∂β , we get

εΠ
(1)
αβ = ε

∑
i

N
(1)
i viαviβ

=
∆tv

2b

Λ

[
C2

d
div ρ~uδαβ − C4(δαβδγδ + δαγδβδ + δαδδβγ)∂γρuδ

]
= ∆tv

2 b

Λ

[(
C2

d
− C4

)
div ρ~uδαβ − C4(∂αρuβ + ∂βρuα)

]
. (3.55)

3.9. The Navier Stokes equation

We can now rewrite (to first order in ε and second order in the velocity flow ~u),

the Navier–Stokes equation (3.49). Using expression (3.43) for Π
(0)
αβ , we get

∂tρuα + ∂β(ρ2C4G(ρ)uαuβ)

= −∇p− ∆tv
2

2
C4b∇2ρuα

− ∂β
[
∆tv

2 b

Λ

(
C2

d
− C4

)
(δαβ div ρ~u − C4(∂αuβ + ∂βuα))

]
, (3.56)

where the pressure p is given by relation (3.44)

In the limit of low Mach number, the density can be assumed to be a constant,

except in the pressure term [171]. From the continuity equation (3.35), we then get

div ρ~u = 0 and

1

ρ
∂βεΠ

(1)
αβ = −1

ρ
∆tv

2 bC4

Λ
[∂α∂βρuβ + ρ∂2

βuα]

= −νcoll∇2uα (3.57)

with

νcoll = ∆tv
2 bC4

Λ
.

Within this approximation, equation (3.56) can be cast into

∂t~u + 2C4G(ρ)(~u · ∇)~u = −1

ρ
∇p+ ν∇2~u . (3.58)

The quantity ν is the kinematic viscosity of our discrete fluid, whose expression is

composed of the lattice and collisional viscosities

ν = ∆tv
2bC4

(
1

Λ
− 1

2

)
=

∆tv
2

d+ 2

(
1

Λ
− 1

2

)
. (3.59)

The presence of the coefficient C4 for the viscosity indicates that our results relies on

the isotropy of the fourth order tensor
∑
i viαviβviγviδ. Thus, for a 2D square lattice

(e.g. the HPP model), a viscosity cannot be defined, even in the first order in ~u .
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For the FHP model, the viscosity depends strongly on the density (Λ = (ρ/2)[1−
(ρ/6)]3 and may become arbitrarily large for the limiting values ρ = 0 and ρ = 6.

Its minimal value is obtained for ρ = 3/2.

Whereas the form of Eq. (3.58) depends little on the type of collision the particles

experience, the expression (3.59) is very sensitive to the collision processes, through

the value of Λ. In a lattice gas dynamics, the viscosity is intrinsic to the model and is

not an adjustable parameter. In order to change the viscosity, collision rules should

be modified. This is why the FHP model has been extended to obtain the FHP-III

model with the lowest intrinsic viscosity.

Up to the factor of 2C4G(ρ), Eq. (3.58) is the standard Navier–Stokes equation.

The fact that the coefficient of the convective term (~u · ∇)~u is different from 1 is

an indication of the non-Galilean invariance of the model. However, if we assume

that ρ ' const), this factor can be absorbed in a renormalization of the time and

the lattice dynamics is described by the usual hydrodynamic equation.

In Sec. 4 we shall see that Galilean invariance can be restored in a more general

way when using a lattice Boltzmann dynamics. Also, viscosity will be an adjustable

parameter.

3.10. A two-phase CA fluid

The ability of a cellular automata fluids, like FHP, to model a real fluid depends

very much on the application one considers. It is not appropriate to simulate high

Reynolds flows (because the viscosity is too high), but can be very useful to describe

situations with complicated boundary conditions (porous media) and multi-phase

or reactive flows (see for instance Refs. 24, 76, 86, 153, 155).

In this section we consider a two-phase cellular automata fluid. Each particle of

the fluid can be in two possible states, say s = 1 or s = −1. If we call this extra

degree of freedom a spin, this fluid can be compared with an Ising system in which,

the spins can move according to some hydrodynamics rules.

We consider an interaction between nearest neighbors similar to that found in

classical dynamical Ising models. This will produce a surface tension effect at the

interface between the two phases. The introduction of such an interaction requires

real-valued fields (like the temperature) and, thus, the present model goes beyond

a simple, fully discrete cellular automaton.

It is interesting to remark that, in addition to being a binary fluid model, this

system has some of the ingredients of a ferrofluid [151], if the spin is interpreted as

the magnetization carried by the particles.

The collision rule: Before we define more precisely the spin interaction, let us

return to the particle motion. A collision rule which conserves mass, momentum

and spin can be defined in analogy with the FHP rule described in Sec. 3.1.

We denote by si(~r , t) ∈ {−1, 0, 1} the state of the automaton along lattice

direction i at site ~r and time t (si = 0 means an absence of particles). Clearly the
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presence of a particle is charcterized by s2
i = 1, regardless of its spin. Thus, the

collision term can be obtained by using s2
i as an occupation number.

When a collision takes place, the particles are redistributed among the lattice

directions but the same number of spin +1 and −1 particles should be present in

the output state as there were in the input state. A way to guarantee this spin

conservation is to assume that the particles are distinguishable, at least for what

concerns their spin.

Therefore the full collision of a Ising fluid obeying FHP-like collision reads

si(~r + ∆r~ci, t+ ∆t)

= si − sis2
i+2s

2
i+4(1− s2

i+1)(1− s2
i+3)(1− s2

i+5)

+ si+3s
2
i+1s

2
i+5(1− s2

i )(1− s2
i+2)(1− s2

i+4)

− sis2
i+3(1− s2

i+1)(1− s2
i+2)(1− s2

i+4)(1− s2
i+5)

+ pqsi+1s
2
i+4(1− s2

i )(1− s2
i+2)(1− s2

i+3)(1− s2
i+5)

+ p(1− q)si+4s
2
i+1(1− s2

i )(1− s2
i+2)(1− s2

i+3)(1− s2
i+5)

+ (1− p)(1− q)si+2s
2
i+5(1− s2

i )(1− s2
i+1)(1− s2

i+3)(1− s2
i+4)

+ (1− p)qsi+5s
2
i+2(1− s2

i )(1− s2
i+1)(1− s2

i+3)(1− s2
i+4) , (3.60)

where p and q and random Boolean variables that are 1 with probability 1/2,

independently at each site and time step. These quantities select one of the two

possible outcomes in the two-body collisions.

Spin interaction: An important part of this Ising fluid model is the interaction

between spins at the same sites and spins sitting on adjacent lattice sites. This inter-

action produces the surface tension and can be adjusted through a parameter which

corresponds to the temperature of the system (which is asumed to be uniform here).

The interaction we propose here does not conserve the number of spins of each

sign. It only conserves the number of particles and, for this reason, does not rep-

resent two different fluids but two possible state of the same fluid. Of course, the

miscibility or immiscibility of the two phases can be tuned through the temperature.

The updating rule for the spin dynamics is taken from the Monte-Carlo method

[11], using the so-called Glauber transition rule. The main idea is that a spin flips

(changes sign) if it can lower the local energy of the system. The energy of the

pair of spin si and sj is computed as E = −J1sisj if the two spins are nearest

neighbors on the hexagonal lattice and E = −J0sisj if they both sit on the same

site (remember that up to six particles can populate a given site).

However, a spin can flip even if this results in a local increase of enery. But,

then, the change is accepted only with a probability W (s→ −s) which depends on

the temperature. In the Glauber dynamics, this probability is given by

W (si → −si) =
1

2
(1− si tanh(Ei)) ,
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where Ei is the energy before the flip

Ei =
1

kBT
(J0mi + J1Mi)si

and mi =
∑
j 6=i sj is the on-site “magnetization” seen by spin si and Mi =

∑
〈ji〉 sj

is the “magnetization” carried by all the particles j on the neighboring sites of spin

i. The quantity T is the temperature and kB the Boltzmann constant that we can

set to 1 when working with an arbitrary temperature scale. When more than one

particle is present at a site, only one of them, chosen at random, is checked for such

a spin flip.

The above transition rule is obtained from the detailed balance condition,

namely

W (si → −si)
W (−si → si)

=
exp

(
− E(−si)

(kBT )

)
exp

(
− E(si)

(kBT )

) ,

where E(±si) denotes the Ising energy as a function of si and it has the properties

to drive an ergodic system to thermodynamic equilibrium.

As opposed to the standard the Monte-Carlo approach, where the lattice sites

are visited sequentially and in a random way, here we update synchronously all the

sites belonging to a given sub-lattice. Indeed, for the coherence of the dynamics it

is important not to update simultaneously any two spins that are neighbors on the

lattice. This is for the same reason as explained in Sec. 2.2 when we discussed the

Q2R rule.

In a hexagonal lattice, it is easy to see that the space can be partitioned into

three sub-lattices so that all the neighbors of one sub-lattice always belong to the

two others (see Fig. 26).

Therefore, the spin interaction rule described above cycles over these three sub-

lattices and alternate with the FHP particle motion given by Eq. (3.60).

It is of course possible to vary the relative frequency of the two rules (Glauber

and FHP). For instance we can perform n successive FHP steps followed by m

successive steps of the Ising rule in order to give more or less importance to the

particle motion with respect to the spin flip. When n = 0 we have a pure Ising

model on an hexagonal lattice but with possibly a different number of spins per

site.

0 1 2 0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1 2 0 1

0 1 2 0 1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0 1 2 0 1

Fig. 26. The three sub-lattices on the hexagonal lattice used for the synchronous spin update.
The values 0, 1, 2 label the sites according to the sub-lattice they belong to.
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Fig. 27. Three snapshot of the evolution of the Ising FHP model below the critical temperature.

Particles with spin +1 are shown in black while gray points show particles with −1. White cells
indicate empty sites.

If the temperature is large enough and periodic boundary conditions are im-

posed, the system evolves to a configuration where, on average, there are the same

amount of particles with spins up and down. Of course, the situation is not frozen

and the particles keep moving and spins continuously flip. As in regular Ising sys-

tems, there is a critical temperature below which we can observe a global magne-

tization and the growth of domains containing one type of spin. This situation is

illustrated in Fig. 27 and corresponds to the case n = m = 1, namely one spin

update cycle followed by one step of FHP motion. It is observed that the critical

temperature depends on the update frequency n and m.

Another interesting situation corresponds to the simulation of a Raleigh–Taylor

instability (see Fig. 28). Two immiscible fluids are on the top of each other and

the heavier is above the lighter. Due to gravity, the upper fluid wants to penetrate

t=50 t=150

t=300 t=350

Fig. 28. Rayleigh–Taylor instability of the interface between two immiscible fluids. Particles
with spin +1 are shown in black and are “lighter” than gray particles with having spin −1. An
approximate immisciblity is obtained by choosing a low temperature in the model.



October 10, 2002 11:16 WSPC/169-ACS 00060

56 B. Chopard, et al.

through the lower one. Since the two fluids are immiscible, the interface between

them becomes unstable and, as time goes on, gives rise to a mushroom-like pattern.

An external force like gravity can be added to our model by deflecting with

some probability (and when possible) the trajectory of particles in a given direction.

Two immiscible fluids can modeled by having a low temperature T in the Glauber

dynamics so as to produce the necessary surface tension. The upper fluid layer is

initialized with only particles of spin −1, whereas the lower layer contains only

spins +1. Gravity is adjusted so that “light” particles go up and heavy particles

go down. After a few iterations, the flat interface destabilizes as shown in the last

panel of Fig. 28.

4. The Lattice Boltzmann Method

Cellular automata fluids, such as those discussed in the previous section, repre-

sent idealized N-body systems. Their time evolution can be performed exactly on

a computer, without many of the approximations usually done when computing

numerically the motion of a fluid. In particular, there is no need, in a CA simu-

lation to assume some factorization of the many-body correlation functions into a

product of one-particle density functions.

Of course, the cellular automata model may be inadequate to represent a real

situation but it includes naturally the intrinsic fluctuations present in any system

composed of many particles. This features is out of reach of most tractable numer-

ical techniques. In many physical situations, spontaneous fluctuations and many-

particle correlations can be safely ignored. This is however not always the case

and, in Secs. 7.3 and 7.5, we shall see some examples of systems where intrinsic

fluctuations are crucial.

On the other hand, a cellular automata simulation is very noisy (because it

deals with Boolean quantities). In order to obtain the macroscopic behavior of a

system (like the streaklines in a flow past an obstacle), one has to average the

state of each cell over a rather large patch of cells (for instance a 32 × 32 square)

and over several consecutive time steps. This requires larger systems and longer

simulation times. Therefore, the benefit of the cellular automata approach over

more traditional numerical techniques get blurred [131] when simulating pure fluid

flows in simple geometries.

In addition, due to its Boolean nature, cellular automata models offer little

flexibility to finely adjust external parameters. Many tunings are done through

probabilities, which is not always the most efficient way.

4.1. From Boolean to real-valued fields

When correlations can be neglected and the Boltzmann molecular chaos hypothesis

is valid, it may be much more effective to directly simulate on the computer the

lattice Boltzmann equation

Ni(~r + ∆r~ci, t+ ∆t) = Ni(~r , t) + Ωi(N) (4.1)
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with Ωi given, for instance, by Eq. (3.6) with q replaced by 1/2. It is more advan-

tageous to average the microdynamics before simulating it rather than after doing

it. The quantities of interest Ni are no longer Boolean variables but probabilities

of presence which are continuous variable ranging in the interval [0, 1].

A direct simulation of the lattice Boltzmann dynamics has been first considered

by McNamara and Zanetti [121]. It considerably decreases the statistical noise that

plague cellular automata models and considerably reduces the computational re-

quirements. The main drawback of this approach is that it neglects many-body

correlations and may become numerically unstable.

The lattice Boltzmann (LB) method has been widely used for simulating various

fluid flows [144] and is believed to be a very serious candidate to overcome tradi-

tional numerical techniques of CFD (Computational Fluid Dynamics). Their micro-

scopic level of description provide a natural interpretation of the numerical scheme

and permits intuitive generalizations to complex flow problems (two-phase flow

[74, 76, 155], magnetohydrodynamics [167], flow in porous media [1, 75] or thermo-

hydrodynamics [2]).

The main weakness of current LB models is that they are defined on a regular

lattices, while CFD techniques can deal with arbitrary irregular meshes. For some

applications where the geometry cannot be fitted by a regular lattice, this is a

strong limitation. Some efforts are now devoted to extend LB models to irregular

lattices [166]. The succesful approach is probably to assume an underlying discrete

velocity Boltzmann equation and express its evolution on a coarse grain discrete

spatial mesh. As a tentative example, Sec. 6.3.3 shows a simple LB diffusion model

in polar coordinates.

In a lattice Boltzmann fluid, the most natural way to define the collision term

Ωi, is to average the microdynamics of a given underlying cellular automata fluid

and factorize it into a product of average quantities, as we did in Sec. 3 to get the

Boltzmann approximation. However, as one considers more sophisticated lattice gas

fluid (like FHP-III [50]) or 3-D models [66]), the collision term requires a very large

number of floating point operations at each lattice site and time step. Even on a

massively parallel computer, in which every cell is computed simultaneously, this

may not be acceptable.

The first solution to this problem is to consider the same approximation as we

used with the Chapman–Enskog expansion when deriving the macroscopic behav-

ior of the FHP fluid. The idea is to linearize the collision term around its local

equilibrium solution. This approach has been proposed by Higuera and coworkers

[83] and considerably reduces the complexity of the operations involved.

4.2. BGK models

Following the same idea, a further simplification can be considered [84]: the collision

term need not be related to an existing cellular automata microdynamics, as long as
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particle and momentum are conserved. In its simplest form, the lattice Boltzmann

dynamics can be written as a relaxation equation [143, 25]

fi(~r + ∆t~v i, t+ ∆t)− fi(~r , t) = Ωi(f) =
1

τ

(
f

(0)
i (~r , t)− fi(~r , t)

)
, (4.2)

where fi(~r , t) denotes the probability that, at time t, a particle is entering site ~r

along lattice direction i (note that here, we use the notation fi instead of Ni). The

quantity τ is a relaxation time, which is a free parameter of the model. It actually

will determine the fluid viscosity.

Equivalently, Eq. (4.2) reads

fi(~r + ∆t~v i, t+ ∆t) =
1

τ
f

(0)
i (~r , t) +

(
1− 1

τ

)
fi(~r , t) , (4.3)

which is the appropriate form for a numerical implementation.

The local equilibrium solution f
(0)
i is a function of the actual density ρ =

∑
fi

and velocity flow ρ~u =
∑
fi~v i. Therefore, when implementing Eq. (4.3) on a com-

puter, one first computes at each site, ρ and ~u from the current values of the fi’s

and then one may compute f
(0)
i (ρ, ~u). In general, f (0) is a non-linear function of ρ

and ~u and thus, Eq. (4.3) is non-linear in the fi’s.

It is important to notice that f (0) is model dependent and can adjusted so

as to produce a given, expected, behavior. In particular, the lack of Galilean in-

variance that plague cellular automata fluid can be cured, as well as the spurious

velocity contribution appearing in expression (3.44) of the pressure term. In a more

general context, f
(0)
i could include other physical features, such as a local tem-

perature [2, 147] and can be tuned to describe other physical situations, as shown

in Sec. 8.

Equation (4.2) is referred to as the lattice BGK method [143] (BGK stands for

Bhatnager, Gross and Krook [10] who first considered a collision term with a single

relaxation time, in 1954). Equation (4.2) is studied by several authors [87, 144], due

to its ability to deal with high Reynolds number flows. However, one difficulty of

this approach are the numerical instabilities which may develop when large velocity

gradients are present.

4.3. Lattice Boltzmann fluids

In this section we define the generic dynamics of LB fluid models (precisely BGK

models) and derive the corresponding macrosopic behavior.

A common example of LB fluid is the so-called D2Q9 model (see Ref. 144)

defined in two dimensions (D2) with nine variables, or quantities per sites (Q9).

This lattice and its possible directions of motion are shown in Fig. 29. Note that

a 9th direction i = 0 is defined to describe a population f0(~r , t) of particles at

rest (i.e. having ~v 0 = 0). The isotropy problems inherent to square lattices in

2-D are solved by weighting differently the eight possible directions of motion.

Here we interprete these weights as masses mi associated to the particles traveling
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v1

v2

v3

v4

v5

v6 v7 v8

4

1
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1

4

1 4 1

Fig. 29. The eight velocities in the D2Q9 lattice Boltzmann model of a two-dimensional fluid
(on the left) and the mass associated to each of these directions (on the right).

along each direction. Figure 29 (right) gives the approriate masses for the D2Q9

model.

In a general DdQ(z + 1) LB fluid, the macroscopic quantities, such as the local

density ρ or the velocity flow ~u are defined as usual as

ρ =
z∑
i=0

mifi , ρ~u =
z∑
i=0

mifi~v i , (4.4)

where z is again the number of non-zero velocities in the model.

We set v = ∆r/∆t and assume that the lattice has the following properties
z∑
i=1

mi = C0 ,

z∑
i=1

miviαviβ = C2v
2δαβ (4.5)

and
z∑
i=1

miviαviβviγviδ = C4v
4(δαβδγδ + δαγδβδ + δαδδβγ) . (4.6)

Note, also, that odd tensors are supposed to vanish. For the D2Q9 model, we have

mi = 1 for diagonal motions, mi = 4 for horizontal and vertical motions and (see

Ref. 33)

C0 = 20 , C2 = 12 , C4 = 4 .

For the D2Q7 (hexagonal lattice in two dimensions) one has mi = 1 for all i and

C0 = 6 , C2 = 3 , C4 =
3

4
,

The next step is to define the local equilibrium distribution f
(0)
i as a function of

the macroscopic quantities ρ and ~u . A natural choice is to adopt a similar expression

as obtained for the FHP model, namely Eq. (3.37). Accordingly, we define

f
(0)
i = aρ+

b

v2
ρ~v i · ~u + ρe

u2

v2
+ ρ

h

v4
viαviβuαuβ i ≥ 1 ,

f
(0)
0 = a0ρ+ ρe0

u2

v2
,

(4.7)
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where a, a0, b, e, e0 and h are coefficients which will now be determined, first

using mass and momentum conservation, and second by matching the form of the

momentum tensor with the standard expression of hydrodynamics.

Mass and momentum conservation impose

z∑
i=0

miΩi = 0 and
z∑
i=0

mi~v iΩi = 0 .

This implies that

z∑
i=0

mif
(0)
i = ρ and

z∑
i=0

mi~v if
(0)
i = ρ~u , (4.8)

because ρ and ρ~u are defined through relations (4.4). Using relations (4.5) and

(4.6), we obtain from (4.7)

z∑
i=0

mif
(0)
i = (m0a0 + C0a)ρ+ (m0e0 + C0e+ C2h)ρ

u2

v2
,

z∑
i=0

mi~v if
(0)
i = C2bρ~u .

(4.9)

As in the case of a CA fluid (see Sec. 3) we assume here that the LB dynamics can

be solved by a multiscale Chapman–Enskog expansion. Thus, we write

fi = f
(0)
i + εf

(1)
i + · · ·

and the zeroth order of the momentum tensor is

Π
(0)
αβ =

8∑
i=0

miviαviβf
(0)
i

= C2v
2

[
a+

(
e+

C4

C2
h

)
u2

v2

]
ρδαβ + 2C4huαuβ . (4.10)

In a real fluid, when the dissipative terms are disregarded (Euler equation) one has

the following expression for the momentum tensor

Π
(0)
αβ = c2sρδαβ + ρuαuβ , (4.11)

where cs is the sound speed.

By comparing Eq. (4.8) with (4.9) and Eq. (4.11) with (4.10) we obtain the

following conditions

a =
1

C2

c2s
v2
, m0a0 = 1− C0

C2

c2s
v2

and

b =
1

C2
, e = − 1

2C2
, m0e0 =

C0

2C2
− C2

2C4
, h =

1

2C4
.
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Where the sound speed is considered as an adjustable parameter. With the above

result, we can rewrite Eq. (4.7) as

f
(0)
i = ρ

[
1

C2

c2s
v2

+
1

C2

~v i · ~u
v2

+
1

2C4v4

(
viαviβ − v2C4

C2
δαβ

)
uαuβ

]
,

m0f
(0)
0 = ρ

[
1− C0

C2

c2s
v2

+

(
C0

2C2
− C2

2C4

)
u2

v2

]
.

(4.12)

4.4. The Navier Stokes equation

In Eq. (3.34), we have obtained the following result

∂tρuα + ∂β

[
Παβ +

∆t

2

(
ε∂t1Π

(0)
αβ + ∂γS

(0)
αβγ

)]
= 0 , (4.13)

where t = t1/ε+ t2/ε
2 and ~r = ~r 1/ε take into account the different time scales of

the problem (see Eqs. (3.13) and (3.16)).

The derivation of (4.13) only relies on the fact that
∑
miΩi = 0 and∑

miΩi~v i = 0 and, thus, this equation is still valid here.

We have already obtained Π(0) in the previous section. We still need to compute

S
(0)
αβγ and Π(1). The quantity f (1) is defined by a similar equation as obtained in

relation (3.18), namely

1

∆t

z∑
j=0

(
∂Ωi(f

(0))

∂fj

)
f

(1)
j = ∂t1f

(0)
i + ∂1αviαf

(0)
i .

Since Ωi = 1
τ

(
f

(0)
i (~r , t)− fi(~r , t)

)
, the above equation simply reads

− 1

∆tτ
f

(1)
i = ∂t1f

(0)
i + ∂1αviαf

(0)
i

= −∂f
(0)
i

∂ρ
div1 ρ~u −

∂f
(0)
i

∂ρuα
∂1βΠ

(0)
αβ + ∂1αviαf

(0)
i (4.14)

with div1 =
∑
α ∂1α. We shall now compute f

(1)
i to the first order in ~u . We have

f
(0)
i = aρ+

b

v2
ρviαuα , f

(0)
0 = a0ρ

and

Π
(0)
αβ = c2sρδαβ . (4.15)

Thus,

∂f
(0)
i

∂ρ
= a ,

∂f
(0)
i

∂ρuα
=

b

v2
viα ,

∂f
(0)
0

∂ρ
= a0 ,

∂f
(0)
0

∂ρuα
= 0

and we obtain

f
(1)
i = −∆tτ

1

C2v2

(
viγviδ − c2sδγδ

)
∂1γρuδ and f

(1)
0 = −∆tτa0 div1 ρ~u .
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Using that ε∂1γ = ∂γ , the order O(ε) contribution to Π reads

εΠ
(1)
αβ = ε

z∑
i=0

mif
(1)
i viαviβ

= ∆tv
2τ

[(
c2s
v2
− C4

C2

)
δαβ div ρ~u − C4

C2
(∂βρuα + ∂αρuβ)

]
. (4.16)

Thus

∂βεΠ
(1)
αβ = −∆tv

2τ

[(
2
C4

C2
− c2s
v2

)
∂α div ρ~u +

C4

C2
∂2
βρuα

]
. (4.17)

From this expression, we get two viscosity coefficients (shear and bulk viscosity),

as usual in compressible fluids.

The final step is the calculation of the lattice viscosity. The first term in

Eq. (4.13) giving a contribution to the lattice viscosity is ∂β(∆tε/2)∂t1Π
(0)
αβ . With

Π
(0)
αβ = c2sρδαβ +O(u2), we have

∆tε

2
∂t1Π

(0)
αβ = ∆t

c2s
2
ε∂t1ρδαβ = −∆t

c2s
2
δαβ div ρ~u ,

where we have used that ∂t1ρ + div1 ρ~u = 0 (see Eq. (3.25)) and the definition of

the length scale ε div1 = div. Therefore

∆tε

2
∂β∂t1Π

(0)
αβ = −∆t

c2s
2
∂α div ρ~u . (4.18)

Similarly, we must compute the contribution due to S
(0)
αβγ in equation (4.13)

S
(0)
αβγ =

z∑
i=0

miviαviβviγf
(0)
i

= v2C4

C2
ρ(uγδαβ + uβδαγ + uαδβγ) . (4.19)

Consequently, we obtain the dissipative lattice contributions

∆t

2
∂β

(
ε∂t1Π

(0)
αβ + ∂γS

(0)
αβγ

)
=

∆tv
2

2

[
C4

C2
∇2(ρuα) +

(
2C4

C2
− c2s
v2

)
∂α div ρ~u

]
.

(4.20)

Finally, after substitution of Eqs. (4.20), (4.17) and (4.15) into Eq. (4.13), we obtain

∂tρuα + ρuβ∂βuα + uα div ρ~u = −c2s∂αρ+ ∆tv
2C4

C2

(
τ − 1

2

)
∇2ρuα

+ ∆tv
2

(
τ − 1

2

)[
2
C4

C2
− c2s
v2

]
∂α div ρ~u . (4.21)

In the case of an incompressible fluid (at low Mach number, for instance) one has

div ρ~u = 0 and one recovers the usual Navier–Stokes equation

∂t~u + (~u · ∇)~u = −1

ρ
∇p+ νlb∇2~u , (4.22)
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where p = c2sρ is the scalar pressure and νlb is the kinematic viscosity

νlb = ∆tv
2C4

C2

(
τ − 1

2

)
. (4.23)

As we see from this result, there are two free physical quantities in this model, c2s
and τ , and three parameters C0, C2 and C4 depending of the specific lattice chosen

for the simulation.

Changing cs within acceptable limits will modify the sound speed (or the tem-

perature, since p = c2sρ). Clearly c2s < (C2/C0)v
2 otherwise a0 becomes negative.

Also, the relaxation time τ can be tuned to adjust the viscosity within some

range. We can see that when τ is small, relaxation to f (0) is fast and viscosity small.

This means that the collision between the particles are quite effective to restore the

local equilibrium.

However, τ cannot be made arbitrarily small since τ < 1/2 would imply a

negative viscosity. Practically, more restrictions are expected, because the dissipa-

tion length scale should be much larger than the lattice spacing. The value τ = 1/2

yields numerical instability and the smaller acceptable value depends on the velocity

gradients.

Figure 30 illustrates the behavior of the LB fluid in a simulation of a flow past

a plate leading to a von Karman street pattern.

4.5. Body force

In many applications it is desirable to include an external force in the dynamics

of the density distribution fi. This is an effective way to accelerate a fluid, as for

instance to produce a channel flow, or to represent some gravity effects. This type

Fig. 30. Non-stationary flow past a plate obtained with the D2Q8 lattice Boltzmann model.
System size is 512× 128, τ = 1. and the entry speed is u∞ = 0.025. From left to right and top to
bottom, the figure shows the different stages of evolution.
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of force is termed body force because it acts at each site of the fluid, as a force per

unit of volume.

The most common way to include a body force ~F in the LB equation is to

include an additive term

fi(~r + ∆t~v i, t+ ∆t) =
1

τ
f

(0)
i (~r , t) +

(
1− 1

τ

)
fi(~r , t) +

∆t

v2C2
~v i · ~F . (4.24)

The body force term is such that it preserves mass (since
∑
imi~v i = 0) and adds

a momentum contribution ∆t
~F after each iteration. Indeed, since

∑
imi~v i(f

(0)
i −

fi) = 0 Eq. (4.24) gives∑
i

miviαfi(~r + ∆t~v i, t+ ∆t)−
∑
i

miviαfi(~r , t)

= +
∆t

v2C2

∑
i

miviαviβFβ = ∆tFα .

Note that other terms could be added to Eq. (4.24) to produce the same mass and

momentum balance. For instance, an extra contribution

Giαβ = Gαβ(viαviβ − aδαβ) , G0αβ = −bGαβδαβ ,

where Gαβ is any tensor quantity, has the property that
∑
imiGiαβviγ = 0 because

it contains an odd number of ~v i factors. In addition,∑
i

miGiαβ = Gαβ(v
2C2 − aC0 − b)δαβ .

Thus, if the constant a and b are well chosen,
∑
imiGiαβ = 0. For instance, a

possible choice is

a = c2s and b = v2C2

[
1− c2sC0

v2C2

]
.

The continuity and Navier–Stokes equations for ρ and ~u resulting from the

inclusion of a body force can be obtained from the multiscale Chapman–Enskog

formalism intoduced above. The calculation shows that the effect of the body force

introduced in Eq. (4.24) is not as simple as expected. The continuity equation reads

∂tρ+ div ρ~u = −∆t

2
div ~F . (4.25)

Thus, although mass is microscopically conserved, this equation indicates that ρ~u

is no longer the correct definition of mass current if the body force has a spatial

dependence. The mass current could be better represented by ρ~u + (∆t/2)~F in

order to remove the right hand side of Eq. (4.25).
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Similarly, the Navier–Stokes equation has some unexpected contributions when

the external force depends on time

∂tρuα + ρuβ∂βuα + uα div ρ~u

= −c2s∂αρ+ νlb∇2ρuα + ∆tv
2

(
τ − 1

2

)[
2
C4

C2
− c2s
v2

]
∂α div ρ~u + Fα −

∆t

2
∂tFα .

(4.26)

As a result, the spurious term ∂tFα is expected to produce artificial time lag effects

(typically half a time step ∆t for low frequencies).

We refer the reader to Ref. 78 for a more detailed discussion of the problem and

ways to solve it.

Let us now mention a simple application of the body force. As discussed pre-

viously, the body force can be used to represent some gravity effects, or drive

the flow. As an example we shall consider the case of a 2-D channel flow with a

horizontal driving force along the x-axis and a vertical gravity force along the y-

axis. Two horizontal walls prevent the fluid from moving vertically. Horizontally,

we assume periodic boundary conditions. Thus, we choose

~F = ρ~g ,

where gy is the gravity field and gx the driving force.

In the stationary regime, ∂t~u = ∂tρ = 0 and the symmetry of the problem

imposes that

ρ = ρ(y) , ux = ux(y) , uy = 0 .

With these assumptions the Navier–Stokes equation reduces to

0 = ν∂2
y [ρux] + ρgx ,

0 = −c2s∂yρ+ ρgy .

The boundary conditions are

ux(0) = ux(L) = 0 ,

∫ L

0

ρ(y) dy = Lρ0 , (4.27)

where L is the channel width and ρ0 the average density.

The solutions for the density is the barometric expression

ρ(y) = ρ0
Lgy

c2s

exp
[
− gy
c2s

(L− y)
]

1− exp
[
− gy
c2s
L
] (4.28)

and the velocity field is obtained as

ux(y) =
gx

gy

c2s
ν

c2s
gy

[
ρ(0)

ρ(y)
− 1− ρ(0)− ρ(L)

ρ(y)

y

L

]
. (4.29)
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Fig. 31. Channel flow with gravity and driving forces proportional to the local fluid density. The average density is ρ0 = 2.5, gx/c2s = 0.0001 and
gy/c2s = 0.01. The system size is 100×50, the relaxation time is τ = 1 and the system is observed after 30 000 iterations. Simulation results are shown
with dots and the analytical solution is the solid line. The left panel shows the density variation along the y-axis and the right one, the x-component
of the velocity. It is interesting to note that in this case, the velocity profile is no longer a parabola, although it looks like a parabola.
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Figure 31 shows the comparison of the analytical solutions (4.29) with the result of

a D2Q9 simulation of Eq. (4.24). Note that in the simulation we used the no-slip

velocity boundary condition mentioned in Sec. 4.6. We see that there is a perfect

agreement for the density but a small systematic deviation for the velocity. This

aspect is not fully understood yet but is probably due to an observed non-zero

component uy, related to the inconsistency of the definition of ~u when there is a

body force.

It is also possible to have a body force ~F which does not depend on the local

fluid density ρ. It is probably less physical but can be convenient. Indeed, when

modeling an incompressible fluid like water, it is undesirable to have a pressure field

p(y) = c2sρ(y) which depends exponentially with the vertical location. A constant

body force produces a linear pressure increase along the vertical direction, which

corresponds to the usual hydrostatic situation.

With ~F = (Fx, Fy) and the same geometry as before, the Navier–Stokes equation

becomes

0 = ν∂2
y [ρ(y)ux(y)] + Fx , 0 = −c2s∂yρ(y) + Fy .

With the above boundary conditions (4.27), the solutions are

ρ(y) = ρ0 +
Fy

c2s

L

2
+
Fy

c2s
(y − L)

and

ux(y) =
Fx

2νρ(y)
[y(L− y)] . (4.30)

This situation is illustrated in Fig. 32. A perfect agreement is found between theory

and simulation for the density solution whereas, again, a slight bias can be seen for

the velocity profile.

Finally, note that a constant body force may easily produce negative popula-

tions. Indeed, the term

~v i · ~F 6= 0

even if the fi themselves are null. Thus, positive and negative populations are

created which sum up to zero but can nevertheless propagate in the fluid. This may

produce numerical instabilities. Also, in the case of a two-fluid system it is quite

undesirable to have such a body force acting on the lattice sites that are unoccupied

by the fluid subject to this force.

When the fluid is incompressible, the density is constant and including or not

the density in the body force does not make a big difference: the effect is just to

renormalize the amplitude of the force. Ultimately, the choice of ~F = (Fx, Fy) or
~F = ρ(gx, gy) depends on the physics of the problem.

It turns out that accelerating a fluid with a body force usually require a lot of

iterations before reaching a steady state. Imposing the velocity at some location is

usually numerically more efficient, but can also produce undesirable effects [57].
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Fig. 32. Channel flow with gravity and driving forces independent of the local fluid density. The average density is ρ0 = 2.5, Fx/c2s = 0.0001 and
Fy/c2s = 0.01.The system size is 100× 50, the relaxation time is τ = 1 and the systems observed after 30 000 iterations. Simulation results are shown
with dots and the analytical solution is the solid line. The left panel shows the density variation along the y-axis and the right one, the x-component
of the velocity.
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The time to reach a stationary regime can be estimated from Eq. (4.26) which, in

a channel flow geometry, with constant body force and an incompressible regime

reads

∂tux = ν∇2ux +
Fx

ρ
. (4.31)

By writing ux(y, t) = (Fx/(2νρ))[y(L− y)] + ψ(y, t), we obtain that ψ(y, t) obeys

∂tψ = ν∇2ψ .

In a Fourier representation, ∇2ψ behaves as −k2ψk where k is the wave number.

Small k modes are the slowest to relax and we may assume that the most relevant

value of k will be 2π/L, with L the channel width. The solution of Eq. (4.31) is

ψ 2π
L

(t) = ψ 2π
L

(0) exp

[
− 4π2

L2
νt

]
.

Therefore, we expect that the asymptotic regime will settle in time T propotional

to L2. This is confirmed by the numerical simulations shown in Fig. 33. In this

figure we plot T versus the Reynolds number Re=u∞L/ν. From Eq. (4.30) u∞ =

ux(L/2) = (L2Fx)/(8νρ) and, thus Re = (L3Fx)/(8ν
2ρ). In the simulation, the

Reynolds number has been increased by increasing L and reducing the force as

Fx ∝ 1/L2 to keep the same Mach number for all system sizes L. Therefore, Re ∝ L
and the relation between T and Re should be a parabola. Note that Ref. 95, proposes

a way to speed up this convergence process.
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Fig. 33. Time T needed to reach a stationary regime when a body force is applied to a channel
flow situation. The dependence T ∝ L2 is seen from the fact that Re ∝ L.
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4.6. Boundary conditions

Boundary conditions are an important issue in LB simulations. We refer the reader

to Refs. 57, 63, 122, 165 for more information. Here we only give some essential

ideas.

When the system cannot be made periodic, it is necessary to limit the compu-

tational domain with walls. There are several ways to choose the dynamics of the

fi at the wall and, thus, specify the boundary conditions. Roughly speaking we can

divide the LB boundary conditions into three categories:

Bounce back rules: This is the simplest way to deal with a wall and does not

require any knowledge of its shape. It is enough to know that a given site is a wall.

When particles reach such a solid site, they just bounce back from where they came.

This is always a direction which is valid since particles have just arrived from that

direction. Bounce back can be implemented as full-way bounce back or half-way

bounce back.

In the first case, one allows the fi to reach the wall site. Then, during the

collision phase, the fi is moved to fi′ , where i′ is the direction opposite to i. During

the propagation phase, the particles are thus sent back to their originating site.

The round trip takes two iterations.

In the half-way case, the directions i in which a wall is present are marked. The

particles that, after the collision, point in such a wall direction i are not propagated

but copied into the opposite direction for future use at the next collision step. There-

fore, in the half-way bouce-back, the wall site are not needed in the computational

domain and particles return to their originating site after one time step only.

The half-way bounce back seems better than the full-way bounce-back. In some

situation it produces a second order accurate solution, whereas the full-way bounce-

back is only found to be first order accurate in term of the lattice spacing. However,

this observation depends on the geometry of the flow and cannot be generalized [57].

With the full way bounce back, the collision is modified but the propagation

remains identical for all lattice sites. On the contrary, in the half-way bounce back,

the collision is performed as prescribed by the collision rule but the propagation is

changed. This may also explain why the two methods do not perfom identically.

Note that the bounce back family clearly conserves mass as it reinjects into the

system the particles hitting a wall. The fact that the particles return from were

they came is an attempt to produce a zero velocity at the wall. This is not always

very effective and a so-called slip velocity (which depends on the viscosity) is often

observed along a wall [79].

Collision-at-wall: We term the second class of boundary conditions “collision-at-

wall”. Their goal is to suppress the slip velocity mentioned above. The wall is part

of the simulation domain and a regular collison is applied on wall sites. However, at

a wall site, there are valid and non-valid entering directions and valid and non-valid
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exiting directions. The non-valid out-directions are those which do not point toward

a fluid site, whereas the non-valid in-directions are those coming from the outside

of the system.

In the “collision-at-wall” rules, the non-valid out-fields fi produced after the

collision phase are forgotten during the propagation phase. However, in order to

perform the collision step, the non-valid in-fields fk must be defined properly. The

indices k of these fields do depend on the local geometry of the wall and are different

whether the wall is flat, or a convex/concave corner.

Different authors have proposed different ways to assign a value to these non-

valid incoming fk’s. The problem simply amounts to solving a set of linear equations

for these unknown fields. Usually, the equations reflect the desired velocity at the

wall, and sometimes mass conservation [57]. There are usually more unknown than

equations, which requires some appropriate way to limit the freedom.

A simple method is the so-called modified bounce-back rule [79] where the miss-

ing fk’s are set to fk′ . This works rather well for a flat boundary but not for some

corner configurations. A more general technique is the so-called mass conserving

boundary condition proposed in Ref. 57, where the missing density distributions are

computed so as to ensure no-slip at the boundary and mass conservation (i.e. no

creation or destruction of mass at the wall). This technique is second order accurate

in a Poiseuille flow, as shown in Fig. 34 and offer a way to impose the stress tensor

at the wall.
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Fig. 34. Error e between the analytical, parabolic profile and the simulation data in a simple
Poiseuille flow as the grid refinement (i.e. the number of grid points L) is increased. The values
indicated over the lines are the exponents α found when assuming e ∝  L−α. Thus the value of α
gives the accuracy of the scheme. The drop at L = 100 for the mass-conserving scheme corresponds
here to a relaxation time τ = 1, for which extra accuracy is obtained.



October 10, 2002 11:16 WSPC/169-ACS 00060

72 B. Chopard, et al.

Inamuro’s approach is well known [89] and gives machine acccuracy in a

Poiseuille flow. It assumes that the unknown fields are expressed with a local equi-

librium expression with velocity ~u ′ and density ρ′ that needs to be determined.

This approch reduces the number of unknowns in a clever way. Note however that

in Inamuro’s scheme the LB collision is not performed at the wall. This method can

be generalized to 2-D flat planes but is difficult to apply with non-flat walls [57].

To illustrate the accuracy of the above boundary conditions, Fig. 34 shows

the distance between the analytical profile and the simulation data in a simple

Poiseuille flow, as the lattice spacing is reduced but both Re and Mach numbers

are kept constant (note that many authors, when studying LB accuracy, change Re

or Mach numbers as they change the number of grid points).

Interpolation scheme: A third way to implement boundary conditions is to use

an interpolation method [63, 122]. This has the advantage of being applicable to off-

lattice walls and has an expected second order accuracy if the interpolation scheme

is good enough. However, its numerical implementation is more tedious than the

two previous approaches. The idea is the following. When the wall is off-lattice,

some lattice links are cut by the wall. Thus, no fi will ever come out of the wall

along these links. These missing fields can be reconstructed by interpolation. A

solution is to use the field that bounced back on the wall along that same link and

which is at some well defined off-lattice location. Another solution is to compute

the missing fi from the corresponding values measured at the nearest sites by a

linear or quadratic interpolation.

4.7. A short summary of LB models

This section summarizes the main finding of the above discussion, in order to

highlight the important steps necessary to implement on a computer a LB fluid

simulation.

(i) The system is described in terms of z+1 quantities fi(~r , t) giving the probability

of presence of a particle entering lattice site ~r with velocity ~v i, at time t. The field

f0 corresponds to a population of rest particles, with ~v 0 = 0. The other possible

velocities ~v i depend on the lattice under consideration. Usually, one has slow and

fast velocities. The former ones have modulus v = ∆r/∆t where ∆r is the lattice

spacing and ∆t the time step. The modulus of fast velocities are lattice-dependent.

The physical quantities are the density ρ and velocity field ~u defined as

ρ =
z∑
i=0

mifi , ρ~u =
z∑
i=1

mifi~v i ,

where m0 can be set to 1 without loss of generality, and the other mi are chosen so

as to ensure the isotropy of the fourth order tensor
∑z
i=1miviαviβviγviδ. Usually,

the value of mi depends on whether ~v i is a fast or slow velocity.
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(ii) For lattice sites not corresponding to a boundary of the system, the dynamics

is given by Eq. (4.3)

fi(~r + ∆t~v i, t+ ∆t) =
1

τ
f

(0)
i (~r , t) +

(
1− 1

τ

)
fi(~r , t) , (4.32)

For boundary sites, a no-slip condition is enforced by bouncing back the incoming

fi, or by applying a more sophisticated boundary condition, as discussed in Sec. 4.6.

The local equilibrium distribution is given by Eq. (4.12). From a numerical point

of view, it make sense to compute directly mifi and mif
(0)
i . Thus

mif
(0)
i = ρ

(
mic

2
s

C2v2

)[
1 +

~v i · ~u
c2s

+
C2

2C4v2c2s

(
viαviβ − v2C4

C2
δαβ

)
uαuβ

]
,

m0f
(0)
0 = ρ

[(
1− C0

C2

c2s
v2

)
− C2

2C4

(
1− C0

C2

C4

C2

)
u2

v2

]
,

where ρ and ~u are computed from the current values of fi, as explained in step 1.

Traditionally, the coefficients entering the above relations are termed ti, that is

ti =

(
mic

2
s

C2v2

)
for i 6= 0

and

t0 =

(
1− C0

C2

c2s
v2

)
.

Choosing c2s = v2C4/C2 makes the ti very appropriate quantities to express the

local equilibrium distributions.

When a body force is added, and one works directly mifi, the term ∆t

C2v2
~F · ~v i

of Eq. (4.24) gets multiplied by mi and become a contribution

∆tti

c2s
~F · ~v i .

(iii) The coefficients C0, C2 and C4 are defined in Eqs. (4.5) and (4.6), i.e.

z∑
i=1

mi = C0 ,

z∑
i=1

miviαviβ = C2v
2δαβ

and
z∑
i=1

miviαviβviγviδ = C4v
4(δαβδγδ + δαγδβδ + δαδδβγ) .

These quantities are lattice dependent and are given in Table 1 for some standard

lattices. Note that there is some arbitrariness in the choice of the mi. The important

point is to keep the correct ratio between the slow and fast masses. Then, if all

mi, mi ≥ 1 are multiplied by the same factor, then C0, C2 and C4 are modified

proportionally and it is easy to check that m0f
(0)
0 and mif

(0)
i are invariant under

such a scaling of mass.
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Table 1. The geometrical coefficients necessary to compute the local equilibrium distribution in

a LB simulation.

Model Slow velocities Fast velocities C0 C2 C4 Geometry

D1Q3 |vi| = v, mi = 1 2 2 2/3 linear lattice

D2Q9 |vi| = v, mi = 4 |vi| =
√

2v, mi = 1 20 12 4 square lattice

D2Q7 |vi| = v, mi = 1 6 3 3/4 hex lattice

D3Q15 |vi| = v, mi = 1 |vi| =
√

3v, mi = 1/8 7 3 1 cubic lattice

D3Q19 |vi| = v, mi = 2 |vi| =
√

2v, mi = 1 24 12 4 cubic lattice

The coefficients τ determines the fluid viscosity as:

νlb = ∆tv
2C4

C2

(
τ − 1

2

)
and cs can be tuned to select the sound speed. The maximal value is limited by

c2s < (C2/C0)v
2 .

A commonly chosen value is c2s = v2(C4/C2).

Remember that numerical instabilities may develop in LB fluid models (see

Sec. 4.8).

(iv) Up to order O(u2), the above numerical scheme solves the continuty equation

∂tρ+ div ρ~u = 0

and Navier–Stokes equation

∂tρuα + ρuβ∂βuα + uα div ρ~u

= −c2s∂αρ+ νlb∇2ρuα + ∆tv
2

(
τ − 1

2

)[
2
C4

C2
− c2s
v2

]
∂α div ρ~u . (4.33)

This equation simplifies when (u/cs) � 1 since, at low Mach number one may

assume that div ρ~u = 0.

(v) In the formulation we gave of the LB formalism, space and time units are taken

into account in the lattice spacing ∆r and time step ∆t. These quantities can in

principle take any values, but their unit (meter, centimeter, second, . . .) should be

specified in order to make the connection with a real situation. In the simulation,

one usually takes ∆r = 1, ∆t = 1, and the velocity field is then given in lattice

units.

The case of the density ρ requires some explanation. In the formalism, mifi is

a dimensionless number and the quantity ρ =
∑
imifi has not the meaning of a

mass per unit of volume. However, it should be noticed that the actual values of

the fi’s can be freely multiplied by any positive constant ρ̂ having the usual units

of mass over volume. Indeed, with fi → ρ̂fi, one has ρ → ρ̂ρ and f
(0)
i → ρ̂f

(0)
i .
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Therefore, this scaling does not affect the dynamics by more than a global scaling

ρ̂ and this freedom may be used to renormalize the density ρ of the simulation to

any desired physical density.

4.8. Subgrid models

The LB fluid model has been extensively validated in the literature [12, 27, 51, 165]

and is known to reproduce correctly the time-dependent Navier–Stokes equation.

An important class of applications in hydrodynamics is high Reynolds number flows.

A simple way to reach high Reynolds numbers is to reduce the viscosity by making

τ close to 1/2. Unfortunately, numerical instabilities may develop in this case, due

to velocity gradients. To alleviate this problem, one can have recourse to the so-

called Smagorinsky subgrid model. This is a standard approach in computational

fluid dynamics and was first proposed for LBGK models by Hou et al. [87]. One

assumes that a turbulent viscosity (νt) results from the unresolved scales, that is

the scales below the lattice spacing ∆r. These scales are thus filtered. The main

idea is to increase locally the relaxation time τ by defining a space and time variable

relaxation time τtot.

Then the total viscosity is split as

νtot = ν + νt ,

where ν is the original viscosity given by Eq. (4.23) with the original relaxation

time τ . The new contribution νt is the so-called turbulent viscosity resulting from

the filtered scales. In the Smagorinsky model [162], it is expressed as

νt = (Csmago∆)2|S| , (4.34)

where ∆ is the filter size, whose magnitude usually corresponds to the grid spacing

and |S| =
√

2SαβSαβ is the magnitude of the strain-rate tensor Sαβ = 1/2(∂βuα +

∂αuβ). Thus, the larger the |S| the larger the turbulent viscosity, so that the total

viscosity is more important in regions close to obstacles.

In the LB scheme, the quantity Sαβ can be computed locally, without taking

extra derivatives, by only considering the non-equilibrium momentum tensor, as

can be seen from Eq. (4.16).

Sαβ = − 1

2ρ∆tτtot

C2

C4
Π

(1)
αβ = − 1

2ρ∆tτtot

C2

C4

∑
i

miviαviβ(fi − f (0)
i ) . (4.35)

Thus, from Eq. (4.34) and (4.35), the turbulent viscosity can be expressed as

νt =
1

τtot

√
2ρ∆t

C2

C4
(Csmago∆)2

√
Q2 , (4.36)

where Q2 = Π
(1)
αβΠ

(1)
αβ . From Eq. (4.23), one has

τtot =
∆t

∆2
r

C2

C4
(ν + νt) +

1

2
. (4.37)
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Considering that also

∆t

∆2
r

C2

C4
ν +

1

2
= τ

and replacing Eq. (4.36) into Eq. (4.37), one can solve the resulting second order

equation and then express the local relaxation time as

τtot =
1

2

√τ2 +
1

∆2
r

(Csmago∆)2

(
C2

C4

)2√
8Q2

ρ
+ τ

 . (4.38)

The quantity Csmago (typically smaller than 0.5) tunes the effect of the subgrid

model and should be adjusted empirically depending on the desired flow pattern.

The problem of adjusting correctly Csmago remains open. In order to model the

boundary layer near a wall, one may expect that the value of Csmago is zero at

the boundary of an obstacle and then increases to reach its bulk value as one gets

away from the wall. No obvious theory describes how this variation should be and

the simulation we performed did not show a real change on the main features of

the flow when Csmago varies. Therefore, we assume that the simplified procedure of

having a constant non-zero is enough in the present case.

As an illustration, we present in Fig. 35 the velocity pattern we obtain within

this framework in the case of the flow around a pipeline sitting on a flat surface.

The flow we consider is turbulent (Re = 7000) and for this reason, we plot

the stationary average streamlines and average horizontal velocity profile. This

simulation compares well with the experiment by Jensen [93]. In addition, this flow

is generic (with respect of the size of the main eddies and reattachment points)

of the situations considered in laboratory experiments when studying the scour

formation process [21, 102].

−2 −1 1 2 3 4 5 6 7 8 9
x/D

0 0.2Flow

Fig. 35. Average flow pattern around a pipe in a turbulent regime, as obtained with the LB
method. The Reynolds number is Re = 7000, obtained with τ = 0.5023, (Csmago∆)2 = 0.4∆2

r. The
entry speed is uentry = 0.1∆r/∆t and the cylinder diameter D = 20∆r . The upper panel shows
the streamlines and the lower one the horizontal velocity profile at several locations. Distances are
given in pipe diameters and velocities in lattice units.
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4.9. Pattern formation in particles erosion and transport problems

The dynamics of solid particles erosion, transport and deposition due to the action

of a streaming fluid plays a crucial role in sand dune formation, sedimentation

problems and snow transport. This field remains rather empirical compared to

other domains of science and experts do not all agree on the mechanisms involved

in these processes. The CA and LB approach give a new and promising way to

address these difficult problems.

In this section we explain the most important features of our model. We consider

a mixed LB and CA approach (see for instance Refs. 43, 57, 58, 59, 116, 117, 118

for a general description of the method).

The fluid-particle system is described in terms of a mesoscopic dynamics: a LB

fluid, as described above, plus sediment particles moving on the same regular lattice,

synchronously at discrete time steps. An interaction is defined among the particles

simultaneously present at the same lattice site. The granular material moves under

the combined effect of the local fluid velocity and gravity.

When reaching the ground, the solid particles pile up and topple if necessary,

changing in this way the boundary conditions for the fluid. The fluid particles

bounce back on the deposited granular material. At the top of the deposition layer,

erosion takes place and, if the fluid flows fast enough, it can pick up solid particles

and transport them further away.

4.9.1. The sediment model

Apart from the fluid component, which we take here exactly as the LB model de-

scribed in Sec. 4, sediments (typically snow or sand particles) are the new ingredient

of the model. They are represented by an integer n(~r , t) ≥ 0 indicating how many

solid particles are present at site ~r and time t. Sediments move on the same lattice

as the fluid particles and interact with them. Since n(~r , t) can take any positive

value, we term our model a multiparticle CA [33].

It is important to remember that in our mesoscopic approach, we do not try

to represent a specific granular material. We rather want to capture the generic

features of the erosion-deposition process.

Transport Rule: After each time step, the particles jump to a nearest-neighbor

site, under the action of the local fluid flow and gravity force. Gravity is taken

into account by imposing a falling speed ~ufall on the particles. Therefore, our

suspensions are passive particles since their presence does not modify the flow field,

except when they form a solid deposit, i.e. a boundary.

If the local fluid velocity at site ~r is ~u(~r , t), the particles located at that site will

move to site ~r+∆s(~u+~ufall), where ∆s is the time unit associated with the motion

of the granular particles. Unfortunately, this new location is usually not a lattice

site. The solution to this problem is then to consider a stochastic motion [43, 116]:

each of the n(~r , t) particles jumps to a neighboring site ~r +∆t~v i with a probability
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pi proportional to the projection of ∆s(~u+~ufall) on the lattice direction ∆t~v i. The

quantity ∆s is adjusted so as to maximize the probability of motion, while ensuring

that the jumps are always smaller than a lattice constant.

Deposition Rule: Under the combined effect of motion and gravity, suspended

particles will eventually land on a solid site (e.g. the bottom of the system or the

top of the deposition layer). Motion is no longer possible and particles start piling

up. In our model, up to Nthres particles can accumulate on a given site (Nthres

gives a way to specify the spatial scale of the granular particles with respect to

the fluid system). When this limit is reached, the site solidifies and new incom-

ing particles pile up on the site directly above. These solid sites form new obsta-

cles on which the fluid particles bounce back from where they came. Thus, this

solidification process implies a dynamically changing boundary condition for the

fluid.

Note that the rest particles are no longer subject to the suspension transport

rule. Only the erosion mechanism discussed below can move them away.

Toppling rule: As sediment particles do not have infinite cohesion, we introduce a

toppling rule. When a lattice site contains an excess of δN deposited particles with

respect to its left or right neighbor (in 2D), toppling occurs. During this process,

all unstable sites send a portion (ct) of their grains in excess to the less occupied

neighbors, see Fig. 36. With this rule, the stable configuration may not be reached

in one time step. Notice that the toppling and transport processes may take place

at different time scales.

The quantities δN and Nthres give a simple way to adjust the angle of repose

of a pile. In the stable state, the model tolerates a maximum difference of δN

particles between two adjacent sites. Two solidified sites are at least horizontally

separated by k sites where k = dNthres/δNe. Hence, the angle of repose αrep satisfies

tanαrep = 1/k, as shown in Fig. 37.

Erosion: Finally, the erosion process is implemented as follows: with probability

perosion each particle belonging to the upper Nthres particles of the deposition layer

(either a solid site or the rest particles that have accumulated directly above) is

ejected vertically so as to reach the site just above it.

Fig. 36. Illustration of the toppling rule with δN = 5 and Nthres = 20. Gray particles indicate a
solid site.
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Fig. 37. The angle of repose can be adjusted from the relation tanα = (δN/Nthres). Here, δN = 5
and Nthres = 20.

fast flow
weak flow

Fig. 38. Erosion rule. Eroded particles are pushed on the upper lattice site, where they are again
subject to the transport rule.

If the local fluid velocity is fast enough, the particle will be picked up and moved

further away due to our transport rule. Otherwise, if the flow is slow, the resulting

motion will be to land again on the same site where the particle started off, see

Fig. 38.

4.9.2. Validation

To validate the erosion and transport rules in a simple situation, we first consider

the case of the jump length distribution described in Fig. 39. This problem has been

studied outdoors experimentally in the case of snow transport by Kobayashi [103].

The experiment consists in collecting the amount of snow transported by wind and

landing in successive boxes placed along its path. The same experiment can be

performed with our computer model [116]. The result shown in Fig. 39 shows the

very good agreement with experimental findings.

As the next validation of the model, we present a simulation of scour formation

underneath a submarine pipe subject to a steady water current. This is a well-

studied problem, due to its practical importance in marine engineering [182].

The scenario of the process is sketched in Fig. 40. The scour which forms under

the pipe occurs as follows. First both vortices in front of and behind the pipe dig

up a hole. When these holes meet each other under the pipe, water starts to flow

underneath and the main erosion stage takes place.
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Fig. 39. Comparison of jump length distribution of snow particles in field experiment and the
corresponding numerical simulations. The upper panel shows the setting used for the simula-
tion, and the graph reports the quantity of snow gathered as a function of the distance to the
source of snow, for a weak and a strong wind. Shaded areas indicate the values obtained in field
measurements.
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Fig. 40. Three main stages of the scour onset process under unidirectional current. (1) Due to
the current, three main vortices appear in the pipe neighborhood. (2) The two small vortices up
and downstream the pipe start to dig a hole. (3) After a while, the holes meet each other below
the pipe and the scour formation process breaks out. xD and xR denote reattachment points.

Various laboratory experiments (see for example Ref. 182 and references therein)

show that the equilibrium depth of the scour depends essentially on the pipe

diameter D and that the ratio between the scour depth and the pipe diameter

should be comprised between 0.2 and 1.0. These features are well captured by our

LB-CA approach. Figure 41 shows the result of numerical simulations and compares

the predicted scour profile with laboratory experiments [113]. As can be seen, the

model and the experiment are in good agreement. More details can be found in

Ref. 58.



October 10, 2002 11:16 WSPC/169-ACS 00060

Cellular Automata: An Approach to Model Complex Systems 81

−3 −2 −1 0 1 2 3 4
1

0.5

0

x/D

S
/D

t = 200000t = 100000

t = 30000t = 20000

t = 0

19o 14o

Mao’s experiment B, Shield parameter = 0.065
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Fig. 41. Numerical simulation of the scour under a submarine pipe. The black and white dots
are laboratory profiles.

5. Remarks on Lattice Boltzmann Fluids

5.1. Thermal and compressible models

LB fluids (as well as CA fluids) are intrinsically compressible. However, as with

any Newtonian fluid, density variations can be neglected (except in the pressure

term) if the Mach number M is small enough [171]. Therefore, for small ~u and

without gravity type forces, one observes an incompressible regime. Also, for small

~u , terms of order u3 can be safely ignored in the mathematical derivation of the

Navier–Stokes equation from the LB dynamics. When u increases to reach the

compressible domain, terms of order O(u3) are no longer negligible in the local

equilibrium. A possible solution is to add new terms [29], of order u4, which may

be needed in expression (4.7).

The same problem holds for thermal models because terms up to O(M4) are

required. Increasing the lattice isotropy and expanding f (0) to fourth order in u

is also a possible solution to remove spurious non-linear deviations [29]. Another

suggested approach [147] is to consider primary and secondary local equilibrium

functions. First, the ratios of the local equilibria corresponding to different energy

levels are computed from the standard Maxwell–Boltzmann distribution. Then, the

f
(0)
i are expressed in terms of these ratios and the physical quantities ρ, ~u and T

through the conservation laws.

Another difficulty of thermal models is that the Prandt number (ratio of the

viscosity to the heat conductivity) is not adjustable. A two-time BGK model has

been proposed to offer more flexibility [28]. The collision term for fi contains a

usual relaxation
(
f

(0)
i − fi

)
/τ1 plus a new term

(
f

(0)
i′ − fi′

)
/τ2, where i′ denotes

the direction opposite to i. This formulation yields an adjustable Prandt number

at the price of some inconsistency in the thermohydrodynamic equations [28].

The high compressibility of LB fluids is sometimes viewed as a drawback of the

method since it restricts the simulation of incompressible flows to the regime of low
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Mach numbers [195]. In order to model a truly incompressible fluid, it has been

suggested to use the pressure p instead of ρ as an independent dynamic variable

[79]. Another possibility [28] is to redefine the fluid flow as ~w = ~u + ~∇φ, where ~u

has the usual definition (4.4) in terms of the fi’s and φ satisfies ∇2φ = div ~u . See

also Ref. 165.

5.2. Non-ideal systems and multicomponent fluids

A great deal of effort has been devoted to go beyond ideal systems (where the

scalar pressure p is proportional to ρT ) and to model, for instance, van der Waals

interactions and liquid-gas transition. To this end, the Shan and Chen model [160]

adds a nearest-neighbor interaction between the LB particles. This force is specified

by an adjustable function Ψ of the particle density at each lattice site and causes a

change of the momentum of the particles. This momentum change is implemented

by replacing ~u in f (0) (see (4.7)) by ~u ′ computed as

ρ~u ′(~r ) =
∑
i

fi~v i − τGΨ(ρ(~r ))
∑
i

Ψ(ρ(~r + ∆t~v i))~v i .

Since this interaction is mutual, it can be shown that momentum is still conserved

over the system.

The effect of this force is to add a non-ideal gas correction∝ GΨ2(ρ) to the ideal

gas expression p0 = c2sρ. A temperature-like parameter, proportional to c2s/G can

be tuned to control the liquid-gas transition. This approach gives good results for

equilibrium simulations (Laplace law, density profile at an interface, etc). However,

as pointed out in Ref. 168, this method is not consistent with the concept of a

free energy and spurious diffusive terms appear in the continuity equation [168]. In

addition, no energy equation is included. An extension of the Shan–Chen model to

describe multicomponent fluids is given in Ref. 115.

A different approach has been proposed by Swift et al. [168] in order to be

consistent, at equilibrium, with the free energy construction of the Cahn–Hilliard

theory [23]. For a non-ideal single component fluid one writes∑
i

f
(0)
i viαviβ = Pαβ + ρuαuβ ,

where the pressure tensor Pαβ is computed from a free energy function given as an

input. The effect of the interaction comes in the second moment of f (0) whereas it

enters in the first moment in the Shan–Chen model.

In order to match the desired expression of Pαβ , the local equilibrium approach

is complemented as [168]:

f
(0)
i = aiρ+

b

v2
ρ~v i · ~u + ρei

u2

v2
+ ρ

h

v4
viαviβuαuβ +Gαβ

viαviβ

v2
. (5.1)

For the case of a van der Waals gas, an explicit expression is known in terms of

the temperature and the density and its derivative. The derivative of the density is

computed by finite differences on the lattice.
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A correct coexistence curve is obtained from this model, as well as physically

sound density variations through a flat interface or droplets. The kinetics of the

model (how equilibrium is approached) is in the universality class of model A.

However, some breaking of the Galilean invariance appears for droplets in a constant

speed flow.

The Swift et al. model also applies to a binary fluid. If the densities of the two

fluids are respectively ρ1 and ρ2, one defines two sets of distribution functions, f

and g such that

ρ = ρ1 + ρ2 =
∑
i

fi , ∆ρ = ρ1 − ρ2 =
∑
i

gi , ρ~u =
∑
i

fi~v i .

Both the fi and gi obey the lattice BGK equation (4.3), each with a different

relaxation time τ1 and τ2. Since the two densities are independent, one has three

conservation laws (for ρ, ρ~u and ∆ρ) to determine the coefficients of the expressions

for f
(0)
i and g

(0)
i (given by an expression similar to Eq. (5.1)). In addition one

imposes the second moments as∑
i

f
(0)
i viαviβ = Pαβ + ρuαuβ ,

∑
i

g
(0)
i viαviβ = Γ∆µδαβ + ∆ρuαuβ ,

where Γ is the mobility and ∆µ the chemical potential. From a free energy con-

struction, an explicit expression for ∆µ and Pαβ can be obtained for two ideal gases

with repulsive forces.

The basic properties of a binary mixture is well reproduced within this model,

although some spurious velocities are observed in the interface. As expected (con-

servation of the order parameter) the kinetics of this model belongs to model B

universality class. As in the Shan–Chen model, the fundamental problem of this

approach is the absence of an energy equation, as well as the absence of a H-

theorem.

Historically, the first model proposed to simulate a two-component, immiscible

fluid system is probably that of Rothman and Keller [153, 154, 155]. It was first

devised as a CA model and then extended to the LB scheme [76].

The two immiscible fluids (say a blue one and a red one) interact so as to

conserve the total momentum ρ~u and the densities ρ1 and ρ2 of each species. The

immiscible character of the system is obtained by defining a color gradient ~q =∑
i[∆ρ(~r + ∆t~v i)]~v i where ∆ρ is the density difference. As in the Swift model

above, the fi describe the sum of the fluids and gi their difference. In a first step,

the fi are computed from a standard, ideal gas lattice BGK equation. Then, the fi
are modified according to the color gradient as follows:

fi → fi + |q| cos 2Φi ,
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Fig. 42. Rayleigh–Taylor instability obtained by a simulation of two LB fluid subject to a repul-
sion as defined in the Shan and Chen model.

where cosΦi = (~qi ·~v i)/(|q||~v i|). Since cos 2Φi = 2 cos2 Φi−1, it is easy to check that

the new fi preserves the total mass and the total momentum. This construction is

equivalent to define a modified local equilibrium function, as is Eq. (5.1), but with

a different expression for the Gαβ [168]. The second step of the microdynamics is a

numerical optimization phase which consists of maximizing the scalar product of ~q

with the color flux
∑
i gi~v i.

This two-color dynamics is quite intuitive but, as opposed to the Swift model,

it is not consistent with the concept of a free energy. Also the quantities
∑
g

(0)
i ~v i

and
∑
i g

(0)
i viαviβ have no obvious physical interpretations.

Finally, the Shan and Chen model can be modified to deal simply and naturally

with a multicomponent fluid [115]. The interaction (repulsive for immiscible fluids)

is implemented as an exchange of momentum between different fluid components at

nearest neighbor sites. Figure 42 shows the results of a two-component immiscible

model in wich the upper fluid is heavier (gravity is added) than the lower one. This

situation corresponds to the so-called Rayleigh–Taylor instability described in more

detail in Sec. 3.10 (see also Ref. 130).

Other models of multicomponent fluids can be found in Refs. 33, 52, 65, 74.

Figure 43 shows an example of the formation of meniscus in a capillary tube in a

simplified two-component system (see Ref. 33).

5.3. Stability and H-theorem

While CA fluids are intrinsically stable from a numerical point of view, LB fluids

are not. At low viscosity (τ → 1/2) and with high velocity gradients, numerical

instabilities develop. One possibility to circumvent this problem is to use a subgrid

model, as discussed in Sec. 4.8.
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(b)(a) (c)

Fig. 43. Free surface of a liquid in a capillary tube: (a) a wetting situation; (b) inert walls; and
(c) a non-wetting situation.

An interesting way to improve stability is the so-called moment method [105],

where the LB dynamics is expressed in terms of new quantities φi obtained from

an orthogonalization of the fi’s.

A more first principle approach to the stability problem is based on the idea of

a H-theorem. In CA fluids, a H-theorem has been shown to exist [66]. This is not

the case for LB systems. Boghosian (see Ref. 12) proposes that the limit (τ → 1/2)

may violate the second principle of thermodynamics, thus explaining the instability.

Other authors [62, 98, 178] show how to construct local equilibrium functions f (0)

which satisfy Eqs. (4.8) and (4.10) while minimizing a convex function H(f), called

the entropy function. For the case of the D2Q9 model, it is found [62] that, up to

the desired order of accuracy (O(u2) in this case), the standard expression (4.7) for

f (0), with the extra condition that c2s = v2/3 is consistent with a convex entropy

function H =
∑
i fi(1− fi) +

∑
i γifi, where γi are some constants.

The existence of a H-function can be used to define the evolution rule of a LB

scheme in a thermodynamically consistent way. If the input state is a given set

of fi, the output set f ′i is constructed as (1 − β)fi + βf∗i , where β is a parameter

similar to the relaxation time and f∗ is an auxiliary state obeying the hydrodynamic

constraints and defined as the most distant state so that either H(f) = H(f∗) or

f∗i > 0. Preliminary numerical simulations with this approach show a significant

improvement of the numerical stability at low viscosity [128]. A detailed comparison

with the subgrid approach is still to be investigated.
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Among the other possibilities to alleviate numerical instabilities, one can also

mention grid refinement techniques [57, 63, 106] in which spatial regions where

gradients are important are locally discretized with a finer mesh of spacing ∆r/n,

where n is the refinement degree. Some other approaches are based on the extensions

of the LB models to irregular grids (see Sec. 5.4).

Finally another way to remedy the instability problem is to define multiparticle

models which lie in between the CA and LB approaches, as discussed in Sec. 7.

5.4. Irregular meshes

Most current LB models are defined on a regular lattices, while CFD techniques

can deal with arbitrary irregular meshes. For some applications where the geometry

cannot be fitted by a regular lattice, this may appear as a strong limitation. How-

ever, irregular mesh generation is a tough problem, which take a lot of CPU time for

complicated geometries. Therefore, the Cartesian grid used in LB model can also

be seen as positive aspect of the approach. Off-lattice boundary conditions [165]

can be used to implement very complex geometries, leading to efficient numerical

simulation, for instance in the automotive industry. Nevertheless, some efforts have

been devoted to extend LB models to irregular lattices [166].

A possible approach is to separate the space-time discretization from the velocity

discretization. For instance on may assume an underlying continuous space-time

Boltzmann equation with discrete velocities and express its evolution on a coarse

grain discrete spatial mesh. Note that discrete velocity Boltzmann models are a

well known topic which has developed somehow independently of the CA and LB

stream [20, 46].

Recently, He and Luo [80] have proposed an a priori derivation of the BGK

lattice scheme (4.3) starting from a continuous space-time Boltzmann equation,

with the standard Maxwell–Boltzmann distribution as a local equilibrium function.

They present a general procedure to systematically derive discrete velocity models

and to enforce the correct values of the momenta of f (0) for irregular meshes. As an

example, LB simulations of the backward-facing step flow confirms the possibility

to refine the mesh in regions where more accuracy is needed.

A key ingredient in the formulation of LB models on an irregular grid is the

interpolation procedure which is necessary for the propagation step (particles no

longer have a velocity which connects them naturally to the next grid point). This

is a fundamental difference with the usual LB approach [80].

Peng et al. [135, 136] gives a finite volume formulation of the LB approach

and shows a very good agreement between simple LB flows on a totally unstruc-

tured mesh and exact solution of the Navier–Stokes equation. While it retains

much of the flexibility of the standard LB scheme, this method is numerically more

involved.

A current trend is to adapt standard CFD techniques to the LB framework. For

instance, implicit schemes for solving a Boltzmann equation with discrete velocities
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on non-uniform meshes is discussed by Krafczyk in Ref. 12. The result is that the

implicit discretization method may be of significant advantage for high Reynolds

stationary flows.

6. Reaction-Diffusion Systems

Diffusive phenomena and reaction processes play an important role in many areas

of physics, chemistry and biology and still constitute an active field of research.

Systems in which reactive particles are brought into contact by a diffusion process

and transform, often give rise to very complex behaviors. Pattern formation [124,

133], is a typical example of such a behavior in reaction-diffusion processes.

In addition to a clear academic interest, reaction-diffusion phenomena are also

quite important in technical sciences and still constitute numerical challenges. As an

example, we may mention the famous problem of carbonation in concrete [18, 70].

In many reaction-diffusion problems a particle based model, such as a lattice

gas dynamics, provides a useful approach and efficient numerical tool.

For instance, processes such as aggregation, formation of a diffusion front,

trapping of particles performing a random walk in some specific region of space

[179, 180], or the adsorption of diffusing particles on a substrate [110] are impor-

tant problems that are difficult to solve with the standard diffusion equation. A

microscopic model, based on a cellular automata dynamics, is therefore of clear

interest.

Reaction processes, as well as growth mechanisms are most of the time non-

linear phenomena, characterized by a threshold dynamics. While they are naturally

implemented in terms of a point-particles description they may be very difficult to

analyze theoretically and even numerically, with standard techniques, due to the

important role that fluctuations may play. In the simplest cases, fluctations are

responsible for symmetries breaking which may produce interseting patterns, as we

shall see later in this section.

More surprisingly, microscopic fluctuations are sometimes relevant at a macro-

scopic level of observation because they may induce an anomalous dynamics, as

in the A + A → 0 or A + B → 0 annihilation reactions [44, 45]. These systems

depart from the behavior predicted by the classical approach based on differential

equations for the densities. The reason is that they are fluctuations-driven and that

correlations cannot be neglected. In other words, one has to deal with a full N-

body problem and the Boltzmann factorization assumption is not valid. For this

kind of problem, a lattice gas automata approach turns out to be a very successful

approach.

Cellular automata particles can be equipped with diffusive and reactive proper-

ties, in order to mimic real experiments and model several complex reaction-

diffusion-growth processes, in the same spirit as a cellular automata fluid simulates

a fluid flow: these systems are expected to retain the relevant aspects of the micro-

scopic world they are modeling. Diffusion can be obtained with the rule described
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in Sec. 2.6. Chemical reactions, such as A+B → C, are treated in an abstract way,

as a particle transformation phenomena rather than a real chemical interaction.

Within the CA approach, there are two ways of modeling a spatially extended

system with local reactive interactions. The first one is to use a standard CA scheme:

each cell is updated according to the state of its neighbors. The second way is to con-

sider a lattice gas (LG) approach. As already mentioned, LG are a particular class

of cellular automata, characterized by a two-phase dynamics: first, a completely

local interaction on each lattice point, and then particle transport (or propagation)

to nearest-neighbor sites. This way of partitioning the space prevents the problem

of having a particle simultaneously involved in several different interactions.

Here we shall start the discussion with the first kind of model. Some reactive

phenomena can be nicely described by simple rules, without the space partitioning

of the LG paradigm. In Sec. 6.1, we present a model of excitable media in which

chemical waves are observed and, in Sec. 6.2, we shall see an example of a surface

reaction on a catalytic substrate.

Then, in Sec. 6.3, we shall concentrate on the LG approach which is well suited to

represent many reaction-diffusion processes in terms of fictitious particles evolving

in a discrete universe. We shall first present the generic model for diffusion with only

one species of particles. The approach can be extended to the case where several

different chemical species coexist simultaneously on the same lattice and diffuse. It

just requires more bits of information to store the extra automaton states. Then, it

is easy to supplement the diffusion rule with the annihilation or creation of particles

of a different kind, depending on the species present at each lattice site and the

reaction rule under study.

The microdynamics will be given, as well as its link to macroscopic rate equa-

tions. The corresponding LB extension will be discussed too. As an illustration of

the method, an application to the formation of patterns of precipitate in a reaction-

diffusion process (the so-called Liesegang structures) will be presented.

Note that in Sec. 7, we shall consider other reaction-diffusion processes, using

the multiparticle method. Other examples and applications can be found in Ref. 17.

6.1. Excitable media

An excitable medium is basically characterized by three states [17]: the resting

state, the excited state and the refractory state. The resting state is a stable state

of the system. But a resting state can respond to a local perturbation and become

excited. Then, the excited state evolves to a refractory state where it no longer

influences its neighbors and, finally, returns to the resting state.

A generic behavior of excitable media is to produce chemical waves of various

geometries [96, 101]. Ring and spiral waves are a typical pattern of excitations. Many

chemical systems exhibits an excitable behavior. The Selkov model [159] and the

Belousov–Zhabotinsky reaction are examples. Chemical waves play an important

role in many biological processes (nervous systems, muscles) since they can mediate

the transport of information from one place to another.
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The Greenberg–Hasting model is an example of a cellular automata model of

an excitable media. This rule, and its generalization, have been extensively studied

[64, 72].

The implementation we propose here for the Greenberg–Hasting model is the

following: the state φ(~r , t) of site ~r at time t takes its value in the set {0, 1, 2, . . . ,
n−1}. The state φ = 0 is the resting state. The states φ = 1, . . . , n/2 (n is assumed

to be even) correspond to excited states. The rest, φ = n/2 + 1, . . . , n− 1 are the

refractory states. The cellular automata evolution rule is the following:

(i) If φ(~r , t) is excited or refractory, then φ(~r , t+ 1) = φ(~r , t) + 1 mod n.

(ii) If φ(~r , t) = 0 (resting state) it remains so, unless there are at least k excited

sites in the Moore neighborhood of site ~r . In this case φ(~r , t) = 1.

The n states play the role of a clock: an excited state evolves through the sequence

of all possible states until it returns to 0, which corresponds to a stable situation.

The behavior of this rule is quite sensitive to the value of n and the excitation

threshold k. Figures 44 and 45 show the evolution of this automaton for two different

sets of parameters n and k. Both simulations are started with a uniform configu-

ration of resting states, perturbed by some excited sites randomly distributed over

the system. If the concentration of perturbation is low enough, excitation dies out

t=5 t=110

t=115 t=120

Fig. 44. Excitable medium: evolution of a stable initial configuration with 10% of excited states
φ = 1, for n = 10 and k = 3. The color black indicates resting states. After a transient phase, the
system sets up in a state where pairs of counter-rotating spiral waves propagate. When the two
extremities come into contact, a new, similar pattern is produced.
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Fig. 45. Excitable medium: evolution of a configuration with 5% of excited states φ = 1, and
95% of resting states (black), for n = 8 and k = 3.

rapidly and the system returns to the rest state. Increasing the number of perturbed

states leads to the formation of traveling waves and self-sustained oscillations may

appear in the form of ring or spiral waves.

The Greenberg–Hasting model has some similarity with the “tube-worms” rule

proposed by Toffoli and Margolus [169]. This rule is intended to model the Belousov–

Zhabotinsky reaction and is as follows. The state of each site is either 0 (refractory)

or 1 (excited) and a local timer (whose value is 3, 2, 1 or 0) controls the refractory

period. Each iteration of the rule can be expressed by the following sequence of

operations: (i) where the timer is zero, the state is excited; (ii) the timer is decreased

by 1 unless it is 0; (iii) a site becomes refractory whenever the timer is equal to 2;

(iv) the timer is reset to 3 for the excited sites which have two, or more than four,

excited sites in their Moore neighborhood.

Figure 46 shows a simulation of this automaton, starting from a random initial

configuration of the timers and the excited states. We observe the formation of spiral

pairs of excitations. Note that this rule is very sensitive to small modifications (in

particular to the order of operations (i) to (iv)).

Fig. 46. The tube-worms rule for an excitable media.
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Fig. 47. The forest fire rule: grey sites correspond to a grown tree, black pixels represent burned
sites and the white color indicates a burning tree. The snapshot given here represents the situation
after a few hundred iterations. The parameters of the rule are p = 0.3 and f = 6× 10−5.

Another rule which is also similar to Greenberg–Hasting and Margolus–Toffoli

tube-worm models is the so-called forest-fire model. This rule describes the propa-

gation of a fire or, in a different context, may also be used to mimic contagion in

case of an epidemic. Here we describe the case of a forest-fire rule.

The forest-fire rule is a probabilitic CA defined on a d-dimensional hypercubic

lattice. Initially, each site is occupied by either a tree, a burning tree or is empty.

The state of the system is parallel updated according to the following rule: (1) a

burning tree becomes an empty site; (2) a green tree becomes a burning tree if at

least one of its nearest neighbors is burning; (3) at an empty site, a tree grows with

probability p; (4) A tree without a burning nearest neighbor becomes a burning

tree during one time step with probability f (lightning).

Figure 47 illustrates the behavior of this rule, in a two-dimensional situation.

Provided that the time scales of tree growth and burning down of forest clusters are

well separated (i.e. in the limit f/p→ 0), this model has self-organized critical states

[53]. This means that in the steady state, several physical quantities characterizing

the system have a power law behavior. For example, the cluster size distribution

N (s) and radius of a forest cluster R(s) vary with the number of trees s in the forest

cluster as N (s) ∼ s−∆tC(s/smax) and R(s) ∼ s1/µS(s/smax) Scaling relations can

be established between the critical exponents ∆t and µ, and the scaling functions

C and S can be computed.

6.2. Surface reaction models

The problem of non-equilibrium phase transition is an important topics in physics.

The situation is not as clear as it is for equilibrium systems and no general theory

is available to describe such systems. Most of the known results are based on

numerical simulations. However, as is the case for equilibrium systems, the concept

of universality classes appears to be relevant although we do not completely under-
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stand how the universality classes are characterized.

In this section, we discuss the case of a non-equilibrium phase transition in a

simple model of reaction on a catalytic surface. The system is out of equilibrium

because it is an open system in which material continuously flows in and out.

However, after a while, it reaches a stationary state and, depending on some control

parameters, may be in different phases.

The system we shall consider is the so-called Ziff model [194]. This model is

based upon some of the known steps of the reaction A − B2 on a catalyst surface

(for example CO−O2). The basic steps are

• A gas mixture with concentrations XB2 of B2 and XA of A sits above the surface

and can be adsorbed. The surface can be divided into elementary cells. Each cell

can adsorb one atom only.

• The B species can be adsorbed only in the atomic form. A moleculeB2 dissociates

into two B atoms only if two adjacent cells are empty. Otherwise the B2 molecule

is rejected. The first two steps correspond to the reactions

A→ A(ads) , B2 → 2B(ads) . (6.1)

• If two nearest neighbor cells are occupied by different species they chemically

react according to the reaction

A(ads) + B(ads)→ AB(desorb) (6.2)

and the product of the reaction is desorbed. In the example of the CO − O2

reaction, the desorbed product is a CO2 molecule.

This final desorption step is necessary for the product to be recovered and for the

catalyst to be regenerated. However, the gas above the surface is assumed to be

continually replenished by fresh material so that its composition remains constant

during the whole evolution.

It is found by sequential numerical simulation [194] that a reactive steady state

occurs only in a window defined by

X1 < XA < X2 ,

where X1 = 0.389 ± 0.005 and X2 = 0.525 ± 0.001 (provided that XB2 = 1 −
XA). This situation is illustrated in Fig. 48, though for the corresponding cellular

automata dynamics and XB2 6= 1−XA.

Outside this window, the steady state is a “poisoned” catalyst of pure A (XA >

X2) or pure B (XA < X1). For XA > X1, the coverage fraction varies continuously

with XA and one speaks of a continuous (or second-order) non-equilibrium phase

transition. At XA = X2, the coverage fraction varies discontinuously with XA and

one speaks of a discontinuous (or first-order) non-equilibrium phase transition. The

asymmetry of behavior at X1 and X2 comes from the fact that A and B atoms

have a different adsorption rule: two vacant adjacent sites are necessary for B to

stick on the surface, whereas one empty site is enough for A.
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Fig. 48. Typical microscopic configuration in the stationary state of the CA Ziff model, where
there is coexistence of the two species. The simulation corresponds to the generalized model
described by rules R1, R2, R3 and R4 below. The gray and black dots represent, respectively, the
A and B particles, while the empty sites are white. The control parameter XA is larger in the
right image than it is in the left one.

From a physical point of view, the dynamics of such a system is not sequential

since many cells can be reacting simultaneously, within a given small time interval.

A parallel, asynchronous dynamics would then be a more realistic updating scheme.

However, it is interesting to study the Ziff model with a fully parallel, synchronous

cellular automata dynamics [31], which represents the other limiting case.

In a CA approach the elementary cells of the catalyst are mapped onto the cells

of the automaton. In order to model the different processes, each cell j can be in

one of four different states, denoted |ψj〉 = |0〉, |A〉, |B〉 or |C〉.
The state |0〉 corresponds to an empty cell, |A〉 to a cell occupied by an atom A,

and |B〉 to a cell occupied by an atom B. The state |C〉 is artificial and represents

a precursor state describing the conditional occupation of the cell by an atom B.

Conditional means that during the next evolution step of the automaton, |C〉 will

become |B〉 or |0〉 depending upon the fact that a nearest neighbor cell is empty

and ready to receive the second B atom of the molecule B2. This conditional state

is necessary to describe the dissociation of B2 molecules on the surface.

The main difficulty when implementig the Ziff model with a fully synchronous

updating scheme is to ensure that the correct stoichiometry is obeyed. Indeed, since

all atoms take a decision at the same time, the same atom could well take part in

a reaction with several different neighbors, unless some care is taken.

The solution to this problem is to add a vector field to every site in the lattice

[193], as shown in Fig. 49. A vector field is a collection of arrows, one at each lattice

site, that can point in any of the four directions of the lattice. The directions of

the arrows at each time step are assigned randomly. Thus, a two-site process is

carried out only on those pairs of sites in which the arrows point toward each other

(matching nearest-neighbor pairs (MNN)). This concept of reacting matching pairs

is a general way to partition the parallel computation in local parts.
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Fig. 49. Illustration of rules R2 and R3. The arrows select which neigbor is considered for a
reaction. Dark and white particles represent the A and B species, respectively. The shaded region
corresponds to cells that are not relevant to the present discussion such as, for instance, cells
occupied by the intermediate C species.

In the present implementation, the following generalization of the dynamics is

included: an empty site remains empty with some probability. One has then two

control parameters to play with: XA and XB2 that are the arrival probability of an

A and a B2 molecule, repectively.

Thus, the time evolution of the CA is given by the following set of rules, fixing

the state of the cell j at time t+ 1, |ψj〉(t+ 1), as a function of the state of the cell

j and its nearest neighbors (von Neumann neighborhood) at time t. Rules R1, R4

describe the adsorption-dissociation mechanism while rules R2, R3 (illustrated in

Fig. 49) describe the reaction-desorption process.

R1: If |ψj〉(t) = |0〉 then

|ψj〉(t+ 1) =


|A〉 with probability XA

|C〉 with probability XB2

|0〉 with probability 1−XA −XB2 .

(6.3)

R2: If |ψj〉(t) = |A〉 then

|ψj〉(t+ 1) =


|0〉 if the MNN of j was in the

state |B〉 at time t

|A〉 otherwise .

(6.4)

R3: If |ψj〉(t) = |B〉 then

|ψj〉(t+ 1) =


|0〉 if the MNN of j was in the

state |A〉 at time t

|B〉 otherwise .

(6.5)

R4: If |ψj〉(t) = |C〉 then

|ψj〉(t+ 1) =

{
|B〉 if MNN is in the state |C〉 at time t

|0〉 otherwise .
(6.6)
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(a) (b)

Fig. 50. Dissociation rule R4. The B2 molecule (or C state) is represented as two disks on top of
each other. Dissociation is possible if the upper disk can move to the site indicated by the arrow
without conflict with other moves.

In addition, Eq. (6.6) is supplemented by the following rule: a cell in the inter-

mediate state C will give two adjacent B atoms if its matching arrow points to an

empty site which is not pointed to by another C state. Rule R4 is illustrated in

Fig. 50.

Figure 48 shows typical stationary configurations obtained with a cellular auto-

mata version of the Ziff model. At time t = 0, all the cells are empty and a randomly

prepared mixture of gases with fixed concentrations XA and XB2 sits on top of the

surface. The rules are iterated until a stationary state is reached. The stationary

state is a state for which the mean coverage fractions Xa
A and Xa

B of atoms of type

A or B does not change in time, although microscopically the configurations of the

surface changes.

The phase diagram obtained for this generalized CA Ziff model is given in

Fig. 51, with the valueXB2 = 0.1. This phase diagram is topologically similar to the

sequential updating case (with XB2 = 1−XA) since we observe a first and a second

order transition surrounding a region of coexistence of both species. However the

0.04 0.06
0

1
 

XA

XB2
 = 0.1

A coverage

B coverage

Fig. 51. Stationary state phase diagram corresponding to the CA Ziff model.
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locations of the critical points are different, illustrating the non-universal character

of these quantities.

6.3. The reaction-diffusion rule

In this section we shall introduce a LGA model for rection-diffusion processes. Our

model will be very similar in spirit to the cellular automata fluids discussed in

Sec. 3 except that, here, the collision rule will reproduce a diffusive behavior and

implement some particle transformations. We shall first discuss the diffusion rule

and then show how a reaction term can be included.

6.3.1. The diffusion rule

At a microscopic level of description, a diffusive phenomena corresponds to the ran-

dom walk of many particles. Particle number is conserved but not momentum. This

random motion is typically due to the properties of the environment the particles

are moving in. When one is not interested in an explicit description of this envi-

ronment, it can be considered as a source of thermal noise and its effective action

on the particles can be assumed to be stochastic. Thus, the CA rule proposed in

Sec. 2.6 gives us the basic model for diffusion.

This evolution rule requires random numbers and then corresponds to a proba-

bilistic cellular automaton.

Thus, our diffusion model consists of particles moving along the main directions

of a hypercubic lattice (a square lattice in two dimensions or a cubic lattice in three

dimensions). As opposed to cellular automata fluids, we do not have to consider

here more complicated lattices. The reason is that diffusion processes do not re-

quire a fourth-order tensor for their description. The random motion is obtained by

permuting the direction of the incoming particles. If d is the space dimension, there

are 2d lattice directions. These 2d directions of motion can be shuffled in 2d! ways,

which is the number of permutations of 2d objects. However, it is not necessary

to consider all permutations. A subset of them is enough to produce the desired

random motion and, as in Sec. 2.6, we restrict ourselves to cyclic permutations.

Thus, at each time step, the directions of the lattice are “rotated” by an angle αi
chosen at random, with probability pi, independently for each site of the lattice.

With this mechanism, the direction a particle will exit a given site depends on the

direction it had when entering the site. The modification of its velocity determines

its next location on the lattice.

By labeling the lattice directions with the unit vectors ~ci we can introduce the

occupation numbers ni(~r ) defined as the number of particles entering the site ~r ,

at time t with a velocity pointing in direction ~ci.

With this notation, the CA rule governing the dynamics of our model reads

ni(~r + ∆r~ci, t+ ∆t) =
2d−1∑
`=0

µ`(~r , t)ni+`(~r , t) , (6.7)
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where i is wrapped onto {1, 2, . . . , 2d}. The µ` ∈ {0, 1} are Boolean variables which

select only one of the 2d terms in the right-hand side. Therefore they must obey

the condition

2d−1∑
`=0

µ` = 1 . (6.8)

Practically, this condition can be enforced in a simulation by dividing the interval

[0,1] into 2d bins of length p`, each assigned to one of the ν`. Then, at each lattice

site and each time step, a real random number between 0 and 1 is computed (with

a random number generator). The bin it falls into will determine which µ` is the

one that will be non-zero. This rule is illustrated in Fig. 15 for the case of a two-

dimensional system.

The macroscopic behavior resulting from microdynamics (6.7) in the limit of

infinitely small lattice spacing ∆r and time step ∆t can be obtained with the

same techniques as developed in Sec. 3, namely the multiscale Chapman–Enskog

expansion [33]. Since the dynamics is linear, a more direct calculation is also possible

if the limit is taken in such a way that ∆2
r/∆t remains constant.

As expected, the result is that the quantity ρ =
∑2d
i=1〈ni〉, where 〈ni〉 is the

average occupation number at site ~r and time t obeys the diffusion equation [33]

∂tρ+ div[−D gradρ] = 0 ,

where D is the diffusion constant whose expression, in a two-dimensional square

lattice, is

D =
∆2
r

∆t

(
1

4(p+ p2)
− 1

4

)
=

∆2
r

∆t

(
p+ p0

4[1− (p+ p0)]

)
. (6.9)

For the one- and three-dimensional cases, a similar expression can be found [33].

6.3.2. Lattice Boltzmann diffusion rule

If, instead of Boolean variables, the diffusion process is described in terms of the

probability of presence fi(~r , t) of a particle entering site ~r at time t along direction i,

the diffusion rule can be written down using the LB (lattice Boltzmann) formalism

introduced in Sec. 4.

The evolution rule takes the form

fi(~r + ∆t~v i, t+ ∆t) =
1

τ
f

(0)
i (~r , t) +

(
1− 1

τ

)
fi(~r , t) ,

where f
(0)
i is the local equilibrium distribution and τ the relaxation time. Since the

only conserved quantity in a diffusive process is the particle number ρ =
∑2d
i=1 fi,

we choose

f
(0)
i =

1

2d
ρ
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so that (i) ρ is indeed conserved and (ii) the local equilibrium depends on ~r and t

only through the conserved quantities.

Thus, the evolution rule can be rewritten as

fi(~r + ∆t~v i, t+ ∆t) =

[
1− 1

τ

(
1− 1

2d

)]
fi(~r , t) +

∑
j 6=i

1

(2dτ)
fj(~r , t) .

This is equivalent to the lattice Boltzmann equation asssociated with the diffusive

CA having the probability of rotation

p0 = 1− 1

τ

(
1− 1

2d

)
, pj =

1

2d
.

For a two-dimensional square lattice and according to Eq. (6.9), these values of pi
correspond to a diffusion constant

D =
1

2

(
τ − 1

2

)
∆2
r

∆t
.

From this, we conclude that τ ≥ 1/2, otherwise D becomes negative. However, from

the expression for p0, we see also that τ ≥ 1 − 1/(2d), if we want to interprete p0

as a probability. Thus, in two dimensions, the situation 1/2 < τ < 3/4 does not

correspond to a CA realization. Yet, the CA model can have D = 0 in a different

way since it does not impose that all pi’s are equal but p0. This also shows that

the numerical behavior of the LB scheme must be checked in more detail when

1/2 < τ < 3/4. Finally, notice that a too large value of τ may yield an anisotropic

behavior because it favors too much the lattice axis.

6.3.3. LB diffusion in polar coordinates

The models presented so far (whether hydrodynamical or diffusive) require a regular

lattice to be defined properly. There is a clear interest to relax this limitation and

allow “body-fitted” meshes that can be adapted to a given geometry of boundaries.

This problem is still an active field of research [129, 166].

Here we simply present a way to define a LB model in polar coordinate, assuming

that the system has an angular symmetry. Thus, the variables fi depends only on

the distance r to the center of the system. We shall also assume that the system is

described by an underlying lattice dynamics, independent of the space discretization

given by the polar coordinates.

We want to compute how many particles enter a polar cell located at distance r.

Particles traveling toward larger values of r are described by the quantity f1(r, t),

whereas particle moving to the center of the system are described by f2(r, t). Due

to the angular symmetry, there is no need to consider other directions of motion.

In the case of a diffusive system, the population f1 and f2 are mixed according

to f ′1 = pf1 + (1− p)f2 and f ′2 = pf2 + (1− p)f1.
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The number of particles entering cell r + dr in the positive direction are those

exiting cell r after the diffusion step. The density of such particles is given by

f ′1. Since we work in polar coordinate, the cross section of cell r is σrd−1, where

σ is some constant and d the space dimensionality. Therefore, there are σrd−1f ′1
particles moving from cell r to cell r + dr. Since the cross section of cell r + dr is

σ(r + dr)d−1, the density f1(r + dr, t+ ∆t) is defined by the balance equation

σ(r + dr)d−1f1(r + dr, t+ ∆t) = σrf ′1 .

A similar derivation hold for f2(r − dr, t + ∆t). Thus, for a diffusion process, we

obtain

f1(r + dr, t+ ∆t) =

(
r

r + dr

)d−1

[pf1 + (1− p)f2] ,

f2(r − dr, t+ ∆t) =

(
r

r − dr

)d−1

[pf2 + (1− p)f1] .

(6.10)

Therefore, the effect of the polar coordinate system is to modify the propagation

scheme. It can be checked that numerical simulations of Eq. (6.10), with fixed

boundary conditions at r = r0 and r = r1, converges to the corresponding solution

of Laplace equation in polar coordinates.

6.3.4. The reaction rule

In this section we add a reaction term on top of the diffusion rule described in the

previous section. Our aim is to simulate processes such as

A+B
K→ C , (6.11)

where A, B and C are different chemical species, all diffusing in the same solvent,

and K is the reaction constant. To account for this reaction, one can consider the

following mechanism: at the “microscopic” level of the discrete lattice dynamics, all

the three species are first governed by a diffusion rule. When an A and a B particle

enter the same site at the same time, they disappear and form a C particle.

Of course, there are several ways to select the events that will produce a C when

more than one A or one B are simultaneously present at a given site. Also, when Cs

already exist at this site, the exclusion principle may prevent the formation of new

ones. A simple choice is to have A and B react only when they perform a head-on

collision and when no Cs are present in the perpendicular directions. Other rules

can be considered if we want to enhance the reaction (make it more likely) or to

deal with more complex situations (2A+B → C, for instance).

A parameter k can be introduced to tune the reaction rate K by controlling the

probability of a reaction taking place.

In order to write down the microdynamic equation of this process, we shall

denote by ai(~r , t), bi(~r , t) and ci(~r , t) ∈ {0, 1} the presence or absence of a particle

of type A, B or C, entering site ~r at time t pointing in lattice direction i.
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We shall assume that the reaction process first takes place. Then, the left-over

particles, or the newly created ones, are randomly deflected according to the diffu-

sion rule. Thus, using Eq. (6.7), we can write the reaction-diffusion microdynamics

as (d is the dimensionality of the Cartesian lattice)

ai(~r + ∆r~ei, t+ ∆t) =
2d−1∑
`=0

µ`(~r , t)[ai+`(~r , t) +Rai+`(a, b, c)] (6.12)

and similarly for the two other species B and C.

As before, the µ`(~r , t) are independent random Boolean variables producing the

direction shuffling. The lattice spacing ∆r and time steps ∆t are introduced as

usual and the lattice directions ~ei are defined as east, north, west and south, in the

case of a two-dimensional lattice.

The quantity Raj (a, b, c) is the reaction term: it describes the creation or the

annihilation of an A particle in the direction j, due to the presence of the other

species. In the case of an annihilation process, the reaction term takes the value

Raj = −1 so that aj − Raj = 0. On the other hand, when a creation process takes

place, aj = 0 and Raj = 1. When no interaction occurs, Raj = 0.

For instance, in the case of the reaction (6.11) (illustrated in Fig. 52), the

reaction terms could be written as

Rai = −κaibi+2[ν(1− ci+1) + (1− ν)(1− ci−1)] ,

Rbi = Rai+2 ,

Rci = κ(1− ci)[νai−1bi+1 + (1− ν)ai+1bi−1] .

(6.13)

Rai and Rbi are annihilation operators, whereas Rci corresponds to particle

creation. One can easily check that, for each A (or B) particle which disappears, a

C particle is created. That is,

2d∑
i=1

Rai =
2d∑
i=1

Rbi = −
2d∑
i=1

Rci .

The quantities ν(~r , t) and κ(~r , t) in Eqs. (6.13) are independent random bits,

introduced in order to select among the various possible events: ν(~r , t) is 1 with

probability 1/2 and decides in which direction the reaction product C is created.

When ν = 1, the new C particle forms a +90◦ angle with respect to the old A

particle. This angle is −90◦ when ν = 0.

A B C A B

C
ν=1 ν=0

Fig. 52. Automata implementation of the A+B → C reaction process.
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The occurrence of the reaction is subject to the value of the Boolean variable κ.

With probability k, κ = 1. Changing the value of k is a way to adjust the reaction

constant K. We shall see that k and K are proportional.

The presence of the terms involving ci in the right-hand side of Eq. (6.13) may

seem unphysical. Actually, these terms are introduced here in order to satisfy the

exclusion principle: a new C cannot be created in direction i if ci is already equal

to 1. With this formulation, the reaction slows down as the number of C particles

increases. At some point one may reach saturation if no more room is available to

create new particles.

In practice, however, this should not be too much of a problem if one works at low

concentrations. Also, quite often, the C species also undergoes a transformation:

the reaction can be reversible or C particles can precipitate if the concentration

reaches some threshold. Or, sometimes, one is only interested in the production

rate
∑
j R

a
j =

∑
j R

b
j of the species C and one can forget about them once they are

created. In this case, one simply puts ci = 0 in the first two Eq. (6.13).

Clearly, the exclusion principle may introduce some renormalization of the

reaction rate. If for some reason, this is undesirable, multiparticle models offer

an alternative to the LGA approach. This will be discussed in Sec. 7.

Due to the simple microscopic interpretation, Eq. (6.13) is easily generalized

to other reaction processes. A common situation is when one species is kept at a

fixed concentration. This means that the system is fed a chemical by an external

mechanism. In this case, the corresponding occupation numbers (for instance the

bis) can be replaced be random Boolean variables which are 1 with a probability

given by the selected concentration of the species.

6.4. The macroscopic behavior

Here we establish the link between the discrete reaction-diffusion cellular automata

dynamics and the corresponding macroscopic level of description. We shall perform

this calculation for the case of three species A, B and C but a generalization to

other reaction schemes is straightforward.

Our approach is similar to that used in Secs. 3 and 4. We use the Boltz-

mann molecular chaos assumption, in which correlations are neglected. Within this

approximation, we shall see that the microdynamics of the A + B → 0 reaction-

diffusion processes yields the usual rate equation

∂tρA = D∇2ρA −KρAρB . (6.14)

To derive the macroscopic behavior of our automata rule, we first average

Eq. (6.12)

Ai(~r + ∆r~ei, t+ ∆t)−Ai(~r , t)

=
2d∑
j=1

ΩijAj(~r , t) +
2d∑
j=1

(δij + Ωij)R
a
j (A,B,C) , (6.15)
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where Ai = 〈ai〉 is the average value of the occupation numbers ai. The matrix Ω

is the matrix expressing the diffusion rule, that is

Ωii = p0 − 1 , Ωij = pj−i ,

where j − i is defined modulo 2d. Similar to equations to Eq. (6.15) hold for Bi
and Ci.

Using the Boltzmann hypothesis, the average value of the reaction term is

written as

〈Rai (a, b, c, κ, ν)〉 ≈ Rai (A,B,C, 〈κ〉, 〈ν〉) . (6.16)

Note that this factorization may be wrong for simple annihilation reaction-diffusion

processes, as discussed in Sec. 7.3.1.

The second step is to replace the finite difference in the left-hand side of

Eq. (6.15) by its Taylor expansion

Ai(~r + ∆r~ei, t+ ∆t)−Ai(~r , t)

=

[
∆t∂t +

∆2
t

2
∂2
t + ∆r(~ci · ∂~r) +

∆2
r

2
(ci · ∂~r)2 + ∆t∆r∂t(~ci · ∂~r)

]
Ai (6.17)

and similarly for the other species B and C. As in the hydrodynamic case, we

consider a Chapman–Enskog-like expansion and look for a solution of the following

form

Ai = A
(0)
i + εA

(1)
i + ε2A

(2)
i + · · · . (6.18)

Since particle motion is governed by the diffusion process, we will use the fact that

when taking the continuous limit, the time and length scale are of the following

order of magnitude

∆r = ε∆r1 and ∆t = ε2∆t2 . (6.19)

In reactive systems, as opposed to hydrodynamics or pure diffusion, neither momen-

tum nor particle number are conserved in general. For instance, in the annihilation

process A+A→ ∅, no conservation law holds.

On the other hand, the reaction term can be considered as a perturbation to the

diffusion process, which makes derivation of the macroscopic limit rather simple. In

Eq. (6.14), the reaction constant K has the dimension of the inverse of a time. This

quantity defines at what speed the reaction occurs. At the level of the automaton,

this reaction rate is controlled by the reaction probability k = 〈κ〉 introduced in

the previous section.

When the continuous limit is taken, the automaton time step ∆t goes to zero.

Thus, the number of reactions per second will increase as ∆t decreases, unless the

reaction probability k also diminishes in the right ratio. In other words, to obtain a

finite reaction constant K in the macroscopic limit, it is necessary to consider that
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k ∝ ∆t. Since ∆t is of the order ε2 in our Chapman–Enskog expansion, the reaction

term Rai is also to be considered as an O(ε2) contribution and we shall write

Rai = ε2Ra2i . (6.20)

At the macroscopic level the physical quantities of interest are the particle densities

of each species. Following the usual method, we define the density ρA of the A

species as

ρA =
2d∑
i=1

A
(0)
i

with the condition

2d∑
i=1

A
(`)
i = 0 if ` ≥ 1 .

Now we have to identify the different orders in ε which appear in Eq. (6.15),

using the expressions (6.17), (6.18), (6.19) and (6.20). We obtain

O(ε0) :
∑
j

ΩijA
(0)
i = 0 , (6.21)

O(ε1) : ∆r1(~ei · ∇)A
(0)
i =

∑
j

ΩijA
(1)
j . (6.22)

These equations are exactly similar to those derived in the case of pure diffusion

(see Ref. 33) and the result is that

A
(0)
i =

ρA

2d

and

A
(1)
i =

∆r1

2d

1

V
eiα∂αρA ,

where V is the eigenvalue of the diffusion matrix Ω for the eigenvector

Eα = (e1,α; e2,α; . . . ; e2d,α) .

The equation for the density ρA is now obtained by summing over i equa-

tions (6.15), remembering that ∑
i

Ωij = 0 .

Collecting all the terms up to O(ε2), we see that the orders O(ε0) and O(ε) vanish

and we are left with

ε2∆t2∂t
∑
i

A
(0)
i + ε2∆r1

∑
i

(~ei · ∇)A
(1)
i + ε2

∆r1

2

∑
i

(~ei · ∇)2A
(0)
i

= ε2
∑
j

Ra2j(A
(0), B(0), C(0)) .
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Using the definition of ∆t2, ∆r1, R
a
2j and performing the summations yields

∂tρA = D∇2ρA +
1

∆t

∑
j

Raj

(
ρA

2d
,
ρB

2d
,
ρC

2d

)
, (6.23)

where D is the same diffusion constant as would be obtained without the chemical

reactions (see Sec. 6.3.1).

It is interesting to note that expression (6.23) has been obtained without know-

ing the explicit expression for the reaction termsR and independently of the number

of species. Actually, from this derivation, we see that the reaction term enters in a

very natural way in the macroscopic limit: we just have to replace the occupation

numbers by ρ/2d, the random Boolean fields by their average values and sum up

this result for all lattice directions.

For the case of the A+B → C process in two dimensions, with the reaction term

given by Eq. (6.13), Eq. (6.23) shows that the macroscopic behavior is described

by the rate equations

∂tρA = DA∇2ρA −
k

4∆t

(
1− ρC

4

)
ρAρB ,

∂tρB = DB∇2ρB −
k

4∆t

(
1− ρC

4

)
ρAρB ,

∂tρC = DC∇2ρC +
k

4∆t

(
1− ρC

4

)
ρAρB ,

(6.24)

where, in principle a different diffusion constant can be chosen for each species. We

also observe that the reaction constant K is related to the reaction probability k by

K =
k

4∆t
.

As explained previously, the exclusion principle introduces a correction (1 − ρc/4)

which remains small as long as C is kept at a low concentration.

6.5. Liesegang patterns

In this section we shall study a more complex system in which reaction-diffusion

will be accompanied by solidification and growth phenomena. This gives rise to

nice and complex structures that can be naturally modeled and analyzed in the

framework of the cellular automata approach.

These structures are known as Liesegang patterns, from the German chemist

R. E. Liesegang who first discovered them at the end of the nineteenth century [81].

Liesegang patterns are produced by precipitation and aggregation in the wake of

a moving reaction front. Typically, they are observed in a test tube containing a gel

in which a chemical species B (for example AgNO3) reacts with another species A
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x=0

A B

direction of the moving front

Fig. 53. Example of the formation of Liesegang bands in a cellular automata simulation. The
white bands correspond to the precipitate which results from the A+B reaction.

(for example HCl). At the beginning of the experiment, B is uniformly distributed in

the gel with concentration b0. The other species A, with concentration a0 is allowed

to diffuse into the tube from its open extremity. Provided that the concentration

a0 is larger than b0, a reaction front propagates in the tube. As this A+B reaction

goes on, formation of consecutive bands of precipitate (AgCl in our example) is

observed in the tube, as shown in Fig. 53. Although this figure is from a computer

simulation, it is very close to the picture of a real experiment.

The presence of bands is clearly related to the geometry of the system. Other

geometries lead to the formation of rings or spirals.

Depending on the experimental situation, some Liesegang patterns can present

unexpected structures (inverse banding [120], effect of gravity, shape of the con-

tainer and other exotic behaviors [100]). Therefore a complete analysis of the

phenomena is difficult and still under investigation [3, 54].

On the other hand, for many different substances, generic formation laws can

be identified. For instance, after a transient time, Liesegang bands appear at some

positions xi and times ti and have a width wi. It is first observed that the center

position xn of the nth band is related to the time tn of its formation through the

so-called time law xn ∼
√
tn.

Second, the ratio pn ≡ xn/xn−1 of the positions of two consecutive bands

approaches a constant value p for large enough n. This last property is known

as the Jablczynski law [91] or the spacing law. Finally, the width law states that

the width wn of the the nth band is an increasing function of n. These features

are related to the properties of the reaction front which move in the system. The

time law appears to be a simple consequence of the diffusive dynamics. On the

other hand, spacing and width laws cannot be derived with the reaction-diffusion

hypotheses alone. Extra nucleation-aggregation mechanisms have to be introduced,

which makes any analytical derivation quite intricate [140, 163, 192].

From an abstract point of view, the most successful mechanism that can be

proposed to explain the formation of Liesegang patterns is certainly the super-

saturation assumption based on Ostwald’s ideas [132]. This mechanism can be

understood using the formation scenario proposed by Dee [48]: the two species

A and B react to produce a new species C (a colloid, in chemical terminology)

which also diffuses in the gel.
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When the local concentration of C reaches some threshold value, nucleation

occurs: that is, spontaneously, the C particles precipitate and become solid D

particles at rest. This process is described by the following equations

∂ta = Da∇2a−Rab ,
∂tb = Db∇2b−Rab ,
∂tc = Dc∇2a+Rab − nc ,
∂td = nc ,

(6.25)

where, as usual, a, b, c, d stand for the concentration at time t and position ~r of the

A, B, C and D species, respectively. The term Rab expresses the production of the

C species due to the A+B reaction. Classically, a mean-field approximation is used

for this term and Rab = Kab, where K is the reaction constant. The quantity nc
describes the depletion of the C species resulting from nucleation and aggregation on

existing D clusters. An analytical expression for this quantity is rather complicated.

However, at the level of a cellular automata model, this depletion term can be

included quite naturally.

Within this framework, the supersaturation hypothesis can be stated as follows:

due to aggregation, the clusters of nucleated D particles formed at the reaction

front deplete their surroundings of the reaction product C. As a result, the level of

supersaturation drops dramatically and the nucleation and solidification processes

stop. To reach again suitable conditions to form new D nuclei, the A−B reaction

has to produce sufficient new C particles. But, the reaction front moves and this

happens at some location further away. As a result, separate bands appear.

Most of the ingredients needed for modeling the formation of Liesegang pattern

in terms of a CA approach have already been introduced in the previous section,

when describing the A + B → C reaction-diffusion process. In the case of Dee’s

scenario, we also need to provide a mechanism for spontaneous nucleation (or pre-

cipitation) in order to model the transformation of a diffusing C particle into a

solid D particle. Finally, aggregation of C particles on an existing D cluster will be

modeled in very much the same spirit as the DLA growth described in Sec. 2.6. The

key idea will be to introduce threshold values to control both of these processes.

The C particles, once created, diffuse until their local density (computed as the

number of particles in a small neighborhood divided by its total number of sites

and lattice directions), reaches a threshold value ksp. Then they spontaneously

precipitate and become D particles at rest (nucleation). Here, we typically consider

3× 3 Moore neighborhoods centered around each lattice site.

Morover,C particles located in the vicinity of one or more precipitateD particles

aggregate provided that their local density (computed as before) is larger than an

aggregation threshold kp < ksp.

The parameters kp and ksp are two control parameters of the model. The intro-

duction of these critical values refers to the qualitative models of solidification

theory, relating supersaturation and growth behavior [82].
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An important aspect of the mechanism of Liesegang patterns formation is the

role of spontaneous fluctuations. Precipitation and aggregation processes (such as

a DLA) are clearly dependent on local density fluctuations. For instance, even if

the average particle concentration of C particles is less that the supersaturation

threshold, it may be higher locally and give rise to spontaneous nucleation. Simi-

larly, aggregation is a function of the particle density in the vicinity of an existing

solid cluster, which is also a locally fluctuating quantity.

The cellular automata approach naturally accounts for these fluctuation phe-

nomena and, in addition, captures the mesoscopic nature of the precipitate cluster,

that can be fractal.

Figure 53 shows a typical example of a cellular automata simulation with C

particles, giving rise to bands. The initial condition is built as follows: at time

t = 0, the left part of the system (x ≤ 0) is randomly occupied by A particles, with

a density a0 and the right part (x > 0) is filled with B particles with a density b0.

From the positions xn and the formation time tn of each band, we can verify the

spacing and the time laws. For instance, the plot given in Fig. 54 shows very good

agreement for the relation xn/xn−1 → p. It is found that the so-called Jablczynski

coefficient p is 1.08, a value corresponding to experimental findings. The way the

value of p depends on the parameters of the model is expected to follows the so-

called Matalon–Pakter [119] experimental law. From a numerical and theoretical

point of view, this dependence is still under investigation [3].

Liesegang patterns are found only if the parameters of the experiment are thor-

oughly adjusted. In our simulation, kp and ksp are among the natural quantities

that control supersaturation and aggregation. In practice, however, one cannot di-

rectly modify these parameters. On the other hand, it is experimentally possible

to change some properties of the gel (its pH for example) and thus influence the

properties of the aggregation processes or the level of supersaturation.

0 100 200 300
xn-1

0

100

200

300

400

xn

Fig. 54. Verification of the spacing law for the situation with C particles. The ratio xn/xn−1

tends to p = 1.08 .
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Amorphous
solidification

No precipitation

BANDS
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clustering

ksp

Homogenous

Dendrites

Fig. 55. Qualitative phase diagram showing the different possible patterns that can be obtained
with our cellular automata model, as a function of the values of ksp and kp.

Outside of the region where Liesegang patterns are formed, our simulations show

that, when kp and ksp vary, other types of patterns are obtained. These various

patterns can be classified in a qualitative phase diagram, as shown in Fig. 55. An

example of some of these “phases” is illustrated in Fig. 56. Note that the limits

(a)

(b)

(c)

Fig. 56. Examples of patterns that are described in the phase diagram: (a) corresponds to homo-
geneous clustering; this is also the case of pattern (b) but closer to the region of band formation.
Pattern (c) shows an example of what we called a dendrite structure. Amorphous solidification
would correspond to a completely uniform picture.
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Fig. 57. (a) Examples of mineral dendrite obtained from a cellular automata simulation with
kp = 0; in this figure, the reaction front moves from upward. The two graphs on the right show
the numerical measurement of the fractal dimension using: (b) a sand-box method and (c) a
box-counting technique.

between the different “phases” do not correspond to any drastic modification of

the patterns. There is rather a smooth crossover between the different domains.

The associated names are borrowed from the phenomenological theory of solidifica-

tion [82].

The terminology of dendrite comes from the tree-like structures that are some-

times found on the surfaces of limestone rocks or plates and that can be confused

with fossils. The plant-shaped deposit is made of iron or manganese oxides that

appear when at some point in the geological past the limestone was penetrated by

a supersaturated solution of manganese or iron ions. It turns out that the forma-

tion of these mineral dendrites can be simulated by the same scenario as Liesegang

patterns, but with an aggregation threshold kp = 0. Figure 57 shows the results

of such a modeling. The fractal dimension of these clusters is found to be around

1.77, a value which is very close to that measured in a real sample [37].

The patterns we have presented so far show axial symmetry, reflecting the

properties of the experimental setup. But the same simulations can be repeated

with different initial conditions. A case of interest is the situation of radial sym-

metry responsible for the formation of rings or spirals. The reactant A is injected

in the central region of a two-dimensional gel initially filled with B particles. The
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(a) (b)

Fig. 58. Liesegang rings (a) and spiral (b), as obtained after 2000 iterations of the cellular
automata model, with C particles indicated in gray.

result of the cellular automata simulation is shown in Fig. 58. In (a) concentric rings

are formed, starting from the middle of the system and appearing as the reaction

front radially moves away. In (b) a spiral-shaped structure is created. Although the

two situations are similar as far as the simulation parameters are concerned, the

appearance of a spiral stems from a spontaneous spatial fluctuation which breaks

the radial symmetry.

Liesegang patterns are obtained when the initial A concentration is significantly

larger than the initial B concentration. In a cellular automata model with an exclu-

sion principle, a large concentration difference implies having very few B particles.

As a consequence, the production rate of C particles is quite low because very

few reactions take place. For this reason, the simulations presented above, have

been produced with a pseudo-three-dimensional system composed of several two-

dimensional layers. The reaction has been implemented so that particles of different

layers can interact.

Therefore, pure CA simulations of Liesegang structure can be very demanding in

terms of CPU time. It turns out that a LB approach is also possible, with much less

computer resources, and makes it possible to investigate large systems exhibiting

many more bands.

The LB model follows the same line as in the CA approach but some external

noise is added to describe aggregation and nucleation as probabilistic processes.

We refer the reader to Ref. 38 for a more detailed discussion. Below we just show

some of the patterns generated with the LB model. Figure 59 shows an example of

a lattice Boltzmann simulation containing up to 30 consecutive bands, in a system

of sizes 1024× 64.

We can also consider again the case of Liesegang rings and spirals in the frame-

work of the LB approach.
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Fig. 59. Example of the formation of Liesegang bands in a lattice Boltzmann simulation.

(a) (b)

Fig. 60. Formation of (a) Liesegang rings and (b) spiral-shaped pattern, as obtained after 2000
iterations of the lattice Boltzmann model.

Figure 60(a) shows the situation where concentric rings of precipitate are

formed. The numerical parameters are: a0 = 1, b0/a0 = 0.013, Db/Da = 0.1,

ksp/a0 = 0.0087, kp/a0 = 0.0065. The nucleation process takes place with a proba-

bility of 0.05 and aggregation with a probability close to 1. This pattern turns out

to be quite similar to real Liesegang structures obtained in a similar experimental

situation [81].

For the same set of parameters, but b0/a0 = 0.016, a different pattern is observed

in Fig. 60(b). There, a local defect produced by a fluctuation develops and a spiral

of precipitate appears instead of a set of rings. Such a spiral pattern will never be

obtained from a deterministic model without a stochastic component.

7. Multiparticle Models

Multiparticle models (also termed Integer Lattice Gas Automata [14]) are lattice

gas models without an exclusion principle. They are designed to conciliate the

advantages of the CA and LB models. LB models are less noisy and provide more

flexibility than their Boolean (CA) counterpart. However they may exhibit some

bad numerical instabilities (that is the case of lattice BGK models of fluids) and

they sometimes fail to account for relevant physical phenomena because fluctuations

are neglected. An example is provided in Sec. 7.3.1 by the anomalous kinetics in

the simple A+A→ 0 reaction-diffusion processes.
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Multiparticle models conserve the point-like nature of particles, as in cellular

automata, but allow an arbitrary number of them to be present at each lattice site.

This eliminates the exclusion principle that plagues the cellular automata approach

and which appears as a numerical artifact rather than a desirable physical property.

Mathematically speaking, this means that the state of each lattice site cannot

be described with a finite number of information bits. However, in practice, it is

easy to allocate a 32- or 64-bit computer word to each lattice site, to safely assume

that “any” number of particles can be described at that site.

Multiparticle models lead to a reduced statistical noise: if the number of particles

per site is N , the intrinsic fluctuations due to the discrete nature of the particles

will typically be of the order
√
N . This is small compared to N , if N is large enough.

Therefore, we do not have to perform much averaging to get a meaningful result.

In addition, with an arbitrary number of particle per site, we have much more

freedom to enforce a given boundary condition, or tune a parameter of the simula-

tion. Actually, when modeling a reaction process, it is often necessary to get rid of

the exclusion principle. For instance, to describe processes such as mA+ nB → C,

it is highly desirable to have more than four particles per site.

Unfortunately, the numerical implementation of multiparticle models is much

more involved than LB or CA models and the computation time is also much higher.

On the other hand, we restore in a natural way the fluctuations that are absent

in LB simulations and provide an intrinsically stable numerical scheme (since we

deal with positive integer numbers). Besides, when compared to CA, the extra

computational time may well be compensated by the fact that less averaging is

required.

In this section we first consider the case of a reaction-diffusion system and then

we shall describe how a hydrodynamical model can be defined within the context

of a multiparticle approach.

7.1. Multiparticle diffusion model

Our algorithm is defined on a d-dimensional Cartesian lattice of spacing ∆r [36].

Each lattice site ~r is occupied, at time t, by an arbitrary number of particles n(~r , t).

The discrete time diffusion process is defined as follows: during the time interval ∆t,

each particle can jump to one of its 2d nearest-neighbor sites along lattice direction

i with probability pi, or stay at rest with a probability p0 = 1−
∑2d
i=1 pi.

An advantage of dealing with multiparticle dynamics is that advection mech-

anisms can be added to the diffusion process. When the probabilities of jumping

to a nearest-neighbor site are different in each direction, a drift is introduced. This

adds a density gradient term to the diffusion equation which then reads

∂tρ = ~V∇ρ+D∇2ρ ,

where ~V is the advection velocity. Such an advection effect is difficult to produce

without an artifact when an exclusion principle holds.
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For the sake of simplicity, we shall now consider a two-dimensional case. The

generalization is straightforward and follows the same reasoning.

The idea is to loop over every particle at each site, decide where it goes and move

it to its destination site. In terms of the particle numbers n(~r , t), our multiparticle

rule can be expressed as

n(~r , t+ ∆t) =

n(~r ,t)∑
`=1

p0`(~r , t) +

n(~r+∆r~e3,t)∑
`=1

p1`(~r + ∆r~e3, t)

+

n(~r+∆r~e1,t)∑
`=1

p3`(~r + ∆r~e1, t) +

n(~r+∆r~e4,t)∑
`=1

p2`(~r + ∆r~e4, t))

+

n(~r+∆r~e2,t)∑
i=1

p4`(~r + ∆r~e2, t)) . (7.1)

The vectors ~e1 = −~e3, ~e2 = −~e4 are the four unit vectors along the main directions

of the lattice. The stochastic Boolean variable pi`(~r, t) is 1 with probability pi and

selects whether or not particle ` chooses to move to site ~r+∆r~ei. Since each particle

has only one choice, we must have

p0` + p1` + p2` + p3` + p4` = 1 .

The macroscopic occupation numberN(~r , t) = 〈n(~r , t)〉 is obtained by averaging

the above evolution rule over an ensemble of equivalent systems. Clearly, one has〈
n(~r ,t)∑
`=1

pi`(~r , t)

〉
= piN(~r , t) .

Thus, we obtain the following equation of motion:

N(~r , t+ ∆t) = p0N(~r , t) + p1N(~r + ∆r~e3, t) + p3N(~r + ∆r~e1, t)

+ p2N(~r + ∆r~e4, t) + p4N(~r + ∆r~e2, t) . (7.2)

Assuming N varies slowly on the lattice, we can perform a Taylor expansion in both

space and time to obtain the continuous limit. Using
∑
pi = 1 and ~ei = −~ei=2, we

obtain

∆t∂tN(~r , t) +
∆t

2

2
∂t

2N(~r , t) +O(∆3
t )

= ∆r[(p3 − p1)~e1 + (p4 − p2)~e2] · ∇N(~r , t) +
∆2
r

2
(p1 + p3)(~e1 · ∇)2N(~r , t)

+
∆2
r

2
(p2 + p4)(~e1 · ∇)2N(~r , t) +O(∆3

r) . (7.3)

Since, ~e1 and ~e2 are orthonormal, we have

(~e1 · ∇)2 + (~e2 · ∇)2 = ∇2 .
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In order to use this property it is necessary that p1 + p3 = p2 + p4, otherwise the

lattice directions will “visible.” Thus we impose the isotropy condition

p1 + p3 = p2 + p4 =
1− p0

2

and we obtain

∂tN(~r , t) +
∆t

2
∂t

2N(~r , t) +O(∆2
t )

= ~V · ∇N(~r , t) +D∇2N(~r , t) +O(∆3
r) , (7.4)

where ~V is the advection velocity

~V =
∆r

∆t
[(p3 − p1)~e1 + (p4 − p2)~e2]

and D the diffusion constant

D =
∆2
r

4∆t
(1− p0) . (7.5)

We may now consider the limit ∆r → 0 and ∆t → 0 with ∆2
r/∆t → constant,

as usual in a diffusion process. However, here, some additional care is needed. If

p3 6= p1 or p4 6= p2, the advective term will diverge in the limit. This means that

p3 − p1 or p4 − p2 must decrease proportionally to ∆r when the limit is taken.

Thus, with a halved lattice spacing, the difference between pi and pi+2 must also

be halved in order to produce the same advection. With these assumptions, we

obtain, in the macroscopic limit

∂tN = ~V · ∇N +D∇2N .

7.2. Numerical implementation

The main problem when implementing our algorithm on a computer (for instance,

for the two-dimensional case we described in the previous section) is to find an

efficient way to select the particles at rest and distribute randomly the others among

the four possible directions of motion. More precisely, we have to compute quantities

such as

ni =

n(~r ,t)∑
`=1

pi`(~r , t) .

In practice, we can loop over all ` particles at every site and, for each of them,

choose a random number r, uniformly distributed in the interval [0, 1]. Then, we

consider a division of this interval in subintervals [rj , rj+1], j = 0, . . . , 5, so that

pi = ri+1 − ri. We say that pi` = 1 if and only if ri+1 ≤ r < ri. The quantities ni
are thus distributed according to a multinomial distribution.

This procedure is acceptable for small values of n but, otherwise, very time

consuming. However, when n is large (more precisely when npi(1 − pi) � 1, the
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statistical distributions of the ni is expected to approach Gaussian distributions of

mean npi and variance npi(1 − pi). This Gaussian approximation allows us to be

much more efficient because we no longer have to generate a random number for

each particle at each site.

For simplicity, take the case p0 = p and p1 = p2 = p3 = p4 = (1−p)/4. The ni’s

can be approximated as follows: we draw a random number n0 from a Gaussian

distribution of mean np and variance np(1− p) (for instance using the Box–Muller

method [141]). This number is then rounded to the nearest integer.

Thus, in one operation, this procedure splits the population into two parts: n0

particles that will stay motionless and n − n0 that will move. In a second step,

the n − n0 moving particles are divided into two subsets according to a Gaussian

distribution of mean nm/2 and variance nm(1/2)(1/2). Splitting up each of these

subsets one more time yields the number ni of particles that will move in each of

the four lattice directions.

If advection is present, we can also proceed similarly. First, we divide up the

moving particle population into two parts: on the one hand, those going to north

and east, for instance, and on the other hand, those going south and west. Second,

each subpopulation is, in turn, split into two subsets according to to the values of

the pis. Of course, as in traditional lattice gas automata, these splitting operations

can be performed simultaneously (in parallel) at each lattice site.

Empirical considerations, supported by theoretical arguments on binomial dis-

tributions, show that ni = 40 is a good threshold value in two dimensions, above

which the Gaussian procedure can be used. Below this critical value, it is safer to

have the algorithm loop over all particles. Note that in a given simulation, impor-

tant differences in the particle number can be found from site to site and the two

different algorithms may have to be used at different places.

7.3. The reaction algorithm

We will now discuss how reaction processes can be implemented in the framework

of multiparticle models (see also Ref. 97). Reaction-diffusion phenomena can then

be simulated by alternating the reaction process between the different species and

then the diffusion of the resulting products, according to the multiparticle diffusion

algorithm just described.

A reaction process couples locally the different speciesAl, l = 1, . . . , q to produce

new species Bj , j = 1, ..,m according to the relation

α1A1 + α2A2 + · · ·+ αqAq
K−→ β1B1 + β2B2 + · · ·+ βmBm . (7.6)

The quantities αl, βj are the stoichiometric coefficients, and k is the reaction

constant.

In order to model this reaction scheme with a multiparticle dynamics, one con-

siders all the q-tuples that can be formed with α1 particles of A1, α2 particles of A2,
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etc. These q-tuples are transformed into m-tuples of Bj particles with probability

k. At site ~r and time t, there are

N (~r , t) ≡
(
nA1

α1

)(
nA2

α2

)
· · ·
(
nAq
αq

)
(~r , t)

ways to form these q-tuples, where nX(~r, t) denotes the number of particles of

species X present at (~r , t). If one of the nAi < αi then obviously N = 0.

These techniques offers a natural way to consider all possible reaction scenarios.

For instance, in the case of the annihilation reaction 2A→ ∅, suppose we have three

particles (labeled a1, a2, a3) available at a given lattice site. Then, there are three

possible ways to form a reacting pair: (a1, a2), (a1, a3) and (a2, a3). In principle,

all these combinations have the same chance of forming and reacting. However,

if (a1, a2) react, then only a3 is left and there is no point in considering (a1, a3)

or (a2, a3) as possible candidates for reaction. Thus N is the maximal number of

possible events, but it is likely that the available particles are exhausted before

reaching the end of this list of possible reactions.

The multiparticle reaction rule can therefore be summarized as follows:

• As long as there are enough particles left (i.e. at least αl of species Al, for each

l), but no more than N times, choose a Boolean random κ which is 1 with

probability k.

• If κ = 1, remove from each species Al a number αl of particles (nAl → nAl −αl)
and add a number βj of particles to each species Bj , j = 1, . . . ,m (nBj →
nBj + βj).

This algorithm can easily be extended to a reversible reaction.

When k is very small, we may assume that all the N q-tuples need to be con-

sidered and the above reaction rule can be expressed as

nAl(~r , t+ ∆t) = nAl(~r , t)− αl
N (~r ,t)∑
h=1

κh ,

nBj (~r , t+ ∆t) = nBj (~r , t) + βj

N (~r ,t)∑
h=1

κh ,

(7.7)

where κh is 1 with probability k.

This algorithm may become quite slow in terms of computer time if the nX are

large and k � 1. In this case, the Gaussian approximation described in the previous

section can be used to speed up the numerical simulations: the number of accepted

reactions can be computed from a local Gaussian distribution of mean kN (~r , t) and

variance k(1− k)N (~r , t).

7.3.1. Diffusive annihilation

In order to check that our multiparticle reaction rule captures the true nature of

fluctuation and correlation, we simulated the A+A→ ∅ reaction-diffusion process,
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Fig. 61. Time decay of NA, the total number of A particles in the A+A→ ∅ reaction-diffusion
process, with the multiparticle method. A non-mean-field power law t−d/2 is observed. in agree-
ment with theoretical arguments.

where the A particle is uniformly distributed in the system. This reaction exhibits

a non-mean-field decay law in one-dimensional systems [45]: the time evolution of

NA(t) (the number of A particle left in the system at time t) departs from the

behavior predicted by the rate equation ∂tNA(t) = −KN2
A(t), whose solution is

NA(t) ∼ t−1, for large t.

Figure 61 gives the behavior of a simulation performed on a line of 64 536 sites,

with an initial number of about 100 particles per site. Diffusion and reaction pro-

cesses are simulated with our multiparticle algorithms with a probability 1/2 that

each particle moves left or right and a reaction probability k = 0.8. We observe that

the total number of A particles decreases with time as the power law NA(t) ∼ t−1/2,

which is the correct result in d = 1 dimension.

7.3.2. Rate equation approximation

In a mean-field approximation, i.e. when the multipoint correlation functions are

factorized as a product of one-point functions and the reaction probability k is much

smaller than 1, our multiparticle dynamics gives the expected rate equation given

by the mass action law. We define NAl and NBj as the average particle numbers

per site of species Al and Bj , respectively.

For the reaction process (7.6), it is possible to show that our multiparticle

reaction algorithm yields (in the limit of a large lattice)

NAi(t+ ∆t)−NAi(t) = −KNα1

A1
Nα2

A2
· · ·Nαa

Aq
,

NBj (t+ ∆t)−NBj (t) = KNα1

A1
Nα2

A2
· · · n̄αqAq ,

where K is the reaction constant whose expression is

K =
k

α1!α2! · · ·αq!
.
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This calculation is based on combinatorial arguments and the equiprobability of

all configurations with the same number of particles. More details can be found in

Ref. 33, 36.

In the limit ∆t → 0, we obtain the usual form of the rate equations for the

reaction process under study, namely

∂tNAi(t) = −K
∆t
Nα1

A1
Nα2

A2
· · ·Nαq

Aq
,

∂tNBj (t) =
K

∆t
Nα1

A1
Nα2

A2
· · ·Nαq

Aq
.

7.4. Turing patterns

In this section, we use our multiparticle reaction-diffusion model to simulate the

formation of the so-called Turing structures. Turing [173] was the first to suggest

that, under certain conditions, chemicals can react and diffuse so as to produce

steady-state heterogeneous spatial patterns of chemical or concentrations [17]. Tur-

ing structures are believed to play an important role in biological pattern formation

processes, such as the stripes observed on the zebra skin [124]. In contrast to most

hydrodynamical instabilities, the structure of Turing patterns is not related to any

imposed macroscopic length scales (like the size of the container). Turing patterns

exhibit regular structure with an intrinsic wavelength depending on the diffusion

constants and reaction rates. Typical examples of inhomogeneous stationary states

observed in experiments have a hexagonal or a striped structure [55].

For the sake of simplicity, we consider here only one of the simplest models

showing Turing patterns: the Schnackenberg reaction-diffusion model [157] in two

dimensions. It describes the following autocatalytic reaction:

A
k1−→ X , X

k2−→ ∅ ,

2X + Y
k3−→ 3X , B

k4−→ Y ,
(7.8)

where the densities of the species A and B are kept fixed (for instance by external

feeding of the system). This situation of having a fixed concentration of some chem-

ical is quite common in reaction-diffusion processes. As a result, there is no need

to include all the dynamics of such reagents in cellular automata or multiparticle

models. It is usually enough to create randomly a local population of these particles

at each lattice site.

Here we consider a two-dimensional multispecies, multiparticle model with alter-

nating reaction and diffusion steps. Instead of varying p0 in Eq. (7.5), the diffusion

coefficient is adjusted by performing ` consecutive diffusion steps for a given species.

This technique amounts to introducing a different time step ∆tm = ∆t/` for this

species and yields D = `∆2
r/4∆t.
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(a) (b)

Fig. 62. Turing patterns obtained in the Schnackenberg reaction in the long time regime. (a)
Multiparticle model and (b) mean-field rate equations.

The instability of the homogeneous state leading to Turing structures can be

understood using the corresponding macroscopic rate equations [124] for the local

average densities x and y

∂tx = k1a− k2x+ k3x
2y +Dx∇2x ,

∂ty = k4b− k3x
2y +Dy∇2y ,

(7.9)

where a and b represent the densities of particles A and B, respectively. A con-

ventional analysis shows that for some values of the parameters, a homogeneous

stationary state is unstable towards local density perturbations. Inhomogeneous

patterns can evolve by diffusion-driven instabilities providing that the diffusion

constants Dx and Dy are not the same. The region of the parameter space (a, b,

Dy/Dx, . . .) for which homogeneous states of the system are unstable is called the

deterministic Turing space.

Figure 62 shows the configuration obtained in the long time regime with our

multiparticle model and the corresponding rate equations (7.9). In both cases, a

hexagonal geometry is selected. The right panel corresponds to the solution of the

rate equations, while the left panel corresponds to the multiparticle simulation. As

we can see, the two pictures are quite similar. Although, it is not clear that the

multiparticle (which brings fluctuations into play) adds anything compared with the

predictions of the mean-field rate equations (which use less computer time) there

are some indications [34] that the Turing space may be enlarged when fluctuations

are considered.

7.5. A multiparticle fluid

In this section we show a the multiparticle method can also be used to model

a hydrodynamic behavior. The key problem is to build the appropriate collision

rule. Defining a collision between an arbitrary number of particles which conserve

mass and momentum is not an easy task: particles are indivisible and fractions of

them cannot be distributed among the lattice directions to satisfy the conservation

laws. Furthermore, it is not possible to pre-compute all possible collisions (as we
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do in a cellular automaton) because there are an infinite number of configurations.

Thus, more sophisticated algorithms should be devised which may slow down the

computation of the collision output.

We also would like to define a model in which the viscosity is an adjustable

parameter. The approach we propose here is to develop a collision procedure which,

on average, obeys the lattice BGK equation for hydrodynamics (see Sec. 4). Thus,

we write the evolution rule as

fi(~r + ∆t~v i, t+ ∆t) = fi(~r , t) + Fi(f(~r , t)) ,

where fi are integer variable (fi ∈ {0, 1, 2, . . . ,∞}) describing the number of parti-

cles entering site ~r at time t with velocity ~v i. The quantity Fi is the collision term.

As usual, the particle density ρ and velocity field ~u are defined as

ρ(~r , t) =
∑
i

fi(~r , t) , ρ~u(~r , t) =
∑
i

fi(~r , t)~v i ,

where index i runs over the lattice directions.

We now assume that the main effect of the interaction is to restore the local

equilibrium distribution (4.7) obtained in the LB formalism

f
(0)
i = aρ+

b

v2
ρ~v i · ~u + ρe

u2

v2
+ ρ

h

v4
viαviβuαuβ . (7.10)

Note that fi is an integer whereas f
(0)
i is a real number. The parameters a, b, e and

h should be determined according to the geometry of the lattice, with the condition

that the Navier–Stokes equation describes the dynamics of the system, and that

ρ(~r , t) =
∑
i f

(0)
i (~r , t) and ρ~u(~r , t) =

∑
i f

(0)
i (~r , t)~v i.

We shall require that, as in the BGK situation, the relaxation to the local

equilibrium is governed by a parameter τ . Thus, the number of particles f ′i leaving

(after collision) a given site along direction i is

f ′i = fi +
1

τ

[
f

(0)
i − fi

]
+ ∆fi , (7.11)

where ∆fi is a random quantity accounting for the fact that (after collision) the

actual particle distribution may depart from its ideal value.

In practice f ′i is obtained as follows. Let N =
∑
i fi be the total number of

particles at the given site. We assign to each direction i a weight wi computed as

wi = max

(
0,

1

τ
f

(0)
i +

(
1− 1

τ

)
fi

)
.

From these weights, we define pi, the probability for a particle to leave the site

along direction i, as pi = wi/M , where M =
∑
i wi is a normalization constant.

To compute the collision output, we run through each of the N particles and

place them in direction i with probability pi. This gives us a temporary particle

distribution f̃i which then must be corrected to obtain f ′i , in order to ensure exact

momentum conservation.
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In our algorithm, f̃i is computed as

f̃i =
N∑
h=1

(si−1 ≤ rh < si) , (7.12)

where (si−1 ≤ sh < si) is to be taken as a Boolean value which is 1 when the

condition is true and zero otherwise. The quantities si are defined by si =
∑i
j=1 pj ,

s0 = 0 and rh is a random variable uniformly distributed in [0, 1]. It is then easy

to check that (si−1 ≤ sh < si) = 1 with probability pi.

Therefore, the expectation of f̃i is 〈f̃i〉 =
∑N
h=1 pi. If none of the pi is zero, we

have M = N and

〈f̃i〉 =
1

τ
f

(0)
i +

(
1− 1

τ

)
fi . (7.13)

Note that when N is large enough, Eq. (7.12) can be computed using a Gaussian

approximation, as explained for the reaction-diffusion multiparticle model.

While the distribution f̃i of outgoing particles obviously conserves the number

of particles, Eq. (7.13) shows that it does only conserve momentum on average and

some particles must be redirected to ensure exact conservation. The momentum

tuning is performed iteratively, according to the following steps

• At each site where momentum is not correctly given by
∑
j f̃j~v j , choose at ran-

dom one lattice direction i.

• If f̃i 6= 0 move one particle randomly to an adjacent direction.

• Accept the change if it does not increase the momentum error. It is important

to accept modifications which do not improve the error because it may happen

that only a two-particle redirection decreases the error.

• Iterate this procedure until the outgoing particle distribution satisfies momentum

conservation
∑
j f
′
j~v j =

∑
j fj~v j .

From the way the particles are distributed, we expect that roughly
√
N of them are

misplaced. This gives an estimate of the number of iteration necessary to re-adjust

the particle directions.

According to the above discussion, the quantity ∆fi defined in equation (7.11)

vanishes on average. This fact is confirmed numerically. Consequently, we write

〈fi(~r + ∆t~v i, t+ ∆t)〉 =
1

τ
f

(0)
i (~r , t) +

(
1− 1

τ

)
fi(~r , t) ,

where we have used that fi(~r + ∆t~v i, t + ∆t) = f ′i(~r , t), due to the definition of

particle motion.

In the limit where the correlations between the fi’s can be neglected (remember

that f
(0)
i is a non-linear function of all fj ’s) we may take the average of the above

equation and we obtain

〈fi(~r + ∆t~v i, t+ ∆t)〉 =
1

τ
f

(0)
i (〈ρ〉, 〈ρ~u〉) +

(
1− 1

τ

)
〈fi〉 . (7.14)
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Equation (7.14) is identical to the usual BGK microdynamics (see Sec. 4), except

that now it approximates a multiparticle dynamics in which fi are integer quan-

tities. Therefore, the standard multiscale Chapman–Enskog expansion [33] can

be applied exactly as in the BGK case and the same hydrodynamical behavior

emerges: Eq. (7.14) is equivalent to the Navier–Stokes equation with viscosity

ν = ∆tv
2(C4/C2)(τ − 1/2), where C2 and C4 are model dependent (different in

hexagonal, square or cubic lattices and are defined in Eqs. (4.5) and (4.6).

The present multiparticle scheme is intrinsically stable. No small fluctuation will

be amplified unphysically to make the arithmetic blow up as happens with the LB

model when ν becomes too small. Any value of the relaxation parameter τ can be

considered without numerical problems but the physical limit of our model when

τ → 1/2 (or τ < 1/2) has not yet been explored.

We now present some applications of our multiparticle fluid, on a two-

dimensional hexagonal lattice and with a population of rest particles. Figure 63

shows the measured velocity profile in a simulation of a Poiseuille flow [171]. Fluid

particles are injected on the left side of a channel of length L and width W with

a rightward velocity. On the upper and lower channel limits, the usual no-slip con-

dition is imposed, by bouncing back incoming particles in order to produce a zero

speed flow at the boundary. We observe a parabolic velocity profile in agreement

with the prediction of hydodynamics.

As a second example, we consider the ballistic annihilation problem A+A→ 0,

where particles A evolve according to our multiparticle fluid rule. This is a variant

of the diffusive annihilation problem discussed in Sec. 7.3.1: here a hydrodynamic

behavior is imposed to the particle instead of a diffusive motion.

When two particles meet at the same site with opposite velocities, they anni-

hilate each other. Thus, before the hydrodynamic collision takes place, our multi-

particle dynamics is supplemented by a reaction term which modifies the particle

0 0.25x-velocity
0

1

y

Fig. 63. Velocity profile in a multiparticle Poiseuille flow. The plot shows the horizontal average
velocity < ux(y) > as a function of y the vertical position between the upper and lower boundaries.
The solid line corresponds to the best parabola fitting the data.
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Fig. 64. Decay laws for the ballistic annihilation simulations, using the multiparticle lattice gas
model. The various plots correspond to the lattice sizes indicated in the box. The decay exponent
x is given by the slopes of the lines which are all within x = 0.875± 0.005, except for the smallest
lattice.

distributions fi as fi → max(0, fi − fi′), where i and i′ correspond to opposite

velocities (~v i = −~v i′). We are interested to measure the number N(t) of A par-

ticles left in the system as time goes on. It is known [8, 60, 148, 149] that this

quantity obeys a power law N(t) ∼ t−x. Molecular dynamics simulations [172] pre-

dict an exponent x between 0.86 and 0.89 depending on the size of the sample, in

a two-dimensional system.

The simulation performed with the multiparticle model fully agrees with this

prediction since an exponent x = 0.87 ± 0.005 is found [42]. The simulation time

required to obtained this value is several orders of magnitude shorter than a full

molecular dynamics computation. The results for the decay law are summarized in

Fig. 64.

The decay exponent x depends on the space dimension, as well as the velocity

distribution [148, 149]. For one-dimensional systems with particles of velocity ±v,
it is found that x = 1/2. In two dimensions, the molecular dynamics simulations

[172] indicate that the velocity distribution tends to Maxwellian, in the long time

regime. It is then interesting to note that our multiparticle model imposes from the

very beginning a discrete, truncated Maxwellian velocity distribution (Eq. (7.10)).

8. Wave Model and Fracture Simulation

In the previous sections, the LB approach has been applied to hydrodynamic sys-

tems and reaction diffusion processes. Here we show that it can also be used to

define a wave dynamics. This section will present the basic aspect of the model, as

well as some of its applications.
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8.1. The wave model

Wave phenomena, whether mechanical or electromagnetic derives from two con-

served quantities Ψ and ~J , together with time reversal invariance and a linear

response of the media. The quantity Ψ is a scalar field and ~J its associated current.

For sound waves, Ψ and ~J are respectively the density and the momentum varia-

tions. In electrodynamics, Ψ is the energy density and ~J the Poynting vector [92].

The idea behind the LB approach is to “generalize” a physical process to a

discrete space and time universe, so that it can be efficiently simulated on a (par-

allel) computer. For waves, this generalization is obtained by keeping the essential

ingredients of the real phenomenon, namely conservation of Ψ and ~J , linearity and

time reversal invariance. Thus, in a discrete space-time universe, a generic system

leading to wave propagation is obtained from the lattice BGK equation

fi(~r + ∆t~v i, t+ ∆t)− fi(~r , t) =
1

τ

(
f

(0)
i (~r , t)− fi(~r , t)

)
(8.1)

by an appropriate choice of the local equilibrium distribution

f
(0)
i = aΨ + b

~v i · ~J
v2

if i 6= 0 , and f
(0)
0 = a0Ψ , (8.2)

where v is the ratio of the lattice spacing ∆r to the time step ∆t, and Ψ and ~J

are related to the fis in the standard way: Ψ =
∑
imifi and ~J =

∑
imifi~v i. The

quantities mi are the weights associated to each lattice directions and whose value

depends on the chosen lattice (here m0 = 1 whatever the lattice is). Note that,

here, we make no restriction on the sign of the fis which may well be negative in

order to represent a wave.

As opposed to hydrodynamics [144], f
(0)
i is a linear function of the conserved

quantities, which ensures the superposition principle. The parametersa, b and a0 are

computed so that Ψ =
∑
imif

(0)
i and ~J =

∑
imi~v if

(0)
i , which ensures conservation

of Ψ and ~J .

Following the same derivation as in Sec. 4, we obtain

a0 + aC0 = 1 , b =
1

C2
,

where C0 =
∑
i≥1mi and

∑
i≥1miviαviβ = C2v

2δαβ . For the two-dimensional

square lattice with rest particle (D2Q5), mi = 1, C0 = 4 and C2 = 2.

Writing the momentum tensor Π
(0)
αβ =

∑
imiviαviβf

(0)
i as Π

(0)
αβ = c2sΨδαβ , we

obtain

a =
c2s
v2C2

, a0 = 1− c2s
v2

C0

C2
,

where cs is a free parameter giving the wave propagation speed. This parameter

can be adjusted locally to model a medium with different refraction indices.

We can now compute the macroscopic behavior of Ψ and ~J , using the procedure

of Sec. 4. The main difference is that here, we do not have to neglect the higher
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order in ~J , since the dynamics is defined as linear. A straightforward calculations

gives

∂tΨ + ∂βJβ = 0 , (8.3)

∂tJα + c2s∂αΨ +

(
τ − 1

2

)[
∆tc

2
s∂α div ~J − ∆t

C2v2
Tαβγδ∂β∂γJδ

]
= 0 , (8.4)

where Tαβγδ =
∑
i viαviβviγviδ . Depending on the lattice, this fourth order tensor

may not be isotropic. This is precisely the case of the D2Q5 lattice which is known

for giving anisotropic contributions to the hydrodynamic equations. However, this

term vanishes when τ = 1/2. This is interesting since the condition τ = 1/2 is

required to ensure time reversal invariance, as can be easily checked from Eq. (8.1)

with ~J → − ~J and Ψ→ Ψ in relation (8.2).

Equations (8.3) and (8.4) can be combined (space derivative of the second sub-

stituted in time derivative of the first). This yields

∂2
tΨ− c2s∇2Ψ =

(
τ − 1

2

)[
∆tc

2
s∂α div ~J − ∆t

C2v2
Tαβγδ∂β∂γJδ

]
.

With τ = 1/2, we recover the wave equation

∂2
tΨ− c2s∇2Ψ = 0 . (8.5)

In hydrodynamic models, τ = 1/2 corresponds to the limit of zero viscosity (see

Sec. 4), which is numerically unstable. In our case, this instability does not show up

provided we use an appropriate lattice. In the D2Q5 lattice, our dynamics is also

unitary [108] which ensures that
∑
i f

2
i is conserved. This extra condition prevents

the fis from becoming arbitrarily large (with positive and negative signs, since Ψ

is conserved). This is no longer the case with the D2Q9 lattice, where numerical

instabilities develop for this wave dynamics.

Note that dissipation can be included in our microdynamics. Using τ > 1/2

allows us to describe waves with viscous-like dissipation. This makes sense with the

hexagonal lattice D2Q7, where no stability problem occurs when τ = 1/2 and no

anisotropy problem appears when the viscosity is non-zero (τ > 1/2).

There is another (and simpler) way to include dissipation in this model, which

is suitable for the D2Q5 lattice and appropriate to our purpose of modeling frac-

ture propagation (see Sec. 8.4): absorption on non-perfect transmitter sites can be

obtained by modifying the conservation of Ψ to
∑
imif

(0)
i = µΨ, where 0 ≤ µ ≤ 1

is an attenuation factor. In this way, µ = 0 corresponds to perfect reflection (see

Eq. (8.7)), µ = 1 to perfect transmission and 0 < µ < 1 describes a situation where

the wave is partially absorbed.

In Eq. (8.5), the propagation speed is given by c2s = av2C2. For the stability of

the numerical scheme we must impose that a0 ≥ 0. This yields the larger possible

value of a and, thus, the maximum propagation speed of the model is

c2max =
C2

C0
v2
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(note that v is the speed at which information travels). We define the refraction

index n (which may depends on the position) as

n(~r ) =
cmax

cs(~r )
, n ≥ 1 .

From these results, we may rewrite a and a0 as

a =
1

C0n2
, a0 = 1− 1

n2

and Eq. (8.1) reads

fi(~r + ∆t~v i, t+ ∆t) =
µ

τ

1

C0n2
Ψ +

1

τC2v2

∑
j

~v i · ~v jmjfj −
(

1

τ
− 1

)
fi(~r , t) ,

f0(~r , t+ ∆t) =
µ

τ

(n2 − 1)

n2
Ψ−

(
1

τ
− 1

)
f0(~r , t) ,

(8.6)

where µ is the dissipation factor.

For τ = 1/2 and a d-dimensional Cartesian lattice, we have mi = 1, C2 = 2,

C0 = 2d and the above equations reduce to

fi(~r + ∆t~v i, t+ ∆t) =
µ

dn2
Ψ− fi′(~r , t) ,

f0(~r , t+ ∆t) = 2µ
n2 − 1

n2
Ψ− f0(~r , t) ,

(8.7)

where i′ is defined as the direction opposite to i, i.e. that having ~v i′ = −~v i. When

µ = 0, the microdynamics becomes fi(~r + ∆t~v i, t + ∆t) = −fi′(~r , t). This corre-

sponds to a perfect reflection on a mirror site, that is the flux bounces back to

where they came from with a change of sign. This is a way to define a boundary

condition by tuning the parameter µ on some selected sites.

Since Eq. (8.7) is linear, it can also be expressed using a matrix formulation

fi(~r+∆t~v i, t+∆t) =
∑
jWijfj(~r , t). However, from the point of view of a numerical

implementation, Eq. (8.7) implies less computation.

Figure 65 (left) shows a simulation (D2Q5) of Eq. (8.7) in a situation where

two media are present. A plane wave is produced in medium M1 by forcing a sine

oscillation for the fi’s on some vertical line. The wave propagates at speed c0 till it

penetrates in medium M2 which has the shape of a convex lens. There, propagation

speed is set to c < c0. The shape of the lens naturally produces a focusing of the

energy when the wave re-enters medium M1. In these simulation, µ = 1.

An example of a wave reflected on a parabolic mirror is shown in Fig. 65 (right).

Each lattice site in the black region is a perfect reflector with µ = 0. As a result of

the collective effect of these mirror sites, we observe that the incoming plane wave

concentrates at the focal point of the parabola.
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Fig. 65. Simulation with the LB wave model: focusing of light by a convex lens where the prop-
agation speed is smaller than in vacuum (left). Focusing by a parabolic mirror (right).
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Fig. 66. Scattering of an incoming flux f1 = 1 at a D2Q5 lattice site, according to Eq. (8.7).

A natural interpretation of our LB wave model is to assume that the fi’s rep-

resent some physical fields (a local deformation or deviation from an equilibrium

state). These fields propagate on the lattice and are scattered when reaching a site

as illustrated in Fig. 66.

The idea of expressing wave propagation as a discrete formulation of the

Huygens principle has been considered by several authors [47, 85, 88, 175]. Not

surprisingly, the resulting numerical schemes bear a strong similarity to ours. Never-

theless the context of these studies is different from ours and none have noticed the

existing link with the lattice BGK approach. Models of Refs. 47 and 175 use a

reduced set of conserved quantities, which may not be appropriate in our case.

Other models [123, 145] consider wave propagation in a LB approach, but with a

significantly more complicated microdynamics and a different purpose.

8.2. Application to mobile communications

The above LB wave model can be used to compute the wave intensity pattern in

a system with complicated boundary conditions. Here we consider the problem of

predicting the intensity of a wave propagating in a city. This application is relevant

to the field of cellular phone and mobile communication devices.

An efficient planning of the deployment of wireless communication networks is

based on accurate predictions of radio-wave propagation in urban environments.
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Radio waves are absorbed, reflected, diffracted and scattered in a complicated

way on the buildings and this constitutes a difficult propagation problem which

is studied by various authors [9, 104, 150] and is beyond analytical calculation. Yet,

the coverage region of an antenna is a crucial question because the base stations

must be placed in appropriate locations so that a complete coverage is guaranteed

with a minimum number of cells, each of them no larger than what is allowed by

traffic or propagation requirements.

The LB model presented in the previous section (with n = 1) produces fast

and accurate predictions of the wave propagation in urban environment [40]. The

procedure starts by discretizing the building layout by, for example, scanning a

city map. Depending on the nature of each pixel (building or not), a different

set of coefficients is defined for the microdynamics of the fi. The value is chosen

appropriately after comparison with real measurements performed by Swisscom. A

source wave of wave length Λ is simulated at site ~r by imposing a A(~r ) sin(2πt/T )

for the fi(~r , t) where T = c/Λ is the period and A(~r ) some chosen amplitude.

The simulation then consists of a synchronized updating of each site, according

to the LB microdynamics until a steady state of the signal intensity (defined as

the amplitude of Ψ) is reached. A re-normalization scheme Ψ′ = R(δ,Λ/Λ0)Ψ must

be then applied in order to account for the three-dimensional geometry of the real

propagation problem, and the possibly wrong wavelength Λ chosen for numerical

reasons (the wavelength must be large compared to the lattice spacing). In the

function R, the quantity δ is the distance to the source depending on the layout

(see Ref. 40) and Λ0 is the real wavelength concerned by the prediction.

Figure 67 shows a typical simulation of the wave intensity pattern produced

by a transmitter located in an urban area. The predictions of the LB model and

the renormalization procedure are in good agreements with the corresponding real

measurements performed by Swisscom in the real environment.

8.3. Modeling solid body

Whereas LB methods have been largely used to simulate systems of point particles

which interact locally, modeling a solid body with this approach (i.e. modeling an

object made of many particles that maintains its shape and coherence over distances

much larger than the interparticle spacing) has remained mostly unexplored. A suc-

cessful attempt to model a one-dimensional solid as a cellular automata is described

in Ref. 30. The crucial ingredient of this model is the fact that collective motion is

achieved because the “atoms” making up the solid vibrate in a coherent way and

produce an overall displacement. This vibration propagates as a wave throughout

the solid and reflects at the boundary.

A 2-D solid-body can be thought of as a square lattice of particles linked to

their nearest neighbors with a spring-like interaction. Generalizing the model given

in Ref. 30 requires us to consider this solid as made up of two sublattices. We

term them black and white, by analogy to the checkerboard decomposition. The
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Fig. 67. LB simulation of wave propagation in the city of Bern on a square lattice of size 512×512.
The white blocks represent the buildings, the gray levels indicates the simulated intensity of the
wave (decreasing from white to black) and the dot marks the position of the source. The plots
show the measured and computed intensity along the street which is indicated by the dotted
white line. Two types of boundary conditions were applied for the sites limiting the buildings in
the discretized layout: reflecting walls in the upper graph and permeable walls in the lower graph.

dynamics consists in moving the black particles as a function of the positions of

their white, motionless neighbors, and vice-versa, at every other step.

Let us denote the location of a black particle by ~r i,j = (xi,j , yi,j). The surround-

ing white particles will be at positions ~r i−1,j , ~r i+1,j , ~r i,j−1 and ~r i,j+1. We define

the separation to the central black particle as (see Fig. 68)

~f1(i, j, t) = ~r i,j(t)− (~r i−1,j(t) + ~h) ,

~f2(i, j, t) = ~r i,j(t)− (~r i,j−1(t) + ~u) ,

~f3(i, j, t) = ~r i,j(t)− (~r i+1,j(t)− ~h) ,
~f4(i, j, t) = ~r i,j(t)− (~r i,j+1(t)− ~u) ,

(8.8)

where the ~fi are now vector quantities, and ~h = (r0, 0) and ~u = (0, r0) can be

thought of as representing the equilibrium length of the horizontal and vertical

spring connecting adjacent particles. With this formulation, the coupling between

adjacent particles is not given by the Euclidean distance but is decoupled along

each coordinate axis (however, a deformation along the x-direction will propagate

along the y-direction and conversely). This method makes it possible to work with a

square lattice, which is usually not taken into account when describing deformation

in a solid because, with the Euclidean distance, the y-axis can be tilted by an angle

α without applying any force. The breaking of the rotational invariance is expected

not to play a role in the fracture process we shall consider below.
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Fig. 68. Illustration of the way the fis are defined. The cross indicates the location of the geo-
metrical center of mass of the four white particles. At the next iteration, the black particle jumps
to a symmetrical position with respect to this point.

The locations ~r ij(t + 1) of the black particles is obtained by updating the cor-

responding ~fis by Eq. (8.7), with n = 1 and for i > 0. Next, the quantities ~f are

interpreted as the deformations seen by the white particles,

~f1(t+ 1) = ~r i+1,j − (~r ij(t+ 1) + ~h) ,

~f2(t+ 1) = ~r i,j+1 − (~r ij(t+ 1) + ~u) ,

~f3(t+ 1) = ~r i−1,j − (~r ij(t+ 1)− ~h) ,
~f4(t+ 1) = ~r i,j−1 − (~r ij(t+ 1)− ~u) .

(8.9)

Then, the same procedure can re-applied to move the white particles.

It turns out that Eq. (8.7) (with n = 1 and i 6= 0) is equivalent to moving the

particles to a symmetric location with respect to (1/4)[~r i−1,j + ~h + ~r i+1,j − ~h +

~r i,j−1 +~u+~r i,j+1−~u] (i.e. the center of mass of the neighbors, as shown in Fig. 68).

Indeed, in this case the new location of the particle will be

~r i,j(t+ 1) = ~r ij + 2(~rCM − ~r ij) =
1

2
[~f1 + ~f2 + ~f3 + ~f4] . (8.10)

If this expression is substituted into Eq. (8.9), it is easy to check that, for instance,

~f1(t+ 1) =
1

2
[~f1 + ~f2 + ~f3 + ~f4]− ~f3 (8.11)

and similarly for ~f2(t + 1), ~f3(t + 1) and ~f4(t + 1) This shows that the dynamics

given in Eq. (8.11) is identical to the LB wave model described in relation (8.7) for

n = 1 and f0 = 0.

The momentum ~pij associated to the motion of particle (i, j) is then

~pij ≡ ~r ij(t+ 1)− ~r ij(t) = −1

2
[~f1 + ~f2 + ~f3 + ~f4]

which is the conserved quantity ~Ψ introduced in the LB wave model.
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At the boundary of the domain a different rule of motion has to be considered

since the particles may have less than four links. With the interpretation of the rule

as a symmetrical motion with respect to

~rCM =
[(~r i−1,j + ~h)ne + (~r i+1,j − ~h)nw + (~r i,j−1 + ~u)ns + (~r i,j+1 − ~u)nn]

(ne + nw + ns + nn)
,

where ne, nw, ns and nn are Boolean variables indicating the presence or absence

of a neighbor along the east, west, south and north directions, the evolution rule

can be written down for particles missing some of their links, either because they

are at the boundary of the domain or because some links are broken, as described

below.

8.4. Fracture

An interesting application of our LB solid body model is the study of a fracture

process. How things break is still an important problem in science for which one

lacks a theory and no satisfactory understanding is yet achieved [114].

The key idea when using our approach as a model of a dynamic cracks is to

assume that a bond linking two adjacent atoms may break if the local deformation

exceeds some given threshold. This threshold can possibly be different for each

bond and spatial disorder can be introduced in this way. Once a bond is broken,

the atoms on each side of the crack behave as free ends. A broken link weakens the

material because a local deformation can no longer be distributed uniformly among

the four neighbors. Usually, the next bond to break is the nearest neighbor of an

already broken bond.

A typical experiment which is performed when studying fracture formation is

to apply a stress by pulling in opposite ways the left and right extremities of a

solid sample. A small notch (artificially broken links) is made in the middle of

the sample to favor the apparition of the fracture at this position. Once a given

strain is reached, a crack forms and propagates from that notch through the bulk,

breaking the system in one or multiple pieces. The fracture is perpendicular to the

direction of the stress. This situation is illustrated in Fig. 69 where each dot shows

the position of an atom.

The shape of the fracture we obtain is qualitatively similar to what is observed in

real experiment [114]. Several situations can be reproduced, depending on the value

of the model parameters. It is found that adding some attenuation in the motion

(i.e. having µ < 1) yields fractures with less branching. Figure 70 shows some of

the simulation results. In Fig. 70(b) no damping of the wave is included while,

in Fig. 70(a) a damping factor µ = 0.92 is added. Figures 70(c) and 70(d) have

less disorder than Figs. 70(a) and 70(b) in the sense that the breaking threshold

varies weakly over space. The damping in Fig. 70(d) is µ = 0.91, slightly stronger

than in Fig. 70(c) (µ = 0.92). The stretching rate (i.e the displacement of the

solid boundary at each time step) is the same for all experiments. In the above

simulations, once the fracture starts propagating, the external stress is turned off.
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Fig. 69. Fracture simulation obtained in a LB solid with 128 × 128 atoms when applying an
opposite force on both sides of the sample.

(a) (b) (c) (d)

Fig. 70. Fracture (top) and the corresponding map of the broken bond (bottom) for several runs
with different parameters.

We have measured the propagation speed of the fracture by recording the loca-

tion of the crack tip l(t) for each time step. In case of branching we consider the

most advanced crack. Figure 71 shows the average velocity v(t) = l(t)/t of the

propagation fracture as a function of time. These measurements made from our

simulation are in qualitative agreement with experimental data. In particular the

crack speed is slower than the speed of sound (which is here c0 = 1/
√

2 in lattice

units) and it is faster when the fracture is complex.
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Fig. 71. Crack propagation speed measured in the LB fracture simulation. The upper and lower
curves correspond to the fractures shown in Figs. 70(b) and 70(d), respectively.

8.5. Wave localization

In this section, we consider another problem for which the LB wave model is useful:

propagation in disordered media. Our purpose is not to derive new physical proper-

ties but, rather, to show how the LB approach can be easily applied to study a

difficult problem such as wave localization. Note also that this type of approach

has been considered for this problem by other authors [175].

A coherent, but by no means complete understanding of the problem of waves

in disordered media has only emerged recently [161]. Disordered media means here

that the waves are supposed to undergo multiple scattering and the problem is

quite different from the case of propagation in an urban medium, as considered in

Sec. 8.2. The two problems are not logically separated but the treatment of radio

wave propagation in urban areas involves obstacles with typical sizes much larger

than the wavelength. Thus, it is rather a diffraction problem, involving departures

from geometrical optics caused by the finite wavelength of the waves and actual

scattering analysis enters the game only once the small scale roughness of the

buildings or the corners are taken into account.

For the scattering of waves by systems whose characteristic sizes are small com-

pared to the wavelength, it is convenient to think of the incident fields as inducing

a response that oscillates in definite phase relationship with the incident wave and

radiates energy in directions other than the direction of incidence. If the medium

contains such randomly distributed small scatterers, the picture of multiple scat-

tered waves is very different from, no more, that we normally associate with waves.

Although the medium is a purely elastic, the wave can have a diffusive-like behavior

or become localized, showing up no more spatial periodicity or possibility for

transport.
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Fig. 72. Snapshot of energy propagation pattern in a random medium composed of a background
of refraction index n0 = 1 and containing 2% of randomly distributed scatterers (black dots), all
with n1 = 10. The source is placed at the center of the sample and oscillates with a period of 16
time steps. The pattern shows large fluctuations and the diffusive, or sub-diffusive, behavior only
emerges after an averaging over the configurations.

Our wave propagation model is particularly well adapted to investigate numer-

ically wave propagation in random media beyond what is analytically possible.

Here we consider a two-dimensional medium with two different refraction indices

n: the background sites have a value of n0 = 1, whereas the randomly distributed

scatterers have n1 > 1.

Different media may be designed. For instance we could choose a different value

of n for each scatterer, or even a different value of n for each lattice site. Figure 72

shows the typical pattern of energy issued from a point source located in a random

medium composed of 2% of scatterers. Note that the dynamics of our model is

time-reversal invariant and that the new propagation pattern we observe is not due

to some form of dissipation.

The pattern shows large fluctuations and further analysis or comparison with

classical diffusion involve an averaging over different spatial configurations. To

avoid the excess of computation generated by an averaging process over successive

configuration, we consider a two-dimensional system with a one-dimensional sym-

metry. The averaging is achieved by a reduction over the “irrelevant” dimension.
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We consider the propagation of the energy issued from a “line-pulse” in a two-

dimensional long strip-like medium (typically of size 4096× 64). The line source is

placed in the middle and radiates synchronously two oscillations of a wave with a

given period T = 6. Two free parameters determine the medium: ρ the density of

randomly distributed scatterers and n1 the scattering strength, or refraction index

of the scatterers.

In order to extract the propagation properties of a wave traveling in such a

disorder media, we study the average behavior of the square root of the energy

distribution second moment

Π(t) =

√∫
A2(~r, t)r2d2r ,

where r is the distance to the source and A the amplitude of the wave at position

~r . Thus Π is.

The results are shown in Fig. 73. It can be seen that for the homogeneous

medium, a pure wave propagation is characterized, as expected, by Π(t) ∝ t. For

random non-dissipative media the dynamics switches to a behavior given by Π(t) ∝√
t which is typical of a diffusive transport regime. The cross-over is smooth and

happens earlier in the case of increasing disorder, or increasing scattering strength.

For the sake of comparison we also show the behavior of Π(t) in the case of

true diffusion, with the model discuss in Sec. 6.3.2. However, for the diffusion case,

Π must be changed: instead of the “energy” A2 we take the local field value Ψ =∑
i fi. The good agreement between classical diffusion and wave diffusion (or weak

localization) is shown in Fig. 73.

10
1

10
2

10
3

Time [iterations]

10
1

10
2

10
3

10
4

Π

Pure Wave Propagation
10 % of impurities
1 % of impurities
Pure diffusion

Fig. 73. Transition from the wave to the diffusive transport in a 1-dimensional geometry. The
strip-like domain size is 4096×64 and the refraction index ratio of background sites over impurities
is 1/10. The square root of the second moment of the energy distribution Π is plotted as a function
of time. Between the two extreme cases, homogeneous medium and pure diffusion, we observe a
smooth transition for random media (1% and 10%) from the wave regime ∝ t to the diffusive
regime ∝ t1/2.
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Fig. 74. Sub-diffusive (or localized) behavior obtained with a stronger disorder: n1 = 30 and an
impurity density of 20%. We have Π ∝ tα with α ≈ 0.24.

Strong localization is presented in Ref. 161 as a tendency for the diffusion co-

efficient to fall towards 0. The measurement of the quantity Π with a significant

increase of the amount of disorder shows a behavior Π ∝ tα where α < 1/2, as

ilustrated in Fig. 74.

It is interesting to note that, when the reflextion index n1 is large, the scatterers

behave as energy conserving reflectors (i.e. with µ = 0 and n = 1 in Eq. (8.7)).

Thus, each site has µ = 1 with probability 1− ρ and µ = 0 with probability ρ. If

the averaging process over propagation patterns is replaced by a spatial averaging of

the disorder (i.e. the averaging is done before propagation is simulated), we obtain

that the strong localization case behaves as a propagation in an absorbing media

with µ = 1− ρ.

References

[1] Aharonov, E. and Rothman, D., Non-Newtonian flow (through porous media): A lat-
tice Boltzmann method, Geophys. Res. Lett. 20, 679–682 (1993).

[2] Alexander, F., Chen, S. and Sterling, J., Lattice Boltzmann thermohydrodynamics,
Phys. Rev. E47, 2249–2252 (1993).

[3] Antal, T., Droz, M., Magnin, J. and Rácz, Z., Derivation of the Matalon–Packter
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