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Avant-propos

This dissertation presents the main subject of my work under the supervision of
Dr. Bastien Chopard in the Group for Parallel and Scientific Computing of the
Computer Science Department (CUI) at the University of Geneva. The subject
concerns original numerical simulation techniques of the generic problem of ero-
sion, transport and deposition of snow by wind. The most important outcomes
were published in scientific journals and regularly presented at conferences during
the research period between 1995 and 1999. During this period, the approach
was several times reinvented or reformulated as it is expected for this kind of
research. One of the actual contribution of the present publication is the global
and coherent presentation of all the aspects of the approach and how it proposes
a new unified method to a problem which has often been treated with dedicated,
case-dependent techniques. Moreover, our method is likely to be applied in a con-
text very different from the framework it is issued from, and thus I also briefly
presents some promising new perspectives.

I did not dedicate a specific chapter to a state-of-the-art presentation of other
solid particles trasnport by fluid techniques. Neither do I resume basic notions of
cellular automata and parallel computing to be found in numerous text books. I
choose to concentrated my efforts on our new results and aspects of our approach
without forgetting to give significant references for the reader who may go further
ahead. We believe and we hope that this may promote an accurate use of our
simulation technique and serve as a basis for future studies.

Besides this work, at least three other less extensive researches were under-
taken during the same period by the author, and the resulting publications are
referred in the text and given in appendix. Although the subjects were completely
different, ranging from smoker/non-smoker populations problems to theoretical
physics questions, the same intensive usage of parallel algorithms and parallel
computing resources, of generalized cellular automata-like numerical models and
of a fundamental, say a physicist’s, approach to complexity are characterizing all
the works.

I would like to thank Doctor Bastien Chopard for accepting me in his research
group and giving the opportunity of doing a PhD at the University of Geneva
in the best possible human, scientific and technical conditions. This work was
mainly supported by the Fond National Suisse de la Recherche. A special thanks
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is also addressed to Dr. Dieter Issler, who helped launching the project and
pointing out the challenges, to Olivier Guex and Charly Wuilloud, from the
Service de Foréts et du Paysage (canton du Valais) for their propositions of real
outdoor challenges and the interest the have shown in the current work.

And T should not to forget my PhD students collegues Danuta Sosnowska,
Alexandre Dupuis, Marc “Hack” Martin, Pascal Luthi, Paul Albuquerque, Pierre-
Antoine Queloz, Rodolphe Chatagny, Stefan Marconi, Thierry Zwissig and other
members of the CUI for their inestimable and very efficient help and presence
during these years, developping a very fruitful working atmosphere.

Alexandre Masselot Geneva, March 2000



Résumeé

Introduction

Le transport de la neige par le vent, et surtout le dépot de la neige sous I’action
du vent est un probléme qui revét de multiples facettes. Du point de vue de
I’observation, quel est le lien entre la formation de rides a I’échelle du cen-
timetre et celle d’une corniche de plusieurs dizaine de metres? Du point de vue
phénoménologique le transport de particules de neige par le vent peut comporter
simultanément trois modes de transport (reptation, saltation et suspension, cf.
figure 1).
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Figure 1: Traditionnellement, le tranport de particules de neige par le vent est
partagé en trois modes: reptation au niveau du sol, trajectoires balistiques de
saltation et suspension sur de plus larges distances [Castelle 1995].

Aborder un tel phénomene, dans le but de développer un outil numérique
offrant une approche générale du probleme, est des lors un véritable défi.

Cependant, des enjeux liés a la vie courante sont une motivation supplémen-
taire pour aborder un probleme déja tres riche au niveau théorique.

Par exemple, la structure d’un dépot autour d’une créte alpine, avec le développe-
ment d’une corniche peut s’avérer un danger pour des habitations, des pistes de
ski ou une route en aval de cette créte. Simuler ce dépot, et surtout tenter de
prédire 'influence de construction humaine pour combattre ce dépot est un défi
auxquels sont confrontés des experts de terrain.

il
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Un treés bref état de 1’art

Certes, ce probleme n’est pas nouveau, et de nombreux auteurs se sont penchés

sur des aspects théoriques concernant la quantification du transport [Anderson et al. 1991],
la simulation de dépots par le biais d’expériences en soufflerie (autour de barriéres

[Iversen 1980], ou sur un col alpin [Castelle 1995]).

Depuis une quinzaine d’années, 1’outil numérique est aussi apparu dans ce
domaine. S’il s’est s’agit dans un premier temps d’aborder des cas précis par des
méthodes ad-hoc (basées sur des statistiques ou avec un champ de vent préal-
ablement fixé par exemples), des approches plus générales ont émergé: basées
sur des solveurs de fluide classiques (souvent commerciaux, comme Flow 3D),

il s’agit d’ajouter une phase solide. Confrontées a la réalité, ces approches ont
donné de bons résultats, pour des simulations de dépots autour de lotissement
[Sundsbo 1997] ou sur une créte alpine [Gauer 1999] par exemples.

Cependant, ces approches traditionnelles se basent sur une modélisation numérique
de systemes d’équations décrivant le phénomene (i.e. d’un modele théorique), et
plus précisément sur des systemes d’équations restreints a certains sous-phénomenes
(typiquement, seuls un ou deux modes de transport des particules - cf. figure 1
- sont pris en compte).

Une approche originale

Plutot que de considérer la description d’un phénomeéne (typiquement ’écoulement
d’un fluide) par le biais de grandeurs macroscopiques (la pression, la vitesse lo-
cales), une autre approche est possible: il s’agit de représenter le média (ici le
fluide) par un ensemble de particules discrétes se déplagant sur un réseau régulier,
évoluant avec des régles locales et synchrones.

L’avantage de cette méthode est qu’il est possible d’incorporer la dynamique
de ce systeme directement dans ces regles locales. Si une telle représentation
semble au premier abord trop naive pour modéliser correctement un phénoméne
complexe, il a été montré a plusieurs reprises comment le comportement global
du systeme ne dépend que peu des détails de la représentation, pour peu que les
composantes fondamentales du phénomene aient été incorporées dans les regles
d’évolutions [Hillis 1989).

Dans les cas d’écoulements de fluides, de telles méthodes sont développées
depuis une quinzaine d’années. Elles ont atteint une certaine maturité et offre de
tres bons résultats pour des écoulements complexes, turbulent, avec des configu-
rations de solides évoluant avec le temps, semi-poreuses ... Il s’agit des modeles
de gaz sur réseaux.

De plus, cette approche, basée sur des interactions locales, sur un réseau
régulier, se préte idéalement a une implémentation sur des machines paralléles.
Plutot que de ne se servir que d’'une machine mono-processeur, le principe est
de partager le travail sur un grand nombre de processeurs connectés efficacement



(typiquement une trentaine de PC liés par un switch) afin de diminuer d’autant
les temps de calcul.

Le cadre du présent travail

Dans cette thése, nous avons donc opté pour une telle approche. Il nous a fallu
reprendre les travaux existants dans la littérature pour le fluide et développer de
nouvelles idées pour la phase solide.

Reprenant brievement le travail de these, ce résumé se partage en plusieurs
parties:

e description du modele de fluide, ainsi que son utilisation dans des cas pra-
tiques en trois dimensions,

e description du modele pour les particules solides, et leurs interactions avec
le fluide,

e résultats de simulations de dépots de neige, a plusieurs échelles,

e présentation de la parallélisation du modele, ainsi que des gains liés a cette
parallélisation,

Le fluide

L’échelle mésoscopique

Traditionnellement, un fluide (mais cela s’applique & de nombreux autres phénomenes),
peut étre décrit a deux échelles:

e microscopique: quand on individualise chacune des molécules du fluide,
avec sa position, sa propre vitesse, les collisions avec d’autres molécules
semblables (des modeéles numériques existent, dits de dynamique molécu-
laire),

e macroscopique: quand, a plus large échelle, on mesure la pression, la
vitesse du fluide, dans une cellule de I’espace.

Du point de vue de la simulation numérique a large échelle, la premiére méth-
ode est irréaliste au regard du trop grand nombre de particules a prendre en
compte et de la complexité algorithmique d’un tel probleme. La seconde ap-
proche est plus classique: en se basant sur les équations de Nawvier-Stokes qui
décrivent 1’écoulement d’un fluide, des schémas numeériques plus ou moins com-
plexes permettent de simuler un flux. Cependant, une telle approche se révele
rapidement complexe dans les cas d’écoulements turbulents: par dela une réso-
lution d’équations différentielle, sur une grille hétérogene (avec une résolution
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plus fine aux endroits critiques), il faut souvent coupler un modele de turbulence.
Cette approche est néanmoins utilisée dans la grande majorité des problemes
concrets liés a la mécanique des fluides.

Une autre approche existe, se basant sur le fait que plusieurs niveaux de réal-
ité existent en physique [Kadanoff 1986]. Un résultat important de la mécanique
statistique est que le comportement a 1’échelle macroscopique d’un phénomeéne
ne dépend que peut des détails des interactions microscopiques. On peut donc
utiliser cette proprieté pour construire un univers fictif, & une échelle méso-
scopique, particulierement bien adapté a la simulation numérique, ou les in-
grédients de base du phénomeéne sont pris en compte et donc le comportement
macroscopique recouvert.

Depuis une quinzaine d’années, ces méthodes on été adaptées au cadre de
la dynamique des fluides. Des premiers automates cellulaires discrets, bien des
améliorations ont été imaginées pour arriver aux modeles de Boltzmann sur
réseau, incorporant des techniques d’extrapolations sous-grille (subgrid models).
Nous présentons ici un bref apercu de cette évolution, par ailleurs tres bien décrite
par [Qian et al. 1996a, Chopard et Droz 1998].

Automates cellulaires

Plutot que de présenter une introduction générale sur les automates cellulaires,
nous allons nous contenter seulement des aspects intéressant le cas de certains
modeles dédiés a la représentation de fluides.

Quelques définitions

Un atomate cellulaire est un systeme fictif dans lequel:
e |’espace est représenté par un réseau régulier I';
e chaque noeud r de ce réseau est lié a ¢ voisins {r + ¢;}i=0,4-1;

e l'état de chaque cellule (ou noeud) F'(r,t), t est discret, appartient & un
ensemble fini de valeurs; dans le cas présents, il s’agit généralement de
F(r,t) = {Fi(r,t) }iz04-1 € [0,1]9, ot F;(r,t) = 0/1 indique I’absence/présence
d’une particule discrete sur le site r, au temps ¢, avec vitesse c;;

Le fluide étant défini comme un ensemble de particules discrétes se déplacant
d’une maniere synchrone sur un réseau régulier, on peut alors définir deux quan-
tités locales: la densité

p(r,t) = Z Fi(r, ) (0.1)
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et la quantité de mouvement, i.e. le nombre de particules multiplié par la vitess
sur la cellule

I(r,t) = Z Fy(r,t)c; = p(r, t)u(r,t) (0.2)

Regles d’évolution

L’évolution d’un automate cellulaire est synchrone, et peut s’écrire sous la forme
Fi(r+c;,t+1) = Fi(r,t) + QF(r + c;,t + 1) (0.3)

ou €2 est 'opérateur de collision.
Une regle de collision, dans le cas du modele FHP sur un réseau bi-dimensionnel

hexagonal [Frisch et al. 1986], est montrée dans la figure 2. Les regles fixées dans
le cas de la modélisation d’un fluide doivent satisfaire deux critéres:

e consevation de la masse (cf. équation 0.1,
e conservation de la quantité de mouvement (cf. équation 0.2.

De plus, certains autres criteres doivent étre respectés, comme des conditions
d’isotropie du réseau (un réseau a quatre voisins ne serait pas correct), la conser-
vation, en moyenne, de I’energie ...

RN
21—k

7N

temps t temps t+1

Figure 2: regle de collision FHP, sur un réseau hexagonal. Quand deux particules
entrent sur le méme site avec des vitesses oppposées, elles sont déviées avec une
probabilité 1/2 de 60 ou —60 degrés. Quand trois particules entrent sur un site,
avec une quantité de mouvement totale nulle, leur vitesses sont inversées. Toutes
les autres configurations restent inchangées.
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Implémentation

La réalisation d’un automate cellulaire se préte idéalement a I'implémentation sur
un machine. Outre le fait que le domaine soit représenté par un réseau régulier,
I’état par une nombre fixe de booléens, le confort vient aussi de la simplicité de
I’algorithme qui, a chaque pas de temps, se décompose en deux étapes:

1. calcul de la nouvelle distribution,

2. propagation de I'information aux voisins.

De plus, I'incorporation de sites solides ne posent aucun probleme: au lieu
d’interagir normalement, les particules de fluides entrant sur un site solide voient
leurs vitesses inversées (no-slip ou bouncing back conditions). Un évolution & plus
large échelle d’un systéme est donnée dans la figure 3

temps t temps t+1

« g O
collision\ Lo e ~ k / propagation

A@A_‘
Figure 3: un pas d’évolution d’un modele FHP, décomposé en deux étapes: a)
collision b) propagation de 'information aux voisins.

Les modeéles de Boltzmann sur réseaux

S’ils sont attirants, de par leur simplicité algorithmique, leur esthétique, les au-
tomates cellulaires péchent par quelques défauts, principalement:

e un bruit statistique trop important, requérant des moyennes a large échelle,

e l'impossibilité de fixer finement des conditions aux bords.

Pour résumer tres brievement, deux étapes majeures marquent 1’évolution des
premiers automates cellulaires vers des modeles modernes, simulant des écoule-
ments turbulents.

Le premier pas est de ne plus considérer la présence/absence d’une particule
F(r,t) comme une variable booléenne, mais plutét comme une probabilité de
présence fi(r,t) € {0,1}. Si les corrélations a n-corps sont négligées (cela peut-
étre le cas pour de nombreux problémes), la regle de collision booléenne peut
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directement étre traduite en une régle sur des variables réelles (les opérateurs
and, or et not sont alors simplement remplacés par les opérations x, + et (1 —.),
la densité et la quantité de mouvement locales calculées de la méme maniere que
dans les équations 0.1 et 0.2).

Cependant, cette méthode est intrinsequement liée a la regle discrete sous-
jacente et n’offre que peu de possibilité de modifier a volonté la viscosité du
fluide (déduite de la régle de collision et la résolution du systeme).

Toujours plus haut (dans les nombres de Reynolds)

Aux méthodes de gaz sur réseaux se sont traditionnellement vu opposés les argu-
ments: “la méthode est intuitivement esthétique, mais ne permet pas de simuler
des écoulements de fluide intéressants (i.e. assez turbulents, avec des nombres de
Reynolds assez grands)”.

Un second pas majeur a été effectué quand, plutét que de décrire une regle
de collision déterminiée, la regle d’évolution consiste en une relaxation locale
du systéme vers une distribution a ’équilibre { f{%(r,t)}izo,4, avec un temps de
relazation T:

fi(r +cit+ 1) = fi(ra t) + % (fieq(p(ra t)’ 11(1', t)) - fi(r’ t)) (04)

ou la distribution a I’équilibre ne dépend que la densité et la vitesse locales:

. 1 /c: 2
| 4 Cialla 1 <cmua) B uaua] (0.5)

= pt,
/i P Cg2 2\ cg? 2¢c2

ou t; est un poids associé a la direction i du réseau (¢t; = 1 Vi dans le cas du
réseau hexagonal), et cs la vitesse du son, parametre 1ié au modeéle.

Un avantage de cette amélioration, du point de vue pratique est que le parametre
libre 7 est directement lié a la viscosité v du fluide:

cs?

V= 7(27’ —1) (0.6)

Il est donc théoriquement possible, en faisant tendre 7 vers 0.5, d’obtenir une vis-
cosité arbitrairement petite (donc un nombre de Reynolds arbritrairement grand).

Cependant, des problemes de stabilité numérique apparaissent si 7 est trop petit.
La solution, pour contourner ce probléeme a été d’adapter a la méthode des gaz
sur réseau la technique LES (Large Eddy Simulation), i.e. d’extrapoler I'influence
de ce qui se passe a des échelles plus petites que celles du réseau I'. Il s’agit des
modeles de sous-grilles (subgrid model), comme celui de Smagorinski (avec une
constante Cypqg0), stables, avec lesquels des nombres de Reynolds de 1'ordre de
10°® peuvent étre atteints [Hou 1995].



Il est intéressant de noter que, dans ce cas, le code d’un tel programme reste
intrinsequement tres simple, et qu’il suffit de quelques dizaines de lignes pour
écrire un modele de fluide en trois dimensions, rapide, avec des frontieres solides
qui peuvent naturellement évoluer.

Quelques résultats

De nombreuses expériences ont été menées, notament pour explorer certains as-
pects pratiques du modele tri-dimensionel. Nous en présentons ici deux:

e un écoulement derriére un cylindre (figure 4),

e deux écoulements dans un tuyau, pour montrer 'efficacité du modele de
sous-grille (I’écoulement moyen est le méme, mais le modele sous-grille
développe une beaucoup plus grande activité turbulente), figure 5.

= N = *° = B
'@ @ .
o : & Q@ &

Figure 4: écoulement derriére un cylindre, avec le développement d’une allée de
Von Karman.

Les particules solides

La contribution principale de ce travail réside dans I'incorporation d’une phase
solide, dans le but de simuler I’érosion, le transport et le dépot de particules de
neige par le vent.

L’utilisation d’un modele de fluide sur réseau, par sa simplicité, son efficacité
et sa souplesse ne constitue en fait qu’un préliminaire.

Cependant, la philosophie des modeles sur réseaux, avec la création d’un
monde fictif et 'implémentation directe de regles intuitives reste de mise pour
cette partie. En effet, plutot que de tenter d’adapter des schémas théoriques
classiques (quantifiant, le taux d’érosion, la diffusion des particules pendant le
transport ... ), nous avons directement imaginé des regles régissant le comporte-
ment individuel des particules.

Représentation

Sur le méme réseau I' que pour le fluide, les particules solides, sur le site r, au
temps ¢, voyageant dans la direction c; sont représentées par p;(r,t) € N, et
Drest(T, t) contient le nombre de particules au repos sur le site.
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Ces particules solides voient leur mouvement dirigé par la vitesse locale du
vent et la gravité. Trois actions doivent donc étre implémentées:

e le transport éolien,
e le dépot,

e |'érosion.

Le transport éolien

Les particules sur le site (non-solide) r subissent la vitesse locale du fluide u(r, t)+
Ufgy, OU Uggy est la vitesse de chute. Cependant, si les particules suivent exacte-
ment cette vitesse, il est treés peu probable que la destination soit un site du
réseau. Or les particules doivent rester sur le réseau.

Nous avons donc imaginé un algorithme probabiliste de transport éolien des
particules qui satisfait en moyenne un transport exact. Cet algorithme est ex-
pliqué pour les cas a deux dimension dans la figure 6.

Il est intéressant de noter que si avec cette méthode aucune différence n’est
faite entre les différents modes de transport (reptation, saltation et suspension),
des expériences montrent comment ils sont naturellement générés.

Le dépot

Quand une particule veut se déplacer vers un site solide (i.e. dans direction
c; depuis le site r si le site r + ¢; est solide), elle doit se déposer. Dans notre
nomenclature, nous dirons que cette particules est gelée.

Quand un nombre 6y, de particules gelées est atteint sur une cellule, cette
cellule est solidifiée.

Cependant, I’état solide n’est pas définitif, puisque des particules peuvent étre
érodées.

L’érosion

Les mécanismes liés a I’érosion sont nombreux, et souvent controversés. Plusieurs
techniques ont été testées, mais une idée simplifiée a été gardée. 1l s’agit d’éjecter
les particules de la couche supérieure du dépot avec une probabilité donnée (,
(cette probabilité peut étre multipliée par la vorticité locale du fluide pour prendre
en compte les micro-tourbillons). Une fois éjectées, les particules sont soumises
au transport éolien décrit ci-dessus, et peuvent donc soit étre tranportées, soit
retomber a leur place originale (si le vent local est faible, il n'y a donc pas d’érosion
effective).
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Figure 5: écoulement dans un tuyau (coupe d’une expérience en trois dimensions),
avec ou sans l'utilisation du modele de sous-grille de Smagorinski. Le graphique
a) montre que les deux profils de vitesses moyennés sont identiques. Cependant,
I’affichage des champs de vorticité instantanés montre comment le modele de
Smagorinski fait apparaitre un développement des tourbillons (figure ¢)) quand
le modele classique ne calcule qu'un champ moyenné (figure b)).

Figure 6: la position exacte des particules du site r au temps t+1 est r+u(r,¢)+
Uy, qui n’est généralement pas un site du réseau. Pour obtenir une déplacement
qui soit, en moyenne, correct, les particules sont distribuées aléatoirement entre
les quatre voisins les plus proches de la destination finale. Dans le cas proposé,
le transport dans la direction z s’effectue avec probabilité &;, et en y avec §,. En
conclusion une particule se déplace vers r+c, avec probabilité £,&, (déplacement
en z et en y), vers r + ¢y 3 avec wi 3 = &z 4(1 — &, ) (déplacement en z et pas en
y ou vice-versa) et reste sur place avec (1 —&;)(1 —&,) (déplacement ni en z, ni

en y).



Résultats

Si le modele de fluide peut étre justifié théoriquement (il satisfait les équations
de Navier-Stokes), il n’en est pas de méme pour celui concernant la phase solide.
Pour montrer la validité de la méthode, il faut donc montrer des résultats satis-
faisants.

Contrairement a une simulation classique, en créant un monde fictif, la rela-
tion entre I’échelle modélisée et la réalité n’est pas évidente (quelle est la taille
réelle d’une cellule? quel est le pas de temps?).

Puisque le modele n’est pas directement lié a une échelle d’espace, il n’existe
pas, a priori, une échelle privilégiée. Partant de cette observation, nous avons
mené de nombreuses expériences, dont nous présentons quatre apercus ici:

e formation de rides a partir d’un dépot plat,

e distributions des longueurs de saut de particules, comparées a des expéri-
ences en extérieur pour plusieurs vitesses de vent,

e dépots autour de routes a flanc de coteau, et 'influence d’ouvrages,

e dépots au niveau de crétes alpines, et la prédiction de 'influence de toits-
buses.

Rides

En partantd’un dépot completement plat, on observe dans la réalité la formation
de rides (micro-dunes, ou ripples). Confronté a cette situation, notre modele en
développe, et la reptation de ces formations peut étre observée sur la figure 7.

Distributions de longueurs de saut de particules

Dans le mécanisme de transport des particules fictives, aucun ingrédient ne pré-
cise s’il s’agit de reptation, de saltation ou de suspension. Dans la réalité, une
expérience permet de quantifier la longueur des sauts [Kobayashi 1972]: il s’agit
de disposer des réceptacles métalliques de taille fixe (L cm) dans le sens du vent:
pour arriver dans la n®™¢ boite, une particule de neige a du faire un saut d’au
moins n X L cm. Apres un certain temps, il suffit de mesurer combien de partic-
ules sont arrivées respectivement dans les boites pour en déduire une distribution
de la longueur des sauts.

Une telle expérience est facile a reproduire avec notre modele, et les résultats
sont comparés a la réalité avec une grande satisfaction, pour deux vitesses de
vent différentes, dans la figure 8.
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Routes a flanc de coteau

Pour deux situations tirées de [Castelle et al. 1992], nous avons confronté notre
modele aux observations sur le terrain, ainsi qu’a des aménagements imaginés
(pas forcément les meilleurs, mais utiles pour se rendre compte de la valeur des
autres prévisions):

1. route a flanc de coteau bordée par un talus, quand le vent descend la pente;
le talus peut étre aplani, ou différents toits buses plus ou moins intelligem-
ment proposés (figure 9);

2. méme situation, mais le vent remonte la pente (figure 10).

Si les résultats sont satisfaisants avec le premier cas, il ne sont parfaits dans
le second, dans la mesure ou le modele ne “saisit” pas bien la finesse du pre-
mier dépdt. Ce probleme aurait pu étre réglé en changeant certains parametres,
cependant, associer chaque expérience avec un nouveau réglage empirique est en
contradiction avec une vue unifiée du probléme.
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Figure 7: formation de rides. L’évolution du dépot dans le temps monter la lente
reptation du profil.



Xvi

valeurs mesurees a I'exterieur (env. 10 m/s)
- —— experience numerique (a)
s —— experience numerique (b)

100 \ - — — valeurs mesurees a l'exterieur (env. 6 m/s)

densite

10

10

| |
0.0 0.2 0.4 0.6 0.8 1.0
longueur des sauts (m)

Figure 8: Distributions des longueurs de saut de particules. Les lignes pointillées
représentent des expériences menées avec un vent deux fois plus fort que dans le
cas des lignes continues. Les lignes grasses représentent les résultats numériques,
qui peuvent étre ici comparés a ceux du terrain [Kobayashi 1972].
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ROUTE

Dans les observations, comme avec le modeéle, une congére bloque
la moitié de la route. Sur les résultats du modele, le solide est
gris clair, la densité de particules solidifiées varie de gris foncé
pour le mazrimum, a gris clair pour le minimum.

Aplanir le talus évite la congére, comme le montre aussi les simu-
lations, cependant, d’un point de vue pratique, cette solution peut
s’avérer difficile. Le dépot clair sur la route signifie seulement
une concentration faible a cet emplacement.
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Deuz toits buses sont proposés. Dans le premier cas, le fossé est
déblayé, mais une congére apparait au milieu de la route; dans le
second cas, un plus long toit évite le probléme.

Figure 9: Divers aménagements autour d’une route a flanc de coteau, quand le
vent descend la pente.
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La congeére, observée dans la réalité, est seulement partiellement
retrouvée par le modeéle.

La situation peut étre améliorée en aplanissant le talus.

un ouvrage peu réaliste est proposé. Cependant, s’il dégage le
fossé, il crée un dépot sensiblement plus haut que normal au mi-
lieu de la route.

Figure 10: Une route a flanc de coteau bordée par un talus, quand le vent remonte
la pente.
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Crétes alpines

A plus large échelle, nous avons confronté notre modele a des simulations sur des
crétes alpines.
Avant de passer au probleme dit de la Marlennaz, nous avons testé le modele
sur des crétes pour lesquelles des résultats existent, la Schwarzhorngrat [F6hn et Meister 1983].
En effet, seuls des résultats sur un cas connu peuvent lever certains doutes quant
a la fiabilité du modele.

Schwarzhorngrat

D’autres cas existent dans la littérature, cependant, nous avons choisi celui-la car
il offre trois avantages:

1. le vent dominant est perpendiculaire a la créte;

2. le dépot a cru de maniere monotone pendant les deux mois des mesures; en
effet, il semble difficile de prévoir un dépot dans le cas de conditions trop
changeantes;

3. des mesures ont été effectuées le long de la créte sur trois profils différents;
cette situation offre une banc d’essai d’un grande valeur.

Les résultats du modele numérique sur les trois crétes sont présentés vis-a-vis
des mesures sur le terrain dans la figure 11. La comparaison est trés bonne.
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Figure 11: les comparaisons entre résultats numériques (a gauche) et observations
sur le terrain de la Schwarzhorngrat [Fohn et Meister 1983] sont satisfaisants.
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La Marlennaz

La situation offre un plus grand défi car, d’une part il n’existe pas de mesures de
dépots comparables au cas précédent, et d’autre part il s’agit de modéliser 'effet
de toits buses dont le but est d’éviter la croissance d’une corniche.

Des simulations ont été produites sur les profils nommés respectivement 1
et 3.

Marlennaz - profil 1

Dans ce cas, des simulations ont été menées avec et sans toit buse: plusieurs
étapes de la croissance du dépot sont montrés dans la figure 12.

Marlennaz - profil 3
Ce profil offre deux difficultés:

1. sa configuration, avec une petite créete au vent dont l'influence est dure
a estimer a priori, et plusieurs faibles ruptures de pente dans la pente
principale, en font un profil complexe;

2. aucun ouvrage n’a encore été construit, donc la question de la position, du
type d’ouvrage, reste completement ouverte.

Des simulations de dép6ts moyennés sont présentés dans la figure 13.

Conclusions sur les dépots

Ces différents résultats, a travers une large gamme d’échelle spatiales, montre
comment notre modele, naif au premier abord, a pu capturer des composantes
essentielles d’'une phénomene naturel aussi complexe que le transport de neige
par le vent. Ils viennent justifier certains choix techniques du modeéle numérique.
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Figure 12: La Marlennaz - profil 1. Différentes étapes de la croissance du dépot,
avec ou sans toit buse. L’effet recherché de ce dernier (limiter la corniche) est
clairement observé. D’autres positions pour le toit buses, moins efficaces, ont
aussi été testées.
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Site de la Marlennaz - profil 3

simulation de dép6t de neige — 1:300
30 T T T

20

z (m)

10 —— dépdt sans le toit buse

dépot avec le toit buse

0 1 1 1 1 1
-40 -30 -20 -10 0 10 20

distance depuis la rupture de pente (m)

Figure 13: La Marlennaz - profil 3. Dépdts moyennés. La corniche est élim-
inée par le toit buse, mais un dépot légerement supérieur a la normale semble
apparaitre vers x = 15 metres.
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Quelques aspects informatiques

Fortran 90: un langage adapté au probleme

Depuis 'avenement des languages orientés objet, le Fortran est généralement
méprisé par les informaticiens. Victime de sa célébrité sous la forme de Fortran
77, lui sont reprochées toute une série de péchés mortels: absence d’allocation
dynamique, de types structurés, une indentation fixe ...

Cependant, comme les autres languages, Fortran a évolué pour atteindre 1’état
de Fortran 90 (et avec quelques modifications mineures, Fortran 95).

Le but de ses créateurs n’a pas été d’élaborer un langage universel, titre
auquel veulent prétendre plus sérieusement Java ou C++. Leurs priorités ont été
les suivantes:

e la simplicité d’utilisation,

e une bonne gestion des problemes liés a 1’algebre linéaire et aux problémes
mathématiques en général,

e rapidité d’exécution,
e fiabilité.

Le résultat est un langage modulaire (un module est un ensemble de variables
et de procédures que partagent toutes les unités du programme qui uiilisent ce
module) qui remplit bien son cahier des charges.

Si la philosophie modulaire est aujourd’hui souvent considérée comme dé-
suete, elle se révele suffisante dans un cas comme le programme présenté dans
cette theése, pour structurer des données (un module pour le fluide, un pour les
particules solides etc.) qui sont généralement peu complexes (en effet, un champs
distribué sur un réseau régulier est stocké sous la forme d’un simple tableau
multi-dimensionel).

La parallélisation du code

Pour exécuter plus rapidement un programme, la course au CPU le plus rapide est
rapidement bornée (et trés chere, accessoirement). Une solution est de partager
le travail sur plusieurs CPU, pour diviser d’autant les temps d’exécution.

Les modeles comme ceux des gaz sur réseaux se parallélisent idéalement: il
suffit de distribuer le domaine (un réseau régulier, donc un tableau) sur un ensem-
ble de processeurs (cf. figure 14). Les comunications sont locales et réguliéres,
et peuvent étre implémentées avec des routines d’envoi de messages (Message
Passing Interface).
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Des mesures de scalabilité montrent, dans la figure 15, comment 1'utilisation
de n machines divise par n le temps d’exécution, dans le cas de I'utilisation d’un
cluster de Pentium IT a 500Mhz.

L’utilisation d’un language de programmation performant et adapté a ce prob-
leme (Fortran 90) et d’une librairie de communication standard (MPI) a permis
de conduire des expériences sur plusieurs autres machines, notament une IBM
SP2 a 14 processeurs RS/6000 et un cluster de 8 Sun Ultra 5.

L’utilisation de machines paralléles, avec des temps de réponse tres court (la
plus longue des expériences montrées dans ce résumé prend moins d’une quinzaine
de minutes) permet un usage réellement interactif de I’outil numérique, et ainsi
une exploration confortable des cas étudiés.

Cette interactivité modifie profondément les habitudes des numrériciens, tra-
ditionnellement confrontés a de fastidieux temps de calculs.
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Figure 14: distribution d’un tableau de 22 colonnes sur 4 processeurs. Dans ce
cas, deux processeurs gerent 6 colonnes, et les deux autres 5 chacun.
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Figure 15: Scalabilité des performances sur un cluster de Pentium III. Le temps
parallele est indiqué en fonction du nombre de processeurs. Le sous-graphe mon-
tre l'efficacité de la parallélisation (une efficacité de 1 est idéale). Une efficacité
supérieure a 1, comme dans le cas présent montre comment la parallélisation
est superscalaire: en effet, le partage du probleme en petites sous-taches rend
I’'utilisation du cache plus performante.
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Chapter 1

Introduction

In Alpine and Nordic countries, wind and snow have always been a major concern,
at least in inhabited areas: obstacle to roads or railway lines which can be closed
by snowdrifts more perniciously than by snow falls; threat in mountains, where
wind slabs or cornices can trigger avalanches devastating inhabited places or
closing roads.

To diminish these threats, men have built works, such as: fences, to store the
snow deposit windward a road; wooden tunnels to protect railway lines (Bernina
pass in Switzerland, Oslo-Bergen line in Norway); modifications of the landscape
around Alpine roads; static paravalanches (one century old dry-stone walls above
Davos or more recently iron net ones) and more innovative works, slanted screens
or wind veering (at la Marlennaz near Verbier) or auto-orienting fences (at the
Simplon pass).

These contructions can be organized in two categories:

e passive ones, not preventing the deposit, but protecting statically the target
(wind tunnels, paravalanches);

e actives ones, changing the wind flow pattern, thus dynamically modifying
the deposit shapes (e.g. fences, slanted screens, tree planting, landscape
modifications).

As snow deposit patterns can be observed during previous winters, the main
problem with passive works is not their location but the very high load of the
snow and their building in hazardous areas (steep Alpine slopes); their conception
is therefore a challenge for civil engineers and field workers.

Meanwhile, the load forces on active works are much lighter (high winds are
the main stress). However, the choice of the most optimal type and work location,
depending on the landscape shape is an non-trivial problem (different solutions
to get rid of a snowdrift on a road are displayed in figure 1.1).

In standard situations (such as a flat plain with the prevailing wind blowing
perpendicularly to a road), this choice can be based on statistical outdoor ob-
servations [Tabler 1980a, Tabler 1991]. However, when the case is not similar to

1
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ROUTE

Initial configuration

(c) (d)

Figure 1.1: in the upper figure, a hill side road get obstructed by a snow drift when
the prevailing wind blows downwards (from left to right) [Castelle et al. 1992].
Several actions can be undertaken to avoid this situation: (a) lowering the wind-
wards slope; (b) building terraces; (c) planting trees and lowering the slope; (d)
building snow fences. This case is more thoroughly studied in section 3.2.

litterature ones, the problem becomes more tricky: forecasting the influence of an
obstacle on the wind pattern, thus on the deposit can be as chancy as forecasting
next winter weather looking at onions peels. Based on his experience, a field
expert has to imagined a solution, build it, wait several winters to test it, modify
some parameters (location, works type or configuration), test it again ...

Since Johnson in 1852 (see figure 1.2), studying snow, and more precisely
snow transport by wind and deposition, has therefore inspired many reseachers.
A quick overview on the domain is summarized in the following section and an
original method to model complex systems is introduced in the next ones.

1.1 Snow transport modelling: a state of the art

Presenting a global state of the art of snow transport and deposition studies is
not the purpose of this thesis, more focused on a numerical model. However,
an overview of this field is necessary to situate this work in its context (a more
extensive panorama can be found in [Castelle 1995]). We will therefore introduce
some basic concepts, and different approaches followed by other researchers.
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Fig.1

Fig. 1. Der vifes Snefogets Birtning over {lad
art, hoorpan finded et fritfacende Plantescert af almin-
deligt Slags, 10 Fod heit, med omtvent een Tommes ind-
byrdeg Afjtand imellem ethvert (odvetitaaende Bord.

Figure 1.2: “the influence of snow drift over flat ground around an ordinary ten-
foot fence, with one inch space between the vertical boards” (Johnson 1852) cited
in [Sundsbo 1997]

1.1.1 Basic phenomenon

It is generally accpeted that snow is transported by wind following three different
modes, in the very same manner as sand, displayed in figure 1.3 [Mellor 1965,
Kobayashi 1972]:

e creeping: particles are rolling on the ground;

e saltation: they take off almost vertically, and fly along a parabolic trajec-
tory; they can be ejected by strong enough eddy or by the shock of landing
particles;

e suspension: during the saltation phase, particle can be taken in larger
scale eddies and fly for longer distance.

Although the same components are present (turbulent wind flow and solid par-
ticles), these three modes are treated separately by all the authors. Each pro-
cess is identified to a governing equation [Anderson et al. 1991] and prediction

wind

i

B ; 5 :
creeping saltation suspension
~.001m .001<h<.4m .05<h<100m

Figure 1.3: snow transport by wind is split into three modes: creeping of particles
at ground level, ballistic saltation trajectories and suspension of particles over
long distances [Castelle 1995].
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models usually take into account only the main modes involved in the studied
phenomenon.

This approach has been proven successful, for example, the erosion of a
wind-facing step [Castelle 1995] or a numerical model for suspension transport
[Martinez 1996]. However, beside these rather theoritical questions, many efforts
(often by the same persons) have been achieved to answer field problems, such
as the deposit around a fence, a building, an alpine crest etc. with the same kind
of methods.

1.1.2 Modelling outdoor situations
Statistic or fully-dedicated models

Outdoor observations are recorded to build a statistics data base: this approach
have been proposed by [Tabler 1980a] for deposits around fences. The prediction
for a new case is therefore based on comparison with the nearest records. How-
ever, such a model can only be applied to a limited range of situations covered
by the data base, and results can hardly be extrapolated.

Other forecasting tools, based on semi-empirical models have been developed:

e the deposit over an alpine governed by the addition of two transport modes:
the potential (stationary) flow and a plume model for the turbulent non-
steady effects [Fohn et Meister 1983];

e the situation in the canadian prairie decomposed in two processes: salta-
tion and suspension, based on semi-empirical observations (Prairie Blowing
Snow Model PBSM) [Pomeroy 1988].

However, this models are dedicated to particular cases, and cannot be directly
used on more general problems. Another direction to explore was therefore the
indoor wind tunnels.

Indoor wind tunnel

Perhaps the most natural approach, when predicting snow or sand deposits
around structures, was to use indoor wind tunnels. However, some similarity
criterion must be observed to recover the outdoor situation:

e Iversen have defined a set of criterias to model snow deposit around fences
[Iversen 1980];

e the same ideas have been adapted to model snow erosion/deposition at an
alpine pass [Castelle 1995].

However, since the advent of powerful computers, numerical wind tunnels are
not out of reach anymore.
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Figure 1.4: ouput from [Uematsu et al. 1991] around a fence, where wind flow is
plot in the upper part; snow drift rate and snow depth are confronted to outdoor
results in the lower part of the figure.

Classical numerical models

Very early, computers have been used to model fluid flows. It has therefore been
natural to incorporate a solid phase to the fluid one and simulate the deposits.

One of the earliest three-dimensional models have been proposed by [Uematsu et al. 1991,
and a result is shown in figure 1.4. The static wind flow, and the lack of an im-
plementation of a particle saturation process cause some differences with reality.
However, this model was applied to true 3D configurations, such as the deposit
around a cube.

More recent approaches have used commercial fluid solvers, such as Flow-3D,
and later added a solid particle phase. [Sundsbo 1997] focuses on snow deposit
around man made structures, such as fences and overall 3D complex buildings
and has proposed very accurate results. [Gauer 1999], with the same kind of
physically-based approach, addresses alpine terrain questions, comparing fully
3D numerical simulations around large crest areas with field measurements.

As in many other fields, classical numerical models are directly based on theorit-
ical ones. This approach can be broken down in three layers:

1. based on observations, the main components or of the phenomenon (at least
the supposed most relevant ones) are pointed out;

2. following argument and deduction, these extracted variables are mixed into
a set of governing equations;

3. to be numerically handled (for an extrapolation purpose for instance), these
equations must be transformed into a computable form.
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At each of these levels, simplifications are assumed, a priori decisions are
taken. The more complicated the phenomenon is, the less a consensus can be
reached by different approaches.

This chain process is of course not unique to the problem adressed in this
thesis. However, transport of solid particles by a fluid is a very good example of
a compler system. Therefore, the approach introduced in the following section,
radically different from the classical numerical models and aimed to served a very
wide range of purposes, suits perfectly our problem.

1.2 Modelling complex systems: lattice models

Modelling a complex system at the level of the elementary behavior of each
of its components would soon become too complicated and out of reach of our
knowledge and our computing resources. Indeed, looking closer at some examples
quicly show their complexity:

e chemical reaction: each molecules of the species involved in the pro-
cess has it own position, trajectory, solvent movement, light, pH, reactive
competition, presence or absence or antagonists, ions, enzymes . ..

e prey-predator system: each individual has a social position, physical
abilities (therefore hunting efficiency, resistance ... ), a feeding territory,
knowledge, genetic capital; it can die, give birth, be a parasite vector ...

e snow transport by wind: humidity, shape of the flakes (and its modifica-
tions during time), evolution of the deposited snow characteritics (melting
or freezing flakes), influence of landing particles on the bed, influence of the
saltating density on the high frequencies of the fluid flow, particle toppling
or cohesion ...

However, an alternative to the classical three layers thought process presented
at the end of the previous section exists. We propose in the following sub-section
a short introduction to lattice models, and we will briefly focus on the case of a
chemical reaction. In section 2.1, we will go deeper into lattice models dedicated
to fluids.

1.2.1 Building a fictitious world

This approach relies on the fact that several levels of reality exist in physics
[Kadanoff 1986]. On one hand there is the macroscopic level, where phenomena
are expressed in terms of rather abstract mathematical objects such as the differ-
ential equations. On the other hand, there is the microscopic level of description
where the interactions between the basic constituents are considered.
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Figure 1.5: A particles diffuse (from left) in a solvent containing B particles;
they precipitate into a new specy C, plotted in black in the figure. Agreeing with
laboratory exepriments, a cellular automata models shows how C' is produced in
bands of growing width, the so-called Liesegang bands.

An important results of statistical mechanics is that the macroscopic level of
description depends very little on the details of the microscopic interactions. One
can use this property to build afictitious universe in which the microscopic inter-
actions are particularly simple to simulate on a computer and whose macroscopic
behavior is just that of the real system [Hillis 1989].

This approach has been applied to a very wide range of problems, reaction-
diffusion systems briefly introduced in the following subsection [Cornell et al. 1991].

1.2.2 Reaction diffusion systems ...

Reaction-diffusion systems consist in the coexistence of diffusing chemical species,
and reactions according to some condition, as for examples:

e chemical species A and B diffuse in a solvent, they can react and create a
new species C', which can precipitate in turn;

e a species A diffuses and precipitates (into B) when it encounters a steady
B species.

Although they are well understood from a chemical point of view (i.e. equations
governing the process are clearly established), reaction-diffusion systems have
been hard problems for computational models as they may produce complex
behaviors: Liesegang bands for the first above example (cf. figure 1.5, dentrites
formations for the second one.

The model presented in [Chopard et Luthi 1994] is an archetype of those fic-
titious world. Instead of modeling the governing differential equations, instead of
attempting to model the details of motion and reaction of chemical species into
a solvent, one defines a new world, with very simplified rules: discrete particles,
from species A and B, move randomly on a regular grid and transform when
particle of both species encounter on a site.

Although model details are far from reality details (particles are discrete quan-
titites moving synchrounously on a discrete lattice and reaction process is largely
simplified), simulations produces a global complex behavior very close to the real
one, a success which was first difficult to reach with other numerical approaches.
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1.2.3 ... and many others complex systems

Many systems (if not any, according to some peoples) have been addressed by
similar methods. Results have been published in a vey wide range of appli-
cations, including traffic, ants, forest fires, radio-waves propagations, excitable
medias, turing patterns models, competition among smokers and non-smokers
[Galam et al. 1998] and many more [Chopard et Droz 1998].

1.3 The present work

The present thesis shows how these ideas can be applied to model snow transport
and deposition by wind, which mixed two major components:

1. a fluid, composed of virtual particles interacting on a lattice,

2. solid particles, eroded, transported and deposited under the action of the

fluid.

In a first part, we will present a fluid model, from a basic discrete cellular
automata up to a very efficient model modeling high Reynolds number flows.
Although it has been proven to be theorytically correct, we will also validate the
model from a practical point of view, confronting it with results of the literature.

In a second part, we will present the original part of the thesis, i.e. the
inclusion of particles on the top of the fluid model. In the same manner, we will
show results within a very wide range of space scales, from little ripples up to
deposits around mountain crests.

In the last part, we will focus on the implementation of such an application
in Fortran 90 and overall on its parallelization with message passing libraries.

Last but not least, several appendixes present original complements to the
current works: a multiparticle fluid model, an interactive simulation environ-
ment, a short guide to the visualization software AVS/Ezpress, and a home made
benchmarks of MPI on four machine architectures.

This whole work includes ideas from the literature (mainly for the flui part)
and a large original work, both in the usage of such fluid models for real-life turbu-
lent apllications and the incorporation of the solid particles to predict deposits.
Moreover, such simulations need large computational resources, therefore, the
use of different powerful parallel computers have allowed short computing times
showing how such machines can change the life of the numericist.



Chapter 2

The Fluid Model

To model the fluid, we have adopted the so-called lattice gas technique, and
more precisely the lattice BGK subgrid model. To introduce this model, we will
briefly step through cellular automata, lattice gas automata and their first level
“mutation” to general lattice Boltzmann models.

Once the model has been described, we will focus on a set of experiments,
confronting simulations with results from the literature.

2.1 Lattice gas: a short introduction

As introduced in section 1.2, lattice models transpose reality into a fictitious
world, where the governing rules are greatly simplified. Before focusing on the
description of lattice gaz models, we briefly point out three scale levels of the
description of real phenomenon:

1. the macroscopic,
2. the microscopic,

3. and the mesoscopic scales.

The macroscopic scale

To model a natural phenomenon (fluid, population evolution or radio-waves
propagation), scientists have tried to extract equations from their observations
(Navier-Stokes, Lotka-Volterra or Maxwell equations), and later have used these
equations for a better understanding of the phenomenon. However, when one
wishes to look closer and needs to incorporate new elements, these equations
quickly become very complicated.

Later, when computers have proven themselves to be appealling modelling
tools, the most popular idea to simulate the natural phenomenon was to numer-
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ically model the corresponding set of equations (thus numerically modelling a
mathematical model).

The microscopic scale

On the other hand, instead of modelling coarse grain quantities through macro-
scopic equations (e.g. Lotka-Volterra like equations for prey/predators popu-
lations, considering paramaters such as density of both species, rate of birth
etc.), one can try to simulate individual behavior of every component of the phe-
nomenon (each prey or predator has its own location - if one of each meet, the
prey dies -, motion, behavior, reproduction cycle).

The mesoscopic scale

To model a fluid one can either use the Navier-Stokes equations through a dif-
ferential equation solver, or use an atomic representation through a molecular
dynamic system (every molecule is represented and complex collisions are taken
into account).

In between, one can imagine to represent the fluid by a set of basic “parti-
cles”, evolving in a fictitious world, reacting with simplified and relevant rules .
Although this representation is far away from the richness of reality, it may be
enough to recover complex features of the natural phenomenon.

Both the macroscopic and the microscopic scales are very complicated to
simulate, while the mesoscopic scale provides an attractive level of description,
as they are ideally suited for numerical simulations. Moreover, instead of being
obsessed by reproducing reality in the closest manner possible, one builds his
own world, with his own set of rules governing elements which have not the
pretention of individually representing their equivalent in reality. However, if
the rules catch the key ingredients of the pheomenon, the global behavior of the
system can recover complex results.

Cellular automata, described in the following subsection, are representative
of those mesoscopic scale models.

2.1.1 Cellular automata
Cellular automata (CA) are fictitious physical system, where [Chopard et al. 1998a:

e space domain is a regular lattice (I"); each lattice node r is linked to ¢ neigh-
bors {I' + ci}i:O,q—l;

e the cell states N(r,t) belong to a finite set of values;

U “Byerything should be made as simple as possible but not simpler” A. Einstein, cited in
[Chopard et Droz 1998]
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e evolution is synchronous, discrete in time and update depends only on the
local state and those of the nearest neigbors following a rule R:

N(r,t+1) = R(N(r,¢), N(r + co,t) ... N(r + ¢, ) (2.1)

The game of life

This famous cellular automata was proposed by the mathematician John Conway
in the seventies [Gardner 1970]: on a 2D lattice, where each node is linked to
eight neighbors (north, north-east, east, south-east, south, south-west, west and
north-west), a cell can be either dead (0) or alive (1):

e a dead cell surrounded by exactly 3 alive cells regains life,
e a living cell surrounded by less than two cells alive cells dies of isolation,

e a living cell surrounded by more than three cells alive neighbors dies of
overcrowdness.

Let on(r,t) (abbreviated oy ) be the sum of the neighboring alive cells of site

r at time ¢: s

on(r,t) = N(r+c;t)

i=0
The evolution rule can therefore be written as:

1 ifoy(r,t) =3

N(rt+1) = N(r,t) ifoy(r,t)=2
if on(r,t) <2

0 if oy(r,t) >3

Even if this rules can be seen as a toy model at first glance, a closer look shows
how this CA can exhibit complex behaviors, and even be able to reproduce any
computational process. However, although it is very rich from the theoritical
point of view, it is far from representing a real animal “game of life process”.

We will focus in the following paragraphs on CA designed to model a fluid,
namely the lattice gas automata (LGA).

HPP

The earliest LGA is the HPP model (Hardy, Pomeau and de Pazzis [Hardy et al. 1973]),
where a very simplified molecular dynamics is described: Boolean particles move
synchronously on a square lattice (four neighbors); only one particle can travel at

once on a lattice link (exclusion principle); a collision takes place when more than

one particle enter a site at the same time step, accordingly to the rule described

in figure 2.1.
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time t time t+1

Figure 2.1: HPP collision. Only when two particles enter a site with opposite
directions, they are deflected perpendiculary; all the other configurations remain
identical.

From a more practical point of view, four vectors {c;};—0123 describe the
lattice I'. The local state of a cell consists of 4 Boolean values {F;(r,t)}i=0,1,23
where F;(r,t) = 0/1 indicates the absence/presence of a particle travelling in
direction c; on site r, at time t.

If only one particle, with velocity c;, enters the site at time ¢, it is streamed
to r + c; at time ¢ + 1; if two particles enter a site with opposite velocities, they
collide and are deflected in the perpendicular direction; when more particles enter
the site, the situation remains unchanged and particles are only streamed. This
collision rule can be written as:

Fi(r+ci,t+1) = F(r1)
- F;'(I', t)ﬂ+2(l‘, t)(l - E-I—l(ra ZL’))(l - E+3(I‘, t))
+ F(r,t)Fus(r, 1) (1 — F(r, 1)) (1 — Fiya(r 1)) (2.2)

where all indexes are taken modulo 4, the first term is for the statu quo, the
second one when only one particle in direction 7 and another in the opposite
direction (i + 2) enter the site, thus F; vanishes, and the last one when only two
particles are entering the site in direction perpendicular to ¢; (i + 1 and ¢ + 3),
thus F; becomes 1.

Basic definitions

It is therefore very natural to define the number of particle:
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Figure 2.2: FHP collision, on an hexagonal lattice. When only two particles enter
a site with opposite directions, they are deflected with a probability 1/2 of 60 or
—60 degres. When three particles enter the site in a way that the momentum is
zero, their velocity are inversed.

and the local momentum, i.e. the number of particles multiplied by the velocity:

I(r,t) = Z Fy(r,t)c; = p(r, t)u(r, 1) (2.4)

where gy is the number of neighbors for the fluid cellular automata. The usual
density and momentum are usually obtained averaging these terms.

FHP, FHP-III

Although the HPP formulation is elegant, it cannot be considered as a fluid model
(i.e. satisfying the Navier-Stokes equations), because of some intrinsic anisotropy
of the lattice preventing a coherent definition of the momentum tensor. However,
an hexagonal lattice (¢ = 6) can satisfy this isotropy assumption, and collision
rules were imagined by Frisch, Hasslacher and Pomeau (FHP) [Frisch et al. 1986]
(see figure 2.2).

-2 ‘\
time t time t+1
Figure 2.3: FHP-III collisions involving a rest particle (the others are the same as

for the FHP model). Density and momentum are conserved, but not the energy.
However, it is conserved on average over the collisions.
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Figure 2.4: FHP evolution step, decomposed in two stages: a) collision, b) infor-
mation streaming to the neighboring cells.

To get richer collisions, a particle at rest is added in the FHP-III set of rules.
In this case, g; is considered to be 7, and one of the indexes is used for the rest
particles. Later, even multi-speed models have been proposed in the litterature
[Doolen 1990].

One can notice that, for each rule, mass and momentum, as defined in equa-
tions (2.3) and (2.4), are conserved. This, together with some lattice isotropy
assumption, ensures that the system satisfies the Navier Stokes equations, up to
some non Galilean invariance correction term [Chopard et al. 1998a, Qian et al. 1996a];
the latter problem will vanish when using a Lattice Boltzmann model, 7.e. in the
practical model used in the framework of this thesis.

However, in these models, viscosity depends on the collision rule and the
average density of particles. Thus it exists only in a restrictive range and cannot
be tuned to reach interessant values (in the aim of modelling turbulent situations).

Solid as boundary conditions

As the fluid is described by CA particles, evolving synchronously on a regular
lattice, the interaction with solid can be handled in a very efficient and elegant
way: instead of interacting normally according to the rules described above, a
particle entering a solid site simply bounce back (inversing its velocity).

To be or not to be solid is considered as a new Boolean variable, one more
in the description of the local cell state, and the bounce back condition can be
incorporated as s in the CA set of rules.

Implementation

The cellular automata implementation will be more thoroughly discussed in
chapter 4, however a CA evolution step can be summarized as a parallel (syn-
chronously on all the lattice sites) two stage mechanism:

1. collision computations, based on the local information; as the local situation
can be described by g bits, a lookup table with 29 entries returning a gy bit
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integer can store all the possible evolutions; this lookup table can computed
at once and the collision step becomes only a memory load rather than a
expression computation;

2. streaming of information to the neighboring cells.

Such an evolution step, for the FHP rule, is displayed in figure 2.4.

2.1.2 The lattice Boltzmann method

Cellular automata are an idealization of a physical system, however, several
inconveniences are intrinsically linked to their discrete nature:

e the high statistical noise requires large system averages,

e lack of possiblities for the fine tuning of the input conditions,

Lattice Boltzmann models offer a solution to these problems: instead of deal-
ing with the Boolean presence/absence of a particle on a given lattice link, they
consider the probability of having the particle on this link. Instead of F; € {0, 1},
they consider f; ranging continuously in [0, 1].

If N-body correlations are neglected, the collision rule expressed for discrete
quantities (such as in equation (2.2) for HPP) can be applied straightforwardly
to the average values [McNamara et Zanetti 1988]. Local density and momentum
can be computed in the same manner as in equations (2.3) and (2.4), but are now
continuous, lowering drastically the statistical noise.

However, the price to pay for this major improvement are numerical insta-
bilities and the loss of the N-body correlations, which can easily be neglected
in most of the fluid simulation problems, but become important when distribu-
tion fluctuations are essential. To merge both techniques, we have imagined the
technique described in annex A.
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Model limitations

Although the HPP collision term (equation (2.2)) is rather simple, it becomes
more complex for the FHP-IIT model (6 neighbors and a rest particle):

B _ Eil+lLr+d6)=F
+ 3F; Fiqs (Fip1FipaFio Fiys + FioFi5Fip1 Fiia)
_ — FiFiysFiq1 Figg Figa Figs .
+  FrestFits Fiva (Fi (Fiq1Fipo Fiys + FiysFipn Figo )
_ —FFi Fi Fiys ) L
Fivs Frest (Fit1FipsFi Fiyo Fiys — FiFi Figs (FipoFira + FipaFigo )
Fip1 FigsFiysFi Fiyg Fips — FiFioFiaFi Figs Figs
Frest(Fi (Fip1FigsFivo Fiys Fipq L
+ 3 (FiyaFit2 Fiva (FiysFip1 + FitaFigs )
- %EE—H Fiy3 Fiys (FipaFito + FipoFipy))
+ Frest (Fi (Fiy1FiqoFiysFigs Fips + %Fi+2Fi+4Fz‘+5m Fiy3)
- F’i(%m@1ﬂ+4m Fiis + FiyaFiysFiq Fiya )
_ + FpoFy3Fi Fiyg Fis ) -
+ Frest (F; (Fir1FiraFipsFipo Fivs + 5Fip1 FipoFivaFiys Figs )
— Fi(FiysFivalFit1 Fivo Figs o
4 3Fia (Fis1 FipaFiio Fiys + FipoFipsFip1 Fiys )
+  Frest(Fi (Fiv1FipoFipsFits Fiyg o
+ 5Fia(FiaFisFin1 Fis + Fip1FipaFiga Figs )
= FFisFi Fipg (FipoFiys + sF5Fi0))
+  Frest(F; (Fiy1FiqaFivsFipo Figs -
+ 5F90(FipsFiysFip Fips + FiiFiaFiys Fiis )
— FiF;y3F;5 Fiys (FipaFig + 5Fi1Fig)
+ FipFipolaFsk Fys o
— 3FiFi3(Fi1 FipaFipg Fiys + FipaFiysFi Fiog )
+ Frest (3F; Fis1FisFiys(FiaFipo + FioFia) L
= FFFu(3Fs (FiaFiys + FisFin ) + FiysFip Fiys )
+  Frest FivoFipsFira(Fip1 Fips by — Fi(Fip1Fips + FipsFiy )

+  FrestFigs(Fiv1 FipsF; (FigaFivo + FiyoFiva ) — FiFjioFi4aFiq Fiys)

++ +

where F; states for Fj(r,t) and F; for (1 — F;). The evolution rule for the rest
particle density can also be expressed by such a cute little formula.

The complexity of this term expresses clearly the exponential dependence of the
collision rule on the number of particle. If it can still be plausible to compute a
FHP-III model directly from the evolution term, it would be utopian to undertake
3D simulations (inspired from 24 particles model).

Moreover, the model is strongly related to the underlying cellular automata,
in the sense that the viscosity is directly linked to the collision rule and thereore
hardly tunable.

Fortunaltely, the collision term can be drastically simplified and the lack of
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independent viscosity solved, as described in the following section.

2.2 Lattice BGK subgrid model

2.2.1 Linearizing the collision term

To achieve more efficient simulations (such as faster computations or higher
Reynolds numbers), a major limit of the pre-cited methods is, on the one hand,
the exponential dependence of the complexity with the number of lattice links
and, on the other hand, the absence of free parameter to tune the viscosity (pro-
duced by the model geometry, the size of the lattice and the collision rule).

Breaking both these barriers was therefore a key challenge to make Lattice
Gas a useful tool from a practical point of view. This evolution has been clearly
described in [Qian et al. 1996a, Chopard et Droz 1998] and is very briefly sum-
marized in this section.

Split of the local distribution in equilibrium + non-equilibrium parts

A major step in the improvement of lattice gas models was to decompose the
density distribution as an equilibrium distribution term plus a non-equilibrium
fluctuation term [Higuera et al. 1989a]:

fi=F+ Vi € {0, 4} (2.5)

where the local equilibria {f{?} depends on the local density p and velocity u and
is given by the Fermi-Dirac distribution (obeying the exclusion principle, i.e. no
more than one particle per lattice link) [Frisch et al. 1987]:

fo1 =
2

1
_ _ (2.6)
1+exp(—A—-B-¢)

where A and B are quantities such that local density and velocity are conserved.

“Taylorization” of the equilibrium distribution term

In order to carry out the calculations, (2.6) is Taylor expanded:

CiqnUq 1 CiaUqy 2 U,Uq
1+ —+-— — 2.7
- - ( ) 202 ] (2.7)

¢ — ot
Ji = ply c.2 2\ ¢.2

where summations over repeated spatial indices are assumed and v, is the com-
ponent of v in dimension o, cs the speed of sound and ¢, weights depending on
the amplitude of the vector ¢;, such that p = p(i) =|| ¢; || (i.e. in 2D square
model, ¢, weights the rest particles, t; the particles moving horizontally and
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vertically, and ¢, the particles moving along the diagonals). These weights are
model dependent and must fulfill basic conservations and isotropy requirements
[Qian et al. 1996a, p. 208]. A set of parameters is given in table 2.1 for different
lattice models.

The collision term

Therefore, we can state the evolution as:

filt +cit +1) = fi(r,t) + QU(filr, 1))
= fi(r,t) + (£ (p(r, 1), u(r,t)) + i (r, 1)) (2.8)
= filr,t) + Q(f(x, 1))
= fi(r,t) + Qi(f“(p(r, 1), u(r,?)) — f(r,?)

The first idea was to express the collision operator {2 as a matrix in the
so-called quasi-linear lattice Boltzmann equation [Higuera et al. 1989al, reducing
the complexity from 2% to ¢;%. It was improved, stepping away from the un-
derlying discrete cellular automata and reaching lower viscosities with the lattice
Boltzmann equation with enhanced collisions [Higuera et al. 1989b)].

Meanwhile, the collision operator complexity was further decreased to the
order of gy with the advent of the BGK models.

2.2.2 The BGK model

In a different context, Bathnagar, Gross and Krook used a simple relaxation term

to model the collision operator in a standard Boltzmann equation [Bathnagar et al. 1954].
Their key idea has been adapted to lattice Boltzmann model: the collision term

Q2 is reduced to its simplest form, and no explicit underlying collision model is
incorporated into it any more. Equation (2.8) can therefore be simplified :

filr+cnt+1) = filr, 8) + % (F9p(r, 1), u(r, ) — fi(r,8)  (2.9)

where 7 is the relazation time, a free parameter directly related to the kinematic
viscosity v, through [Qian et al. 1996al:

cs?
Therefore, 7 must be greater than 1/2 and the viscosity should tend towards
0 as 7 tends towards 1/2, but numerical instabilities appear when 7 is too low.
Fortunately, human genius has, once again, saved this hopeless situation ...
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2.2.3 Subgrid model

To model higher Reynolds number, i.e. more turbulent flows, with the previous
model, two actions can be undertaken:

e increasing U.,s,, thus worsening the incompressibility error,
e lowering 7, but the simulation numerically blows up,

e increasing the lattice size, needing more memory and CPU power, but the
budget will also blow up.

Reading [Hou 1995] (summarized, and focused on the 2D cavity flow prob-
lems in [Hou et al. 1996]) shows a way to cleverly break this new barrier. This
approach is summarized in the following paragraphs.

Large Eddy Simulation and eddy viscosity

The idea is to adapt the Large Eddy Simulation (LES): modelling only the large
eddies (larger than the lattice resolution), and trying to extrapolate what is hap-
penning at lower resolution scales (in fact modelling the effect of the unresolved
scales on the effective ones). This method is briefly presented here.

Starting from the basic scale level, with a defined physical variable w (w can
either be f;, u or p), we first define a coarser scale (which will be the computations
scale level), and express w at this new level:

w(r) = /w(r')G (r —r')dr' (2.11)

where G is a given spatial filter (averaging w, for example, on a box).

It has been shown by [Hou 1995] how this small scale extrapolation can be
included as a spatial dependent kinematic viscosity 7 taking into account the
originally given viscosity vy plus a so-called eddy viscosity vy:

vV=1y+ 14 (2.12)

This eddy viscosity is sometimes seen as an empirical add-on without “clear
link with the underlying physics”. However it works and many approaches have
emerged to compute this add-on. Among them, we present in the current work
the Smagorinski eddy viscosity model:

Vg = Csma,go|S| (213)

where |S| = /25,3Sqp is the magnitude of the strain-rate tensor S,5 and Cypago

an external parameter called the Smagorinski constant (we shall discuss its values
later).



2.2. LATTICE BGK SUBGRID MODEL 21

As kinematic viscosity and relaxation time are linked through equation (2.10),
an eddy relazation time 7, can also be considered:

_ v 1 wvw4+v 1 Yy
s R R Ik R (244
~—~

Tt

The strain-rate tensor

The strain-rate tensor is traditionally computed as a finite difference directly

from its definition:
1 [ 0u, aﬁﬂ
Sap == 2.15
s 2(amﬂ+axa) (2.15)
However, in the BGK model, when high order velocity effects and incompress-

ibility errors are neglected, S,3 can be deduced from the flux-tensor momentum
[Chopard et Droz 1998]:

Cy
M5 = —Tpt
@h T'OCQ ((%ﬂ + 0z,

where Cy and C} are lattice dependent:

O auﬂ) Sap = _%%Haﬂ (2.16)
4

af

Dt CiaCis = Cabag

=1
as (2.17)
D Hei|CiaCisCisCiy = Cu(6as0ys + Saydps + Oardps)

=1
VOt, /6’ Y, d

where 0,4 is the Kronecker function. The definition of C; and Cy is only coherent
for isotropic lattices (they are inconsistent, for example, for a D2Q4 lattice).

A step by step method
Equations (2.14) and (2.16) lead to a local algorithm for the computation of 7:

a) the non-equilibrium momentum flux tensor?:

[os = Z CiaCis (ﬁ . F) (2.18)

Warning: in [Hou 1995] and [Hou et al. 1996], there is a misprint in the definition of I,z

wrongly stated as II;; = cjaCjq (ﬁ —ff q). This definition even contradicts the assumption
that the non-equilibrium momentum flux tensor is linearly related to the strain-rate tensor,
which is defined without reference to the lattice notation in (2.15). When directly applying the
cited algorithm, the renormalization by Cspmago hides the quantitative error and the qualitative
results looks correct; however, in 3D, the error is emphasized, even in simple fluid velocity

profiles of an open channel.
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b) its scalar product @ = II,4Il,5,where summation over repeated indices are
still assumed,

c¢) the link to |S| is done, summing over the spatial indices relation (2.16):

Cs 1
Sl=——— 2.19
S1= G ooy V@ (219)
Cs 1

magoam\/é (220)

2
= UV} = Cg Tt:Cs

d) solving this second order equation for 7, (> 0), one obtains an explicit subgrid
relaxation time:

_ 1 20, Q
T = 5 \/T02 + Csmago@? +7'() (221)

And the evolution equation (2.9) becomes:

Fiet et +1) = e, 0)+ = (F7plr. 1), u(r, 1)) ~ (e, )
(2.22)

For simplicity, the — symbols can be removed, and the basic BGK scheme is only
modified by the extrapolation (2.21). Moreover, from a practical point of view, it
is interessant to fix 7y = 0.5 in order to reach the lowest viscosity possible (as it
will be the case from now on in this thesis, when the subgrid model is involved).

The global program for the fluid collision step is displayed in algorithm 2.2.1,
which can be directly translated in a classic programming language.

Why the Smagorinski model avoids the numerical blow up: an intuitive
explanation

Numerical blow up is generated where the f;’s reach negative values, i.e. where
the strain is too high (close to an obstacle, by example) and the relaxation time 7
too small. These negative values could be avoided by increasing 7, but this is in
contradiction with the quest for low viscosity. The Smagorinski model presented
in this section precisely increase the relaxation only where the strain is large,
thus killing the blowing up germs before they can develop.

The value of Cypag0 is therefore important, as, on the one hand, a too high
Csmago Will generate a too high relaxation time with no chance of decreasing the
viscosity; on the other hand, a too small Cy,q90 Will not prevent the system from
blowing up. The right value to obtain the most developed turbulence depends
mainly on the flow configuration, and must be set empirically. This empiricism
is the main drawback of the Smagorinski model and can be solved using other
subgrid models.
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Algorithm 2.2.1 global evolution code for the subgrid BGK model, where the
f!’s are the evolution of the distribution f;’s (the streaming stage consists there-
fore only of f;(r+c;,t+1) < f!(r,t)). This algorithm can of course be optimized
in some manners, but its intrinsic simplicity (a couple of dozens code lines for a
2D/3D fluid solver!) and its efficiency are two (other) strong advantages of the

method.
//temporary variables are

//counters: i,j,«

//0,6f,Q,11

//f{? evaluation
o < pto(L = [lufl?/(2¢,%))
do i =0,q7—1

© contains c;.u/cs?

00

do aa=1,d

O + O + c;,u,

enddo

O + 0/c,?

£ 4 ptjey(1+ O(1+©/2) — [[ul]2/(2¢)
enddo

//T evaluation
R+ 0
do 7 =0,q7—1
6fi = fi— fi*
enddo
do a=1,d
do f=1,d
M+ 0
do j=0,q7—1
I+ I+ c,—acigdfi
enddo
Q+— Q+1I7
enddo
enddo

7 7+ (V7T Conae B CoeN V7 — 7) /2

//and finally
do 7 =0,q7—1
fir= (L=1/T)fi+ 1T f"

enddo
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2.3 Fluid validation

In this section we will present numerical experiments we have performed to vali-
date the BGK model in order to reproduce turbulent flows.

We shall therefore compare numerical results with situations that may be
found in the litterature, either from a theoretical or an experimental point of
view. All simulations have been run with a 3D (D3Q19) model, but over thin
(small y—dimension) domains as results in the litterature are mainly 2D view of a
3D reality (the shape of the obstacle usually don’t change along the y—dimension
in the main study cases).

Besides the validation purpose, the aim of this section is to present, from a
practical point of view, the role of the model parameters. Therefore, we will
present to the reader some keys to realistic fluid simulations. Athough all the
introduction part on BGK models were discussed thouroughfully in the littera-
ture, little exists on the subject addressed in this section, which is an original
contribution of this thesis.

2.3.1 Boundary conditions
Since the emergence of simulation tools, either numerical or not, boundary con-
ditions have always led the experimentalist to a dilemma: artificially setting a
priori conditions to make the results look the way they are supposed to, or try-
ing to find and model the exact laws of the phenomena. The solution resides
in between and sometimes appears like a set of recipes (more or less justified).
However, the correct recipe book will prevent the simulation from numerically
blowing up or from emphasizing inappropriate behaviors.

In our modelling of a fluid through a tunnel (which is very similar to a labo-
ratory wind tunnel), we must deal with several boundaries:

e initial conditions,

e solid-fluid interactions,
e input,

e output,

e boundaries parallel to the flow stream (upper and vertical ones, which shall
model an open space with only a finite simulation domain).

Initial conditions

Initializing the system variables f;’s does not represent an unsuperable obstacle.
However, some mistakes could generate early numerical instabilities and either
make the simulation blow up or introduce spurious symmetries.
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Therefore, the system is initialized as:
fi(r,0) = 1+ e(2(1) — 1/2) (2.23)

where ¢ is a small constant (order of 1%), and Z(1) a random variable uniformly
distributed over [0, 1], drawn for each (i,r). The random component break some
accidental symmetries (a numerical simulation of a flow around a cylinder will
never generate Von Karman patterns if the variables are symetrical). But a
small €y prevents numerical instabilities from occuring during the first iteration
(the smaller 7, the bigger the risk).

Last but not least, if Cypqgo is too low (in the case of highly turbulent fluid
simulation, where instabilities are the most frequent), it may be a good idea to
“warm up” the system: looping for several steps with a large 7 (= 1) before
setting it to 0.5 and starting the subgrid process is often a solution that will
prevent the simulation from blowing up.

Solid-fluid interactions: no-slip (bounce-back) condition

The underlying particle description of the fluid in the lattice techniques offers
a simple and intellectually convincing way of solving this part of the problem.
Indeed, the no-slip (or bounce-back) condition consist in reversing the velocity
of particles entering a solidified site. If i labels the direction opposite to i (i.e.
¢; = —¢;), it may simply be implemented as an exchange of densities f; <> f;.

This method naturally leads to a zero-velocity by the solid level. More pre-
cisely, the position of the border of the modelled solid layer has been located half
way between the solid cell and the neighboring free one [Hou et al. 1996].

Time dependent solid configuration

The aim of this thesis is to present a model of solid particle erosion /transport /deposition.
Therefore, the shape of the solid configuration may evolve during the simulation.

However, with these simple rules, complex or time dependent solid configu-
rations are not a problem anymore. Indeed, the bouncing back can be applied
on a site at once and not at the following time step without any intrinsic model
impossibility.

However, what happens to the f;(r,t;) if the site r becomes solid at time ¢;
should also be clarified: in our opinion, a good solution is to compute at time
t1 a zero-velocity distribution (= fi(r,t1) <= p(r,t1)t|c;) and trap the fluid into
the solidified cell until it is released.

During the following time steps, the fluid evolution algorithm is not performed
until the site is unsolidified, if ever. There are two advantages of choosing this
option:

1. the total fluid density is conserved;
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2. when a site is unsoidified, it is already set in a natural (equilibrium) zero
velocity distribution, preventing from a blowing up risk, contrary to, for
example, if all the local fluid density had been stored in the “rest” com-
ponenent).

Porous solid

The lattice resolution may be not precise enough to exactly reproduce an obstacle
(e.g. afence, built with spaced out planks) with a given porosity ¢ (¢ = 0.0 = full
obstacle, ¢ = 1.0 = no obstacle). But the previous idea can be slightly modified
by bouncing the particle back only with a probability ¢;, i.e. replacing a fixed
porosity by an averaged one. From a practical point of view, ¢ is obviously
linked to ¢ and must be calibrated. Some results are proposed in section 2.3.7.

Input

In laboratory wind tunnel experiment, the input flow is forced by a jet. The idea
is the same here, as the fluid entry velocity is set by the user on the left hand
column of the computational domain.

Beware! The relaxation time on this boundary must therefore be 1 so the
system reproduces the given entry speed exactly. Indeed, if the purpose if to set
the velocity to ug, the local fluid distribution must be forced to f(p, uy).

Moreover, one should let some horizontal distance (roughly one time the
height of the domain) before the correct velocity profile is established.

The solution of accelerating the fluid only from the top boundary, has been
tested but abandoned as the acceleration was not reaching the lowest layer (or
providing very poor velocity profiles).

Accelerating the flow by adding momentum on random sites was also aban-
doned, except in the specific case of the BGK-multiparticle model for which satis-
factory results for the Poiseuille flow experiment were obtained (cf. appendix A).

Ouput

A simple solution, which has been adopted, is to apply exactly the same method
as for the input condition as exposed in the previous paragraph.

Some zero-gradient methods have been tried with some success but were nec-
essary only with the early Lattice Bolzmann directly inspired from the cellular
automata collision rule (section 2.1.2). The best one consists in copying the dis-
tribution from a vertical layer 20 sites away from the end of the tunnel to the
last vertical layer [Masselot 1995].



2.3. FLUID VALIDATION 27

Input/output boundaries: a precision about cyclic conditions

On the one hand, when fluid condition are cyclic, one must verify that the solid
configuration is also cyclic. On the other hand, when forcing boundary condition,
it is recommended to set locally the relaxation time to 7 = 1, so that the velocity
will be forced exactly to its given value.

Upper boundary

When the fluid is not accelerated from above, the aim is to model an infinite
boundary condition at the “sky” level. A classical solution with other numerical
approaches is to compute larger and larger cells in the upper part of the system;
however, in lattice models, the cell size is uniform. Moreover, to get shorter
computation times, one wishes to get domain size as small as possible and is
therefore driven to imagine alternatives to the brute force solution consisting in
piling up cell rows.

A zero-gradient method has also been tested, trying to copy the second highest
raw onto the highest one. The main drawback was to accentuate tiny fluctuations
in a non-natural way.

The chosen solution only consists in applying the zero-gradient method but
setting the vertical component of the fluid velocity to 0 (7 must therefore also be
forced to be 1 there).

For the bottom boundary, in case of absence of solid (in the same flow exper-
iment as in figure 2.9 for example), the same method is applied.

Initial coditions: lowering the blowing up risk

Starting a simulation directly in low viscosity mode (i.e. 7 = 0.5, Cymago low)
can make the simulation blow up in the very first steps. This phenomenon is em-
phasized when the solid landscape is uneven. It may be useful in such situations
to make the simulation run for several time steps (e.g. twice the highest domain
dimension) with “calmer” parameter (7 = 1) before tuning them to reach the
highest Reynolds numbers possible.

2.3.2 Pipe flow

The pipe flow problem may be considered as a fluid moving through two hori-
zontal planes, without influencing borders in the y—direction.

The purpose of this first experiment is to evaluate the influence of 7 and
Csmago. Figure 2.5 describes how the flow can change from laminar to turbulent,
comparing different velocity profiles with a reference [Tritton 1988, p.338-339].

Moreover, the role of the subgrid extrapolation is demonstrated in figure 2.6:
the averaged velocity profile is the same with a subgrid model as without (with a
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0.20

velocity

a) b)

Figure 2.5: The pipe flow experiment, where the averaged velocity profile is
plotted for different set of relaxation times and Smagorinski constants in a).
Compared to the qualitive separation laminar (7)/turbulent (ii) by [Tritton 1988]
in b), this experiment shows how the value of the two key parameters influence
the resulting simulation. Domain size n, x n, X n, = 120 x 3 x 30.

small relaxation time); however, looking closer at a simulation snapshot reveals
the complex structure of the flow in the subgrid model simulation.

With this experiment, with have clearly shown how the theoritical link betwen
the relaxation time and the viscosity (cf. equation (2.10)) can be pointed out.
Moreover, once a turbulent profile is reached, the subgrid model can more or less
exhibit small eddy structures.

2.3.3 Open channel

The open channel experiment is simply a fluid flow over a flat ground, with
no upper influencing boundaries; it corresponds to the situation of the wind
blowing over a flat surface. The boundary conditions are set according to those
of section 2.3.1: entry velocity is set to 0.1 on the left and right hand planes,
zero-gradient with a zero z-component on the upper layer (the “sky”), and cyclic
in the y-dimension.

The same study such as in the previous experminent could be undertaken but
would not be very interesting. However we may here focus on two characteristics
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Figure 2.6: The same experiment as in figure 2.5 detailled for two sets of param-
eters, with and without the subgrid model activated (Cypqgo > 0). Although the
averaged velocity profiles does not look very different in a), a closer look at a
flow snapshot of the vorticity isolines points out how the subgrid model in ¢) can
exhibit complex structures of the fluid, totally ignored in b).

of the flow:

e the logarithm profile that should be recovered for turbulent flows (low
enough relaxation time), according to [Tritton 1988]. These results are
displayed in figure 2.7 b);

e a closer look at the role of Cypq40, considering the vorticity field structure
near the ground for different values in figure 2.8.

From this experiment, we learn that turbulent conditions (i.e. when the
velocity profile becomes logarithmic in its lower part) are reached with 7 < 0.516.
However, the lower the relaxation, the more turbulent is the fluid (the maximum
velocity is reached at a lower altitude).

Moreover, a too high Cjpag0, such as 0.4 in this case, has an effect opposite
to that expected: instead of developping eddy structures, it only increases the
viscosity. On the other hand, the lower is the Smagorinski constant, the more
developped these structures are. However, if U440 comes to be too small, the
simulation can numerically blow up. Note that these threshold values for Cgp,q40
are valid for the simulations over a flat terrain, and are dependent on the solid
landscape configuration.
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velocity velocity

a) b)

Figure 2.7: Averaged velocity profiles for the open channel experiment. Figure
a) shows the influence of the two key paramenters, in the same way as figure 2.5
a). On b), the same profiles are displayed (for a reduced set of parameters) with
a logarithmic scale: the purpose of this features is to show how these parameters
produce log curves in their lower part, according to the theory for turbulent flows
by [Tritton 1988], where u(z) = u,log Z, where u, and 2y are two parameters.
Domain size = 120 x 3 x 30.

2.3.4 Flow around Cylinder

A classic experiment in the hydrodynamic litterature is the fluid flow perpendic-
ular to a cylinder. Despite its simplicity, this study offers a look to a large panel
of fluid behaviors when modifying the Reynolds number.

This exploration is usually done by increasing the entry velocity speed in a
wind tunnel; it can also be achieved with a numerical model by lowering the
viscosity (i.e. lowering the relaxation time and the Smagorinski constant). From
a practical point of view, we will focus on the flow shape in figure 2.9.

Results show the classical evolution between a symetric laminar flow and a
more and more disturbed Von Karman vortex street, in the same manner as in

[Tritton 1988].

2.3.5 Trenches: low Reynolds number experiments

Although reaching high Reynolds number flow remains the main motivation of
this numerical fluid model, it may also be used to simulate lower one. The
comparison has been held between numerical results and wind tunnel experiments
for flows over various shape of trenches, for which streamlines are displayed in
figure 2.10. Numerical experiments agree perfectly with indoor wind tunnel ones

by [Taneda 1979].
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Figure 2.8: In the open channel experiment, vorticity isolines for different Cpq40
(1 = 0.5). The averaged velocity profiles for these parameters do not sensibly
vary one from each others. However, a closer look at the ground level shows how
the smaller Cjyq40, the more developped the eddies.
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Figure 2.9: Vorticity isolines of fluid flows around a cylinder from our nu-
merical simulations, with different viscosity (tuned lowering 7 and seting
Csmago)- Csmago lower than 0.09 inevitably drive the simulation into a nu-
merical blowing up.The lowest figure shows the same experiment for a much
longer tunnel, and the long range development of a Von Karman vortex street
[Taneda 1979, Sumer et Fredsge 1997]. Domain size for the eight upper figures
150 x 3 x 40; for the lowest one 500 x 3 x 50.
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Streamlines or streaklines?

The mix between both representations of fluid velocity fields has often been done.
The opportunity is given here to make the distinction.

Both are the representation of the trajectories of a particles following the
fluid flow. On the one hand, for streamlines, these particles are moving over
a “spapshot” fluid velocity field (the numerical simulation is stopped, then the
streamline computed, for an easier post-experimental rendering); on the other
hand, for streaklines, the particles are released and are driven by the time-evolving
fluid flow (this can more easily be achieved in wind tunnel experiment, where
particle can for example be smoke released at different tunnel locations and drifted
by the fluid).

For laminar flows, both streamlines and streaklines will give the same results
as the flow is stationary. But for non-steady flows, the visual results will not be
the same.



34 CHAPTER 2. THE FLUID MODEL

b) d)

Figure 2.10: Fluid streamlines over trenches of different shapes; comparison be-
tween an indoor wind tunnel at Reynold number = 1.2 x 102 by [Taneda 1979]
(upper results) and numerical output of our model (7 = 1). For every trench, h
is the height, and [ the length; a) [/h = 0.5; b) I[/h =1; ¢) I/h = 2; d) [/h = 3.
Domain size = 150 x 3 x 70.
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Figure 2.11: Velocity isolines around a full fence as obtained in simulations.
The six upper figures are snapshots, every 1000 time steps, with very different
instantaneous flow configurations. The lower one shows the averaged flow over
50 samples (every 1000 steps).

These last three experiments are more dedicated to the motivation of the
current work: modelling a flow similar to a wind strong enough to transport
snow particle around a structure.

2.3.6 Flow around a fence and hill

As this situation is often found in reality, we have faced our model to indoor exper-

iment of flow around a fence in front of hills of different shapes by [Castelle et al. 1992].

The results presented in this reference work are averaged measurments of
the flow field, but our model can produce quite developed turbulent flows (see
figure 2.11). We have therefore averaged numerical output over several time
steps to obtain a mean flow representation, which coincide very well with the
cited work, in term of fluid velocity isolines (figure 2.12).

The flow structure around fences windwards slopes with different steepness
is well recovered and will allow us to later study the particles transport and
deposition around such structures.
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Figure 2.12: Velocity isolines around a full fence and a hill. Our numerical aver-
aged results (cf. figure2.11) are compared with indoor wind tunnel experiments
by [Castelle et al. 1992]. In the experimental results, ony some isolines (relatively
to the entry velocity) are plotted; in the numerical one, isolines are plotted every
10% of the entry velocity. The comparison between both results, focusing on the
fluid flow around the ground in the area ranging from the fence to the top of the
hill is good, as the influence of the obstacle is correctly caught on these various
configurations. 7 = 0.5, Csmago = 0.15, domain size=150 x 3 x 60.
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2.3.7 Porous fences and bottom gaps

For outdoor works, it has been shown that efficiency of fence snow storage is
increased by adding a ground clearance under the fence or using porous fences, in
order to decrease the turbulence in the low velocity area leeward the fence. We
therefore have tested these features with several parameters and compared them
with litterature results:

e Bottom gaps: in figure 2.13, numerical simulations outputs are displayed
for various bottom gap sizes. The average flow measurements show how
the velocity is lowered leeward the obstacles, meanwhile flow snapshots
reveals how the eddy activity is decreased at the ground level (this will be
important to lower the erosion leewards the fence, thus to increase the snow
storage efficiency).

e Porous fences: as indicated in section 2.3.1, a porous site can be modelled
as a site on which particles bounce back only with probability ¢¢. In the
same manner as for the bottom gap fences, averaged and instant velocity
fields are displayed in figure 2.14 for different porosities; moreover, they can
be qualitatively compared to results from litterature in figure 2.15. How-
ever, the probability ¢, is not directly the real porosity modelled and some
calibrations have been undertaken comparing horizontal and vertical veloc-
ity profiles with indoor wind tunnel experiments in figures 2.16 and 2.17).

For both kind of works, the numerical model catches the effect of the modi-
fications from the full fence. However, in outdoor constructions, both setting a
ground clearance or porosity involve small scale modifications: as they are too
small to be put as-is directly in a simulation (due to the lattice cell resolution),
some calibrations have had to be undertaken.

2.4 Summary

The purpose of this chapter was to present the fluid model used in this work,
from several aspects:

1. Introducing the model, its evolution from the first stages up to recent de-
velopments. There is no original research there, as every features can be
found in literature or even in complete state-of-the-art review articles.

2. However, considering the lattice domain as a virtual wind tunnel, original
solutions had to be developed, mainly for boundary conditions. Moreover,
the parameter space had to be explored to recover situations found in the
literature.
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Figure 2.13: bottom gap fence experiments. For different ground clearance (1/9,
2/9 and 3/9 from top to bottom). On the left hand column, the averaged velocity
field has been measured, while on the right hand side, a typical velocity isolines
snapshots is displayed for each gap height. We can observe on the snapshots how
turbulence at the ground level is lowered when the gap is larger, increasing the
efficiency of the work in term of snow storage.
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Figure 2.14: experiments with fences of different porosities (¢; = 0.,0.9,0.95).
Isolines are plotted (snapshots on the right hand side and averaged results on
the left hand one) and can be compared with those of figure 2.15, showing how
the average leewards eddy is avoided, and the velocity smoothly reduced at the
ground level.

N\ \\ \ \
Figure 2.15: fluid streamlines on a full fence and on a ¢ = 50% fence by

[Raine et Stevenson 1977].
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Figure 2.16: horizontal velocity profiles are measured at various locations, lee-
wards fences (at positions x = 0.5H, x = H, x = 1.5H ... where H is the fence
height). Experiments have been achieved for four different porosities. Numeri-
cal experiments results are displayed on the upper part of the figure (numerical
porosity is represented by ¢ and the height in respect to the fence height by z/H)
and wind tunnel results from [Lee 1998] on the lower part (porosity is €, and the

height y/H, and the Reynolds number is 10%).
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Figure 2.17: in the very same manner as in figure 2.16, vertical velocity profiles
are plotted for both numerical and wind tunnel experiments.

3. Numerical experiments have been ran, focusing on turbulent flows in a wide
range of situations, from theorical cases to flow around outdoor structures.

As a conclusion, we have shown in this chapter how lattice models are well
suited to model turbulent flows in various situations and can be considered as an
alternative to classical models. Moreover, as they are based on regular grid, local
computations, they easily handle time dependent solid configuration. This main
feature will be a key point in the modelling of solid particle transport, deposition

and erosion.
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Chapter 3

Solid Particles Model

3.1 Basics mechanisms

Classical approaches to model solid particles behavior under the action of a fluid
field can historically be split among two methods, roughly:

e The Eulerian one, where, on each cell of a domain grid, density and other
parameters of the solid phase are averaged. The model is therefore gov-
erned by equations stating (explicitly or implicitly) the exchanges between
adjacent cells.

e The Lagrangian method, modeling individually a set of particles (and track-
ing their exact positions, rotation speeds ... ). These solid particles interact
with the fluid (which may itself be modeled through an Eulerian approach)
and between each other with mechanisms similar to molecular dynamics.
This later method better suits problems with smaller amounts of particles,
and offers greater opportunities to directly model physical laws concerning
the individual particles.

From this first point of view, the cellular automata approach for the solid
phase lies somewhere between both, as on the one hand, the domain is decom-
posed in cells and there is no information of exactly where, inside a cell, a particle
should be. On the other hand, particles are indivisible and can be individually
tracked in the Lagrangian way.

3.1.1 Notations

With the same approach as in section 2.1.1, we represent the solid particles as
quantities evolving synchronously and discretly over the same lattice I'. At time ¢,
on site r, the number of particles traveling with velocity c; is noted p;(r,?) € N,
and po(r,t) is the number of particles remaining on the site. Contrary to the
lattice Boltzmann approach (see section 2.1.2), p; are integer values, therefore the

43
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exclusion principle is not taken into account (several particles can be streamed
along a single lattice link) and the particles are represented as discrete variables.
Thus, we can define the local particle density:

pp(r,t) = Z pi(r, 1) (3.1)

And the particle flux:

Jp(r, 1) = Zpi(rat)ci (3.2)

where ¢ is the number of lattice cell neighbors. This number can be different
than gf, the number of links in the fluid model: for example, a three dimensional
fluid model D3Q19 needs only the 18 neigbors at distance 1 and /2 when a cell
could also be linked to neighbors at distance v/3, letting ¢ = 26.

From an implementation point of view, the evolution from p;(r,t) to p;(r +
c;,t + 1) would be too heavy to express it on one stage. We may therefore use
a temporary variable p((r,t), collecting all the contributions throughout the
different steps of the particle distribution evolution algorithm, for particles from
r aiming to be streamed towards r + c;.

For these particles, we may now define transport mechanisms, 7.e. models for
aeolian motion, deposition and erosion, as well as stating domain boundary and
input conditions.

3.1.2 Particle motion

On the site r, at time ¢, a particle may follow the fluid velocity u;(r,t) as defined
in equation 2.4 plus a falling velocity (taking into account gravity force) uys,; to
fulfill:

J;D(r’ t) = pp(r’ t) (uf(r7 t) + ufall) ) (3'3)

where the parameter uys,; can be calibrated through its ratio versus ufco (this
ratio can be easily extracted from field experiments).

Following exactly such a law would violate the lattice principle stating that
particle must remains on the lattice nodes. The solutions presented here are
probabilistic methods that will satisfy (3.3) on average and minimize the diffusion.

D =1 case

The one-dimensional case is rather simple. As shown in figure 3.1, the ideal
position for a particle would be r 4 (uys 4+ usq;) (we may define & = [uy +ugqyl).
As the position is off lattice, we propose a probabilistic algorithm:
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r+co r r+c;

Figure 3.1: over a one dimensional lattice, a particle should follow the fluid
velocity uy plus an external velocity uy,;. Therefore, it jumps from r to one of
its neighbors (r+c¢; or r +co, depending on which one uy + uy,; points towards)
with probability &, = |us + uy.| and rest on r with probability (1 —&,).

e the direction of motion depends on the sign of uy + usay
e the particle moves with probability &,, and rests with probability (1 — &,)

This algorithm can be staightforwardly implemented, and the mean position will
trivially be the right one. We will see later how to manage efficiently the situation
where many particles are to be dispatched from the same site.

D =2 case

The technique used is about the same as the previous one, based on a proba-
bilistic spread of the particle from r to its neighbors. The first stage is to define
which quadrant the particle is leading towards (north-east, north-west, south-
west or south-east); this first decision is only based on the sign of the z— and
y—components of uy + uygy.

Then, the probabilities of the horizontal and vertical motions can be defined
as & = |uyx + U x| and & = |uyy + Usauy| (Where v is the x-component of
vector v). Therefore, the probabilities of resting or reaching each of the three
neighbors in the designated quadrant are (see figure 3.2):

moving along the diagonal £2€y
moving to the x-neighbor &(1-&)
moving to the y-neighbor &(1-&)
resting (1-&)(1-&)

Trajectory error estimation

A deviation from the exact Lagrangian path of the particle is intrinsic to such an
approach. For simplification purpose, we will suppose here that the vector uy +
Uy, points north-eastwards. We shall now focus on the probabilistic behavior of
the algorithm.
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Figure 3.2: on a two-dimensional square lattice, once the right quadrant has
been defined (in this particular case, the north-east one), the particle can be
randomly spread among four possible neighbors. The probabilities for these four
destinations are combinations of &, and &,, where the probability of moving to
the site r + co is wy = £,§,, tor+ ¢1 3, w13 = &y(1 — &, 2), and the probability
to remain on site r is wy = (1 — &) (1 — &,).

The averaged position is the right one, as:

s0-6)(5) +&5 (1) *o0 e ;) 010 -8) () = ()

w1 w2 w3 wo

«(c)

Its maximum is realized when &, = &, = 1/2. Averaging over &, and &, as the

The mean Euclidean deviation is:

3

0p(Esr &) = Z

(3.5)

transport algorithm is iterated n times. Thus, az(,n) varies as or a random walk
(n independent trials) around the average position:

1 p1
\/ﬁ/ / 0p(€x, &y)dExdEy ~ 0.5214/n (3.6)
0o Jo
and the integral term is the mean diffusion coefficient.

The triangular approach

Instead of spreading a particle from r among four sites, another technique can
also be imagined. Rather than determining the quadrant in which the particle
should go, we can restrain it to a triangle. In the case proposed in figure 3.2, the
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Figure 3.3: to compare the three- and four-neighbor spreading algorithms,
0p(&z, &y) — 05 (&xs &y), from equations (3.6) and (3.8) is displayed here with its iso-
lines. Where this difference is positive, i.e. (&,&,) € [0,3] x [0, 2] U[3, 1] x [3,1],
the later one is the best (as the mean Euclidean error is lower).

particle should only be spread between sites r, r + ¢; and r + c5. The probability
associated with these three positions, namely wj, w] and w), should therefore be
defined to fulfill wic, +whey = (uf+uyqy) and wj+w) +w) = 1 (the ideal position
is therefore the geometrical center of mass of the weighted triangle):

w6 =1- gza wll = fz - gy: wé =1- gz (37)

The averaged position is the expected one, and the mean Euclidean deviation is

. (fm)
] gy
It is found that the mean Euclidean deviation (or the mean diffusion coefficient),

in the sense of (3.6), is approximatively 0.518.

2

O-;(fwa &) = Z w;

1=0

‘ (3.8)

The best approach?

c; — (gz)H At the first

glance the second one appears to be the best, as a particle has less opportunities
to diffuse away from its path, and the mean error is lower (0.518 < 0.521). But
a closer look at the difference between o, and o, for each (£;,§,), as displayed in

The finest approach is the one which minimize ), w,-‘
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Figure 3.4: particle distributions when released from a point source and subject
to a circular velocity field. The exact trajectory should therefore be a circle.
The O represent particles following the four-neighbor algorithm, and A particles
following the three-neighbors one. The figure shows, in agreement with theoretical
predictions, that the first method diffuses slightly more than the second one.

figure 3.3, shows that the advantage of the first one is not true for every (&;,&,).
Therefore, a better solution would be to choose the three-neighbors spreading
method where (&;,&,) € [0,2] x [0,2] U [3,1] x [3,1], and the four-neighbor one
elsewhere. Anyway, although the difference between both methods is sensible (as
shown in figure 3.4), it is weak (< 10%), and from a practical point of view, may
be neglected.

A more general optimal method for the square lattice is possible: given (&;,&,),
we must determine @y, @y, Wy and w3, optimizing the system:

N 1 the sum of probability is equal to 1
=& the average z-position is &,
. &y the average y-position is &, (3.9)

> ¢
where Z(‘DZ c, — < w)
i=0 Sy

Finally, it is interesting to note that the hexagonal lattice, where an approach
similar to the triangle one can be applied, produces less diffusion as the mean
Euclidean error, in the sense of (3.6), is as low as 0.25. But the hexagonal lattice
offers less advantages from a practical point of view and cannot be extended to
the third dimension.

oo -
O
— = =
(R
>

‘ is minimized
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Figure 3.5: For two 2D square lattice of side size I' = 50 and [' = 500, particles
are launched at the origin and submited during 1.2 x I' time steps to a velocity
field equal to (0.5,0.25). The exact position is therefore (.6T",.3T"). This is the
average computed position for both resolutions, however, for the finest resolution
(I' = 500), the standard deviation is smaller.

The lattice resolution

The lattice is a regular discretization of the modelled world. Therefore, the reso-
lution of this discretizazion influences the precision of the computed trajectories.
As explained in equation 3.6, the mean Euclidian error for a trajectory of n
steps varies as y/n times a standard error depending on the chosen distribution
method. If the lattice resolution is refined by a factor v, the same relative trajec-
tory is covered in yn steps, thus the error is \/yn times the same standard error.
However, this Eucilidian error is defined versus the size of a cell, and the refined
cell is v times smaller. Therefore, the relative error varies as \/yn/y = y/n/7.

In conclusion, we can say that refining the lattice resolution by a factor y
(thus multiplying by ¢ the number of lattice cells, thus by v?*! the number of
time steps needed for the same trajectory computation) improves the precision
by a factor /7.

This improvement is displayed for a 2D case in figure 3.5. In this example,
refining by a factor 10 the precision of the lattice for the same simulation results
in getting 1000 times longer simulations and decreasing the standard deviation
from 0.071 to 0.022 (i.e. a 3.23 ~ /10 finer precision).

An “exact” method

A solution to drastically lower the trajectory error is to follow individually each
particle, in a Lagrangian way, throughout the domain. We have tested this solu-
tion but, as it increases the computational load too much, it has been abandoned.
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Figure 3.6: on a three dimensional lattice, once the right sector has been chosen,
the particle can be randomly spread among 8 possible neihgors. The probabilities
for these eight destinations are combinations of &;, §, and &,.

D = 3 case

The method selected for the computations is a direct extension of the above
square D = 2 method. The three canonical components of uy + us,; give three
probabilities &;, &, and &, of moving among the x—, the y— or the z—axis. We
can therefore extract the probability:

wo = (1=&)(1—-&)(1-&)
Wazy = &ay&s
Wyz = gygz — Wayz
Wz = &a&s — Waye
Way = &a€y — Wayz
Wy = &g — Way — Waz — Waye
Wy = &y — Way — Wyz — Wayz

Wy = gz T Wy — Wyy — Wayz

(3.10)

where, by example, w,, is the probability of moving along the z and z directions,
but not along the y one (the sign of the move depends only on the signs of the
vector uy + uysqy respective components).

The distribution algorithm

Once the w; are known, we must build an algorithm to dispatch the particles
from r among its neighbor r + ¢; with probability w;. If the number of particles
pp(r, t) is small, the first solution is, foreach particle, to randomly draw a direction
according to the w;, as shown in algorithm 3.1.1.

Unfortunately, such a process can become tedious if p,(r,t) is too large. It can
therefore be less expensive, in term of computation time, to handle a binomial
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distributed variable, namely B(n, p), representing the number of successful draw-
ings within n trials, each of them with probability p of success. For large enough
n (> 0s ~ 20), B(n,p) can directly be extracted from a Gaussian distributed
variable N'(0,1) in one step [Knuth 1969]. Therefore, an improvement of the
above algorithm can be proposed in 3.1.2.

Increasing the transport efficiency

If the fluid field uy(r,t) was steady (i.e. us(r,t) = us(r, o), Vt > o), we could
applied a time optimization to the above methods. For example, if the maximum
fluid velocity |uy(r)| over the r was u,,, < 0.1, we would be able to save a factor
10 in term of time steps for particle motion, when, instead of taking &;/,/, =
(W xfy/a + Wsatix/y/a), SeUHNG Eayje = 10 (Wrsyy/m + Wsatixsy/z)-

From a more general point of view, if we can extrapolate a maximum fluid ve-
locity (depending on uepy, the landscape shape), we can therefore define a parti-
cle motion efficiency €, = 1/ max,; uy(r, ), and then take &,/ = ¢, (uf x/y/z T Ufa x/y/z).
The result of this method is to uniformly (over the simulation domain and time)
increase by a factor €, the moving particle flux, and to reach sooner the end of
the simulation.

However, a problem arises if max,; us(r,?) is under-estimated, as one of &,
&y, or &, could once be greater than 1. In only this case, ¢.e. where &4 =
max (&5, &y,&:) > 1, to avoid any probability greater than 1, but to keep the
right direction of motion, we re-balance them: & < &/&maz, & — &y/Emass

gz — gz/é-mam-

In this section, we have seen how to model aeolian transport of solid particles over
a lattice, without splitting it among different phenomenon (creeping, saltation,
suspension). However, we have not yet model deposition and erosion. Both
algorithms presented in the folowing subsections seem rather simplistic, but they
have shown to be enough to recover some interesting results.

3.1.3 Particle deposition

As defined in section 2.1.1, s(r,t) is a boolean value indicating if the site r, at
time ¢, is solid. Therefore, if s(r + ¢;, t) is true, the particles directed from r in
direction c; cannot proceed as they would hit a wall. The solution is therefore to
freeze them, and to increment consequently the local number of frozen particles
Pfrz(r). Once the number of frozen particles exceeds a given threshold 6y,,, the
site is solidified. This procedure is expressed in algorithm 3.1.3, and displayed in
figure 3.7.

From a practical point a view, if 64, is too small, unrealistic deposit can build
up (such as one site wide particle piles or arches). Meanwhile, setting a larger
8. (2 5) averages the deposit and naturally avoids these model artifacts. The
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Algorithm 3.1.1 a sequential particle distribution. X'([0,1]) is a random vari-
able uniformly distributed in [0, 1].
do i =1, p,(r,1)
T « X([0,1])
k+«+0
do while(m > wy)
T T — Wg
k< k+1
end do
p®(r,t) < p®(r,t) +1
end do

Algorithm 3.1.2 A faster particle re-direction process with binomial distributed
drawings.
p= ,Op(l', t)
E+0
do while (p > 0p)
!B eztracted from N(0,1)
6 + B(p, w§)
p&(r,t) 0
p—p—20
!w; for remaining directions must sum to 1
W Y s Wi
doi=¢+41,¢q
W; < w,-/d)
end do
E+—E&+1
end do

!not enough particle to extract B directly anymore
!the p remaining particles must be redirected individually
doi1=1,p
7« x([0,1])
k<&
do while(m > wy)
T T — Wy
k« k+1
end do
p®F(r,t) «+ p®(r,t) + 1
end do
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Figure 3.7: the deposition process, when two particles are leaving site r. The one
directed rightwards can proceed normally as its destination is free. Meanwhile,
the one directed downwards is heading towards a solid site; therefore, it will
have to freeze on r, and increase the local frozen number of particles. Once this
number reaches fy,,, the site r is solidified.

parameter ., is therefore a key to calibrate the “real” cell size (roughly, the
more frozen particles are needed to solidify the cell, the wider it is), and ranges
between 10 and 10* in our simulations.

A toppling process can be incorporated in this model (as it has been, in a
simple version, with the 3D model). Such a process can take into account critical
slope angles, such as described in [Dupuis et Chopard 2000a).

3.1.4 FErosion

Many features can be incorporated in the erosion process: wind velocity pro-
file characteristics [Sundsbo 1997], particle concentration in the fluid calming
down vortices thus the erosion rate [Castelle 1995], landing particles shocking
the deposit and ejecting (instantaneously or after a short delay) other parti-
cles [Martinez 1996].

We did try some of the above ideas to recover this complex phenomenon, but
the method finally kept is a large simplification of them. The idea is simply,
to release frozen particles (see previous section) with a probability (,, and to
artificially place them on the above site if it is free; then, it follows the aeolian
transport mechanism described in section 3.1.2, i.e. it will either fly away if the
velocity is high enough, or fall back to its initial position (and thus changing
nothing to the deposit).

From a practical point of view, there are two possible implementations:

e each frozen particle below a free site is ejected with probability ¢,,
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e or, if ng,,, the number of frozen particles on a site below a free site, is
large enough, B(n, () gives in one evaluation the number of particles to be
placed on the above site.

However, it is important to consider carefully the number of particle “candi-
date” to erosion. If we consider the following situations:

0. = 100

(@) (b)) (o)

Counting only the upper layer of frozen particles would make us pulling par-
ticles among 100 of them in (a) (as ff,, = 100 and there is nothing above the
solidified layer) and only among 1 in (b). This produces a severe discontinuity in
the erosion process as a totally different stock of “erodable material” is available
when situations are more or less the same in both cases.

Therefore, it appears more correct to consider as erodable all the first solidified
layer (i.e. 6y, particles) plus the frozen particles in the underneath cell.

Hence, with this later option, we may consider differently situations (a) and
(c), even if they are very close (indeed, freezing one more particle in the rightmost
situation would freeze the above site and therefore return to the same situation
as the leftmost one). The solution is therefore to consider at most 6y,, particles
as erodable ones (in fact we may consider less only if the particles are frozen
directly above a solid cell which is not built from frozen particle, but from the
initial ground configuration). This later choice is therefore equivalent to pull
particles from a constant volume equivalent to a frozen site (6, particles).

Eroding particle with eddies

It is reasonnable to erode more particles where the wind eddies are the more de-
velopped. Even if the eddies are smaller than the domain resolution scale, we have
extrapolated theire influence with the fluid BGK subgrid model in section 2.2.3.
As the local non-equilibrium momentum flux tensor has been computed in the
Smagorinski process, we may re-use it here: instead of being (straigthly) a con-
stant (,, the local erosion probability can be multiplied by the maximum value of
the non-equilibrium momentum flux tensor in the neighborhood. This idea has
been implemented only on the 3D version of our code and gave better results.
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3.1.5 Summary

In this section, we have introduced the different mechanisms, ruling locally the
solid particles evolution. These mechanisms can be tuned with several parame-
ters, mainly:

6r, | the number of particles to solidify a cell (frozen threshold
¢p | probality of erosion
Uy, | falling velocity

These parameters, together with fluid paramters and domain sizes are sum-
marized for all the 3D eperiment in table 3.1.
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Algorithm 3.1.3 Particle deposition: freezing and solidifying steps
do i=1,q // q is the number of lattice directions
// for the particle model

pf”(l‘,t-f- 1) — pf”(l', t)
if s(r +c;,t) then
Dper(t,t+ 1) = ppra(r,t + 1) + pO(x, 1)
p@(r,t) + 0
endif
enddo
if (ppro(r,t+1) > 0p,) s(r,t+1) = true
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3.2 Deposit results

The original part of this thesis is to add solid particles on a fluid using lattice
gas techniques, thus its main validation must come from a confrontation to field
results. However, the model scales (time and space) are not connected a priori
from the fictitious world to physical scales, thus only the results can eventually
give them.

Meanwhile, this lack of a priori scale connection offers the opportunity to
explore (and expect valuable results) within a wide range of situations, by tuning
different model parameters, such as the fluid viscosity, the probability of erosion
(p, the threshold number of frozen particle to solidify a site fy,,, the initial
landscape etc.

We will present, throughout this section, deposits in a very wide range of
scales and situations, and we will confront them with real results:

e ripple patterns 3.2.1,

e trench filling 3.2.2,

e particle jumps length 3.2.3,

e different fences 3.2.4,

e two tent disposals 3.2.5,

e various road configurations 3.2.6,

e several mountain crest problems 3.2.7.

3.2.1 Ripples

From sand desert dunes to bottom of the sea ripples or snow field sastrugis, ripples
grow almost everywhere (see figures 3.8 to 3.10). Within a very wide range of
conditions, solid particles are not uniformly blown over a flat area, they tend to
spontaneously self-organize in more or less regular macro-structures.

This problem is very elegantly stated: flat terrain, uniform initial conditions
and regular particle input. Nonetheless, catching this macro self-organized phe-
nomenon of ripples offers a great challenge. Classical approaches to model it are
often dedicated to this question, and the final result is generally included in the
model a priori definition [Werner et Gillespie 1993, Nishimori et Ouchi 1993a].

With the governing laws described in the previous section, ripples are not
pre-stated. Therefore their spontaneous emergence would exhibit an evidence of
validity in our model. Fortunately, in our model, ripples grow within a certain
range of model parameters, as shown in the snapshot of figure 3.11. In this section,
we will explore such results, try to show that they are not only a spurious model
artifact, and see how the phenomenon is sensible to parameters variations (height,
wavelength or ripple motion, depending on the fluid velocity, 6y, ,etc.)
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Figure 3.8: two kinds of snow ripple patterns: on the left hand picture, sastrugis
eroded from coherent snow, where saltating particles can be seen as white smoke
on the windward side (observed in Greenland); on the right hand pictures, ripples
of fresh mobile snow (observed in Antarctic by [Ousland 1997]).

Figure 3.9: in a), ripple-marks at Granges, Lancs, in sand of a somewhat tenacious
kind washed by water. In figure b) profile of twenty-four aeolian sand waves near
Helwan (Egypt), where one can note the irregular pattern of outdoor aeolian
waves. Both were observed by [Cornish 1914].
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Figure 3.10: snow ripples in a mountain field, and, on the right hand figure, a
cross section along the line 1 — 2 line. Observed by [Castelle 1995].

wind
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Figure 3.11: a snapshot of a typical deposit, after 50'000 time steps. At the
beginning of the simulation, the domain is empty and the wind (fluid) is blowing
from the left over a flat solid configuration. A solid particle input zone is set
over several lattice sites at ground level (a rectangle of one cell high and one to
ten cells in long), where the particle concentration is artificially set to 6,,. With
these border conditions, the only particles that may be a deposit must be eroded
from this input area.

wave index = wavelength /height

| |

wavelength

Figure 3.12: three basic ripple observables used in the phenomenon description.
A fourth one, the motion velocity, can be extracted from 3.13.
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time

0 500 1000

Figure 3.13: ripple deposits, with the same conditions as in figure 3.11, at different
time steps. The lowest deposit (almost empty) is the first one. The regular
translation of the patterns shows the ripple slow motion downwind. This figure
also points out that small ripples travel faster than the larger ones, and that two
ripples may merge to build a large one, as observed outdoor by [Cornish 1914].
The motion velocity of a ripple can be extracted from the slope of the line passing
by its summit at various time steps.

Field similarity

All outdoor ripples are obviously not similar to each other. Besides their shapes,
their height or wavelength (see figure 3.12) may vary. Meanwhile, the wave index
(ratio wavelength /height) provides a way to extract similarity between ripples of
different scales.

The shape of the ripple is not relevant in our 2D model presented here as we
have not set any toppling mechanisms that would have recovered correct leeward
and windward slope angles (see the similar approach by [Dupuis et Chopard 2000b]).
Therefore the major similarity can come from the wave index and the behavior
under the changing of some parameters.

Ripple motion

Sand or snow ripples (contrary to sastrugis) slowly move with the wind. The first
step in our exploration was therefore to analyze this phenomenon.

The motion is also caught by our model, as shown in figure 3.13, where the
slope of the line passing through a ripple top at various time steps gives its velocity
(the steeper the slope, the slower the ripple is). We can therefore, in figure 3.14,
compare the model ripple motion at different wind velocities compared to outdoor
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Figure 3.14: in a), plot showing sand ripples motion as a function of wind velocity
measured 4 feet above surface observed by [Sharp 1963] at Kelso Dunes. In figure
b) the same obsevation is plotted from numerical 2D simulations. The liniear fit is
not good, but the correlation betwwen ripples motion and fluid velocity appears
clearly.

measurements of sand ripples. It is interesting to note that, in both situations, the
linear regression come to zero ripple movement at wind speeds of approximatively
the half of the “interesting” range velocities (15.5 mph in the figure a), 0.06 in
our numerical case b)).

From our simulations, we can also extract a relation between a ripple size and
its motion velocity (see figure 3.15).

The wave index under-estimation

As stated in figure 3.12, the wave index of a ripple is the ratio of its wave-
length versus its height. Extensive outdoor measurements have been achieved by
[Cornish 1914] and can be summarized as:

e sand dunes averaged wave index is approximatively 18,
e snow (sand-like snow particles) one reaches 28,

e sand ripples in water average is 14; however, in some situations, it can be
as low as 6.

For each simulation, this observable can easily be measured and offers a scale-
less way to compare experiments. The numerical results, displayed in figure 3.16,
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Ripple velocity vs. surface
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Figure 3.15: plot showing the ripple motion velocity versus its size (its surface,
as the model is 2D). This graph confirms the first glance observation from plots
such as figue 3.13 that the bigger the ripple is, the slower it moves.

10

wave index

0 L L L L
0.08 0.10 0.12 0.14 0.16

fluid entry velocity

Figure 3.16: plot of the ripple wave index versus the fluid velocity; the model does
not seem to correlate fluid velocity and wave index, and little litterature exist on
this topic. In any case, the wave indexes are very low compared to outdoor ones
(but at least larger than those simulated in a wind tunnel by [Martinez 1996]).
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Figure 3.17: plots of the bed height versus the time, at varous tunnel locations.
Indoor wind tunnel results by [Martinez 1996] in a) and the same measurments
from the numerical data displayed in figure 3.13. One can note that a certain
regularity in the pattern is sooner recovered in the numerical experiment than
in the wind tunnel one. This may be explained by the lower number of ripples
developed in the latter one.

show a wave indexes shorter than aeolian outdoor recorded ones. Such low in-
dexes can be found in tidal sand ripples, also observed by [Cornish 1914].

However, this phenomenon is even more emphasized in indoor wind tunnel
experiments where the wave indexes are around 5, according to [Martinez 1996].
Therefore, the under-estimation of this factor seems to be recurent in both nu-
merical and indoor wind tunnel simulations and may be related to their too coarse
resolution of the reality.

To get larger wave-index, in the numerical model, one should lower the falling
velocity usqy to get longer flying trajectories. However, in our model, the intrinsic
diffusion generated by the aeolian transport process (see section 3.1.2) blurs the
precision of long range trajectories. Improving the precision of the trajectories
can be done at the price of a better lattice resolution. However, as displayed in
figure 3.5, a refinement of factor [ increases the precision by a factor /I but the
requirment in memory by a factor /¢ (and the computing times by a factor [%+1).

Comparison with indoor wind tunnel experiments

As related in the previous paragraph, ripples have been reproduced in indoor
wind tunnel by [Martinez 1996]. Although we compared wave indexes in both
approaches, we may also focus on the more general development of the ripple

100000



64 CHAPTER 3. SOLID PARTICLES MODEL

throughout the simulation. A temporal evolution of the phenomenon is dis-
played in figure 3.17 and some observations can be achieved, such as the particle
bed height at various locations, allowing comparisons bettween numerical model
output and indoor results.

The simplest (?) ripple model

The purpose of this thesis is not to have an exhaustive look on the existing ripple
models. However, it may be interesting to have a look at one of the simplest one
published by [Vandewalle et Galam ress|, with only particle pile height on each
position along a 1D line. Three basic rules are applied at each time step:

1. aparticle is randomly picked up and move to its rightwards neigbors (~ creep-
ing);

2. if a pile height on a site is greater than that of its leftwards neighbour plus
a threshold &, a particle is moved a given distance [ away in the rightwards
direction (~ saltation);

3. if a pile height on a site is greater than that of its rightwards neighbour plus
a threshold £, a particle moves onto its rightwards neigbor pile (~ toppling).

Stating this rules on a 1D model quickly builds small ripples increasing in size
[Vandewalle et Galam ress].

We have slightly modified this rule to get a 2D model (i.e. a 3D world).
The two first rules are kept as-is, but the “toppling” mechanism must take into
account the new dimension: instead of toppling only within the x—dimension,
a particle can also fall from a pile onto one of its neighbors perpendicularly to
the “wind” (thus in the y—dimension) if the neighbor’s pile is lower by at least
the thresold &; the direction of a topple is randomly drawn among the local
possiblities. Ripples of growing size soon develop, as displayed in figure 3.18.
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Figure 3.18: time evolution stages of the “simplest” ripple algorithm from
[Vandewalle et Galam ress| adapted to a 2D deposit. The flat deposit grow in
small ripples; the largest ones are caught by the smallest thus building an even
larger ripples and so on.
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Figure 3.19: the problem addressed here is how a trench get filled in with time.
Regular numerical deposit profile on the left can be compared with good qualita-
tive accuracy to those found in the field by [Kobayashi 1972]; however, during the
field experiment, the wind conditions were not stable, contrary to the numerical
simulation.

3.2.2 Trench

A trench filling is observed at different times, and numerical results agree very well
with outdoor measurments by [Kobayashi 1972] (see figure 3.19). It is interesting
to note that the deposit does not grow in a trivial manner: several transport
modes are involved: creeping for the left hand side deposit, saltation for the
middle “dune” growing during the first stages, and some suspension for the small
right hand side deposit. The two first modes are clearly identified in the next
experiment.

3.2.3 Particle jump length distribution

The trench experiment proposed above shows how different transport modes are
involved in particle transport and it is natural to make a step further by trying
to quantify the particle jumps length distribution This experiment was acheived
in outdoor conditions by [Kobayashi 1972] and reproduced numerically by our
model with the layout shown in figure 3.20.

Both results agree very well, as shown in figure 3.21, for different wind con-
ditions. Once again, it is interesting to note that, even if no separation into
different transport modes was explicitely specified in our model, it intrisincally
recovers reality with a good accuracy.
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Figure 3.20: in order to quantify the distribution of particle jump lengths in
the field, a device consisting in a suite of boxes aligned with the wind is set up
as displayed in the left hand side of the figure [Kobayashi 1972]. On the right
hand side is shown the same layout for a numerical experiment with the stock
of particles captured by each boxes at the end of the simulation. The first box
is digged under the ground to contain a larger amount of particles (in numerical
simulations, it is useful to get the largest amount of transported particles to
produce better statistics, when, in the field, a balance produces accurate enough
measurements).
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Figure 3.21: Density functions of particle distribution recovered in the different
boxes presented in figure 3.20. Dashed line plots show results with a wind flux
approximatively twice as low as for the solid lines results (in fact, the falling speed
was multiplied by two in the numerical experiment). Thicker lines plot results
from the numerical experiments, when thiner ones are extracted from field data
[Kobayashi 1972].
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3.2.4 Fences

The study of deposits around fences have been of an important practical interest
as different kind of fences (full, porous - with horizontal or vertical planks -, with
or without bottom gap) are used along roads or railways at many places.

We present in figure 3.22 two deposits, with or without a ground clearance to
confirm the well known principle that a ground clearance lengthens the deposits
[Castelle et al. 1992, Tabler 1980a].

In the field, the influence of a barrier is obviously of a finite distance. In the
same manner, the deposits presented here are “steady” ones. It means that there
are neither snapshots of time dependent deposits (that will looks different -and
less presentable- after a some more computational time steps, like if it was to be
growing in length forever) nor their length is imposed (thus shortened) by the
domain size (it is the case, if doubling the tunnel length, with the same fence size,
one obtains a longer deposit, proving the influence of the bondary). However,
the deposit shape might be slightly oscillating around an average shape (in the
order of 10% of the deposit length)

However, the length of a stable deposit is very dependent on the parameter
choice, mainly the erosion probability (,, compared to all the other simulations
presented here. This can be explained by the fact that to recover a finite size
deposit of size 20 times the fence height, we must model a very gentle leewards
slope, based on a discrete regular lattice: this leads to a delicate balance.

Moreover, the windward small deposit often seen in the literature can easily be
caught in many simulations. However, once we focus on getting a stable deposit,
the parameter choice makes it vanishing.

A larger fence deposit is proposed in figure 3.23. The length of the deposit is
only 6 to 7 times the height of the fence, but this is due to the relatively little
height of the fence in regards to the tunnel cross-section (3 cells versus 15.)

3.2.5 Tents

As any obstacle raising in a snow drifting environment, tents soon get buried.
If two tents are built pependicularly to the wind direction, a leeward deposit
grows. A field observation and simultations (for two configurations) are shown
in figure 3.24.

A better set up is proposed and should improve the situation, lowering the
load of snow on the structures (however, confrontation with the field lacks and
new experiments should be undertaken ... ).
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Full fence

Bottom gap fence

Figure 3.22: stable deposits (i.e. time stationary, not too much influenced by
boundary conditions) around two type of fences. When a clearance is made under
the fence and other parameters unchanged, the deposit shape is lengthened: it
ranges here between 25 times (full fence) and 30 (bottom gap) the fence height,
in good agreement with [Castelle et al. 1992]. This can be explained by two
intuitive reasons: the gap prevent the fence from being buried and therefore
loose its efficiency; the wind pattern is modified, as stated in figure 2.13 and is
slowed down with a lower eddy activity.

Figure 3.23: a real 3D deposit around a full fence, viewed from above; the
darker the gray, the higher the deposit. The length of the snowdrift is too small,
due to the small heigth of the fence, but the shape is in good agreement with
[Castelle et al. 1992]. Moreover, some side deposits appear at some times at
the leewards end of the snowdrift, in the same manner as in outdoor simulation
around tents (cf figure 3.24). Domain size is 93 x 20 x 15, and fence is only 3 site
high but is enough to recover the deposit!
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Deposit around two tents in the Arctic. Same patterns happen
every days when the the tents are set up perpendiculary to the
prevailing wind, as snow falls are rare, but drifting is continuous.

Two layouts of tents (same height, but one is thiner than the
other) produces very different deposits patterns (view from above,
wind blows from left, and the darker the figure, the higher the
deposit - except for the two tents locations). The upper situation
can be compared to the previous observation where the main de-
posit grows in between the tents, and both tents are buried on the
leeward side; in the lower figure, another layout (both tents are
aligned perpendiculary to the wind fluz) produces a very different
deposit shape, where the leeward snowdrift is thiner and longer,
the smaller tent does not get buried and a small windward snow-
drift grows.

Figure 3.24: snow deposit around two tents, set perpendiculary to the wind, in a
flat area. Beside observations, simulations have been ran to determine the best

possible set up.
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3.2.6 Roads

Roads, as communication links, are of a crucial importance. Either alpine or
nordic countries encounter tough problems in keeping these links open during
the whole winter. More than snow fall (localized in time and regular in space),
snowdrifts can close a road within a few hours, when several spots are buried
because of their particular ground configuration in regards to the prevailing winds.

On flat spots, fences are erected parallel to the road at some distance (ap-
proximatively 20 times the fence height [Castelle et al. 1992]). However, many
situations exist where the landscape appears to be more complicated, but the
road has anyway to be protected.

For two of these situations, extracted from [Castelle et al. 1992], comparisons
where made between numerical simulations and field observations. Moreover,
some adaptations proposed in the reference have been modelled, as well as new
propositions imagined:

1. road follows a hill side, wind blows downwards and builds a snow drift
(figure 3.25); the slope windwards the road can be flattened , or different
slanted screens more or less cleverly disposed ;

2. same situation, but the wind blows upwards the slope; initial deposit (fig-
ure 3.26) can be avoided flattening the leeward slope, but situation can be
worsen building a slanted screen, with the emergence of a higher drift.

In the first case, a very good agreement is observed with literature results.
The numerical model even allows to extrapolate the deposit building different
kinfds of works. In the second case, the recovery of the small drift on the right
side of the road is less clear in the numerical simulation; even in the reference,
this drift is very thin, and may not be always observed in reality. Anyway, the
deposit in the ditch is lightened when the leewards slope is flattened, in the same
manner as in reality.
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ROUTE

In both outdoor observation (left) and simulation (right), a snow
drift blocking the road is present. The base landscape is of uni-
form gray, the darker a deposit cell is, the more particles are
frozen on it.

Flatening the windward slope produces, either in the field or in the
simulations, a totally different deposit, as the drift is cancelled.
Howewver, this method can be hard to realize, either for practical
or financial considerations.

Two slanted screens scenarios are proposed. In the first case, the
ditch drift is translated to the middle of the road; in the second
case, a longer screen seems to avoid the problem.

Figure 3.25: the road follows a hill side and wind blows downwards (from the left
hand side), and avoiding the deposit emerging in the upper figures is the challenge
[Castelle et al. 1992]. Simulations agree very well with outdoor observations and
are used to propose more or less successful works.
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The snwow drift, observed outdoor is partially recovered by the
numerical simulation.

The situation can be solved flattening the leewards slope. Obser-
vations and numerical output agree.

A way to avoid the drift coud be, at the first glance, setting up
such a device as presented in this figure. However, according to
the numerical simulations, the effect is unconvincing, as a non
negligible drift grows by the middle of the road (the amount of
frozen particles at this location is higher than in central simula-
tion, as the gray is darker).

Figure 3.26: the road follows a hill side and wind blows upwards (from left hand
side). The purpose of the experiments is to avoid the drift on the right part of
the road.
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WIND

Figure 3.27: deposit evolution during the first two months of winter 80-81 on the
Schwarzhorngrat. The monotonuous growth of this deposit (the same basic pat-
tern is respected, even if the total amount of deposited material increases) makes
this situation an interesting case study (if conditions are so irregular that the
deposit grows in a totally disorganized way, predictions could hardly be made).

3.2.7 Mountains crests

At a higher scale, we may consider deposit problems around mountain crests. We
have studied a litterature case, the Schwarzhorngrat from [F6hn et Meister 1983]
in eastern Switzerland, and a more practical case in La Marlennaz (Valais, swiss
Alps), where defence works are currently built.

Schwarzhorngrat

Although other crest cases exist in litterature, analysing a situation after long
period often appear to be very irregular (many different conditions have ruled the
system, different winds, snow falls with no wind, freezing of the upper deposit
layer ... ). From these points of view, the 1981 Schwarhorngrat study (recorded
by [Féhn et Meister 1983]) offers three advantages:

1. the prevailing wind blows perpendiculary to the crest;

2. the deposit growth have been monotonuous during the recoding period, as
displayed in figure 3.27;

3. measurments along three different profiles of the same crest (with steep,
medium and gentle slopes) have been recorded, thus showing three deposits
under the same input conditions.

For these reasons, we have choosen this case study. Our model parameters
were calibrated on the middle slope profile, and ran with the same condition on
the two other ones. Compared to the fence deposit parameters, the threshold
number of frozen particle to solidfy a site, 8y,,, has increased from 102 up to 10%,
thus increasing the “actual size” of a lattice cell. From the fluid point of view,
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Figure 3.28: numerical results over three profiles at different positions along
the Schwarzgrat crest, on the left, compared to field recorded measurments by
[F6hn et Meister 1983] after the two first months of winter 80-81 on the right.
Our model was calibrated on the middle slope profile, and ran with the same
parameters on the two other ones. Space scale is given by the computer resources
availability (i.e. the smallest possible cell size, but limited by both memory and
time), but time scale is more difficult to approximate a priori: therefore, the
simulation shall be stopped when the total amount of deposited snow reaches the
experimental reference one. Anyway, as displayed in figure 3.27, the deposit in
this case grows monotonuously, developing a basic pattern; it is this pattern to
be recovered by the numerical model. To this respect, the results shown are in
good agreement with reality.

Csmago has been decreased to its lowest value possible without a numerical blow
up (Cymago Was different for the three profiles, as it can be tuned lower when the
profile is smoother).

The results of the numerical model over the three crests are confronted to
outdoor observations in figure 3.28 with a very good agreement.

La Marlennaz

A more challenging situation occurs in the Marlennaz case, as no deposit records
exist. However, in this site situated in the swiss Alps near the Verbier ski resort,
different defense works are tested in real conditions by the Canton du Valais
(service des foréts et du paysage). When nothing is done, a cornice grows at
the crest level and later trigger avalanches that may cause serious damages to
habitations, as it has already happened in the past.

To retain the mantle of snow, avalanche barriers have traditionnaly been built
on the whole avalanche release slope, for more than one century. However, another
approach (at least a complementary one) can be undertaken by trying to fight
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Figure 3.29: two different types of defense works, aimed at modifying the wind
pattern and therefore the snow deposit at the crest location. Foreground, a
slanted screen accelerates the wind parallel to the leeward slope and prevent the
deposit. In the middle distance, the wind-veering will higher the wind turbulence
leewards and disorganize its action in the area (the widen shape is important as
it also accelerates the wind at the ground level).

against the cornice growing. Instead of regular mining with explosive during the
whole winter, the idea is to build works in order to modify cleverly the wind flux,
such as:

e fences, to store snow windwards the crest,

e slanted screens', to acclerate the wind parallel to the slope, thus breaking
the cornice,

e wind-veerings, vertical crossbars, to alter the wind flux pattern.

The question is therefore to place these works in the most efficient position
to avoid the emergence of the cornice, and to see how side effects (growing of an
important wind slab, for example) can emerge.

Therefore, it was a natural application (at least a challenge) for our numerical
model. Simulations were performed over two landcape profile, called profiles 1
and 3.

Marlennaz - profile 1

In the profile 1 situation, where a slanted screen has already been built, simu-
lations were ran with and without the work: snow deposits (figure 3.30), wind
vorticity (the wind velocity field rotational, in figure 3.31) and flying particle

! The french term is “toit buse”, something like “shaft roof”, and the term “slanted screen”
is a personal traduction. In the same manner, “wind-veering” is an approximative translation
for “vire-vent”.
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Figure 3.30: La Marlennaz - profile 1. Computed deposits the crest are plotted
every 6000 time steps, with (right) or without (left) a slanted screen. As observed
outdoor, the screen is efficient to limit the growing of the cornice. In such a
simulation, the lattice resolution is coarse, and cell size effects are visible (such as
the deposited particle concentration nearby each landscape stair step); however,
averaging the deposit over the z—dimension lower this model artefact.

distribution (figure 3.32) have been compared. Later, different slanted screens
angles and locations along the profile have also been tested (figure 3.33).

Marlennaz - profile 3

This profile is more challenging from two points of view:
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Figure 3.31: La Marlennaz - profile 1. Vorticity plot, where one can see the action
of the slanted screen (the darker, the higher the vorticity).

1. the interesting part of the profile is the main slope break; however, it is
located leewards a small little crest, whose influence is hard to estimate a
PriOTE;

2. no works have yet been built (except regular avalanche barriers in the slope),
but some are planned in this area: therefore the question of what and where
to build them is of a practical importance.

The computed deposit over the naked crest is compared with two slanted
screens configurations in figure 3.34. According to the model results, a slanted
screen at the slope breaking would clearly get rid of the cornice.

3.2.8 Simulations considerations

As for a laboratory one, such a numerical wind tunnel, as presented in this thesis,
requires some skills from the user. Indeed, the model is a fictitious representation
of the real world, thus some transposition rules might be applied, such as the
Iversen criterion in indoor wind tunnel [Castelle 1995].

On the one hand, these skills shall be generic throughout the variety of prob-
lem faced, as a garanty to tackle a new situation (i.e. when no calibrations
had previously be made) with the best chances of success . On the other hand,
these skills are some recipes developped by the user, mainly to remain in the
field of credibility (as most of the model parameters are not quantitatively linked
to physical values, it is not obvious to determinate their interesting ranges of
application). To “understand” such a numerical model behavior, it was very
comfortable to rely on a 2D simulator with a fully interactive interface, such as
presented in figure B.1 before exploring the 3D world.

3.3 Conclusions

In this chapter, we have presented the results, thus the validation of our numerical
model. We have confronted it a very wide range of problems, which are tradi-
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Figure 3.32: La Marlennaz - profile 1. Typical snapshot of the flying particle
concentration around the crest. In the left hand experiment, the presence of
a well established vortex at the slope break location induces the cornice, when
the slanted screen (right figure) accelerates the wind and disorganize this vortex.
However, in this latter case, the higher concentration of particles at the ground
level increase the risk for a wind slab to occur, mainly by secondary slope breaks.

(¢)

(b)

(c) oy

Figure 3.33: La Marlennaz - profile 1. Computed deposits with different slanted
screen configurations. Obviously the first two are either not enough or too much
inclined ((a) and (b)), but the aim of the simulation is to show how the model
reacts under such conditions and how the most efficient angle could have been
predicted (anyway, it was initially set into the most intuitive configuration). Ex-
periment (c) is more interesting as, from a practical point of view, a slanted
screen could have been set up in such a configuration (i.e. upper in the slope, at
the level of the first slope break): it would have breaken the cornice, but have
generated a inopportune slab down the slope as a side effect.
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Figure 3.34: La Marlennaz - profile 3. Different simulated deposit over the crest
shown in the inner figure. The main depostit develops leewards the slope break-
ing, where a large cornice appears when no works are set up. With a first slanted
screen (thick solid line), it totally vanishes, but a slightly thicker slab is produced
around x = 15 meters. From the simulations (as well as from intuition), it is
not possible to get rid of the second deposits. However, it can be an interesting
information for the placing of traditionnal avalanche barriers (the actual ones are
indicated by the thick dashed lines, and as they are built from iron net, there
were not considered as modifying the wind flow).

tionnaly treated by dedicated, totally different approaches. A key features is how
the smallest, like the largest scale problems can be adressed. Ripple formation
could be caught, but so were deposit prediction around alpine crests.

The capacity of our numerical tool to answers correctly to these questions
shows how the lattice gaz technique (applying local simple rules on a fictitious
discrete world) is very well suited to the complex system of the erosion/transport
and deposition of snow by wind.

Moreover, as we will see in the following chapter, short computing times (most
of the crest and the roads problems were computed in less than fifteen minutes
on a parallel computer) allow an interactive use of the simulator. Therefore, it is
comfortable to investigate new situations, such as how variations in the landscape
(fences, slanted screens ... ) influence the deposit.



Chapter 4

Implementation

Lattice Boltzmann models for the fluid or solid particle dynamics, such as pre-
sented in the current work, are very well suited to be efficiently implemented on
a computer. Contrary to classical CFD codes, there are neither complex systems
of differencial equations (where each new component complexifies the whole sys-
tem), nor implicit iterative method involving global and expensive computations
(inverting matrix etc.).

Although the cellular automata approach is rather simple (local computation
and nearest neighbours communications on a regular array structure), we will
focus in this chapter on the differents aspects of an efficient implementation:

e high level language choice,
e program structure,
e parallelism,

e hardware.

4.1 The programming language: Fortran 90/95

In scientific and high performance computing, two major languages are currently
available. Both have proven to be built on reliable basis and are developped to
fullfill up-to-date programmers requirements in the field. We are interested in:
C++ and Fortran 90/95.

In a first subsection, we will present a short overview of both languages; we
will later show why our choice is a good one.

4.1.1 C+4+: an overview

C has emerged with the Unix operating system (and Unix has emerged with C).
Analysing the success of C would require at least a whole chapter, however, we
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can briefly state that its power, thus its success, has been due to this strong link
with Unix roots, the possibility to access virtually any features of the machine,
its ability to simply manipulate simple or complex data structures (sometimes in
ways more readable for a compiler than for a normal human being).

Designed as a high level language in the seventies, C can be more and more
considered as a low level language (a hacker language, where the best is pos-
sible, in terms of efficiency and power, as well as the worst, in terms of cryptic
sources, absence of security etc.) in regards to modern languages criterias (object
philosophy, security, software engineering). C has therefore evolved to C++.

The growing complexity of codes has forced the programmers to bypass the
slicing of a program only into procedures and to imagine more complex structures:
objects. Their major features can be summarized as:

e an object is an entity containing a data structure, but also a set of proce-
dures (methods) to manage this structure (to create, destroy, access, ma-
nipulate it);

e inheritage and genericity are two powerful concepts allowing to base objects
upon other ones (for example, an object matriz can be built, with several
tools - addition, multiplication, but also inversion, transposition - contain-
ing object specified elsewhere - either float, integer, complexr or any other
objects for which some basic methods have been defined);

e objects can be developed separately, providing a comfortable abstraction
level and facilitating the coarse grain software engineering of a large prod-
uct, i.e. maintenance and modification;

e because of this independance, an object can be (at least theoritically) re-
usable, i.e developped elsewhere, downloaded, and used “as is”.

Of course, C++ is not the only object-oriented programming language. Java, for
example, is closer to the pure object “philosophy”, but C++ takes advantage of
its C roots and is much more adapted to intensive high performance computing.

4.1.2 Fortran 90 and 95: an overview

Since Von Neumann’s UNIVAC in 1951, some scientific researchers have seen
computers as modelling tools. Once they got sick of punching cards with machine
code, they designed a higher level programming language to fullfill their needs:
massive computations, differential equations modelling, linear algebra. Fortran
was born.

Fortran IV, 64 and 77 have come to life. Nowadays, Fortran 77 is often seen by
the computer scientist community as the latest re-incarnation of a pagan divinity,
and their opinion ranges from condescendance to pure nausea. Indeed, standard
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Fortran 77 can hardly be regarded as a modern programming languages: no
dynamic memory allocation, use of labels, no data structures, no function over-
load, fixed format source code (the famous 7**-72"¢ columns), no programming
structure possible (except linear list of procedures).

However, this bad opinion can be explained (thus forgiven) as based on ig-
norance, and hard living myths. Since the begining of the nineties, the Fortran
standard has considerably evolved: Fortran 90 was synthetized (later Fotran 95,
with minor changes)’. Its major new features are:

e dynamic memory allocation;

e a program can be split into modules (see section 4.2.2 for details about
our presented program); a module contains data, functions and subrou-
tines; all the subroutines of the program using a given module will share
its ressources;

e array manipulations are intrinsic (if A, B and C are multi-dimensional
arrays, one can straightforwardly write A = 3, A = B+ C, sum(A), as well
as many intrinsic functions or subroutines);

e procedure overload (a procedure can be called with different kinds of argu-
ments; depending on these argument, a dedicated procudure will be called
at compilation time);

e structured data types, pointers;
e basic operators (+,—, <,/ = ... ) can be redefined for user data types.

Fortran 95 has only tiny modifications, mainly the suppression of some obso-
lescent features remaining from Fortran 77.

4.1.3 And the winner is ...

Fortran 90/95. The tremendous suspense was anyway already killed by the sec-
tion title.

We may now try to justify this choice, precising that the decision of program-
ming in Fortran 90 is valid for the class of problem addressed in the current work:
lattice gas models.

As stated at many different places throughout this thesis, the cellular au-
tomata method represents the simulation domain as a regular array and splits
each time step in two stages:

'As Fortran 90 handbook, one may check the very good [Metcalf et Reid 1999
by one the Fortran forum gurus, or the more pedagogical (unfortunately written in
french) [Delannoy 1997].
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e computation of the cell evolution, based on local informations (fluid and
particles densities within each lattice direction, solid configuration around
the cell);

e regular communications, with the nearest neighbors.

A natural and straight forward implementation is therefore to store the infor-
mation in a multi-dimensional array (for example 9xn xn for a BGK model D2Q9
over a n X n square domain). The language intrinsic array feature are therefore
comfortable. Moreover regular communications are also intrinsic in Fortran 90
(cshift).

Obviously, it is possible in C++ to define matriz object and methods to ma-
nipulate them in the Fortran style. However, Fortran 90 offers these features in
standard. Moreover, any computations over scalar variables (trigonometric, bit
manipulation, conversions) can be applied on arrays at no programming cost, and
many array procedures are available (spread reduction operation - assignement,
sum, maxval - globally or within a given dimension, array packing, communica-
tions).

Once again, all these features can be implemented in C++, but as they exist in
standard in Fortran, the compiler may be able to call them in the most efficient
way. Often, in comparisons between Fortran 90 and C++, it is shown how
inadequate it is to try to model object features with Fortran, and pointed out
how easily the intrinsic features of Fortran can be incorporated in C++. This is
definitely true, as Fortran 90 has never claimed to be a universal language, such
as C++, but only an efficient one in its field. And this aim has been reached

From another point of view, Fortran 90 array notation is intrinsically parallel:
when one writes A = B+ C (A, B and C are arrays), the code can easily be
parallelized by the compiler (arrays are therefore shared between several proces-
sors only with add-on compiler directives, for example with High Performance
Fortran or on a shared memory machines with OpenMP).

Last but not least, the main usage of Fortran is for intensive computations,
therefore the efficiency of compiler soon appears to be an important point on the
market for manufacturers. As the language is relatively simple, they can achieve
very good results. The simplicity of the language is also a key point, as it can be
learned rapidly and writting source code is simpler than C+4+.

C++ is by many means far more powerful than Fortran 90/95, as it can ad-
dress a much wider range of applications, and is much more suited for a high
level software engineering design of a program. However, this generality (com-
bined with some lack of security due to the C underlying layer) results in far more
complex tool. Our lattice gas problem is perfectly and very elegantly covered by
the Fortran 90 range of application, and this justify our choice 2.

2NB: a lattice gas problem can be addressed in a totally other manner with the object
approach: a cell is an object with all the local information, fluid and particle evolution are
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4.2 The program structure

Once Fortran 90 has been elected, we should present how the data is stored to
represent fluid, solid particles and solid over the domain.

The language offer the possibility of structuring the information into modules
containing:

e data,
e procedures.

Therefore, the global application can be represented as an oriented non-cyclic
graph of modules. Each subroutine, program or even module using a pre-defined
module can access its data and execute its procedures.

4.2.1 Notations

We will focus on a 3D domain of size n, X n, X n,, where n, is supposed to be the
largest dimension (this information will come to be important in the section 4.3);
we will try to present the method in the most generic way, so it can easily be
reduced to a 2D domain. Most of the variables presented here have already been
presented in the previous chapters, however we may repeat them here in a more
practical fashion, to offer a better understanding of the implementation. Some
detail enumeration may sometimes look like a tedious recipe book, however these
recipes have been extracted after many rewriting of Lattice Boltzman codes.
NB: arrays are labeled in the Fortran fashion, i.e. a(n) contains values ranging
from a(1) to a(n), and a(m:n) values from a(m) to a(n).

4.2.2 The modules

Domain module (world)

The variables depend on the lattice topology:

e d, integer: lattice dimension (3 in this case);

methods, neighbors are pointers to other cells (not necessarly regularly arranged in the computer
memory). In this approach, only cells where something is happening (not inside the solid, for
example) need to be allocated (this saves memory space at the first glance, but the extra-
information needed by each cell is not negligible). The CPU time needed for this representation
of a simple lattice Boltzmann model is twice as long as the one spent with a more classical
representation [Dupuis et Chopard 1999]. However, complex features such as load balancing
maybe implemented in a more easy way, as good object code is definitely easier to maintain
once the project has reached a certain size.
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Figure 4.1: labelling methods for 2D and 3D lattices. It is more efficient, for
manipulating data, to follow some stresses: directions 27 and 27 + 1 are opposite
to each other; vectors of norm 1 are labelled at first, then those of norm /2 and
at last /3. In the D3Q19 gas model, only directions from —1 up to 17 are used,
but solid particle densities are attached to all the 27 directions.

e ¢, integer: maximum number of neighbors for each cell in a cartesian sys-
tem: ¢ = 3¢ — 1 (as within each dimension, a vector coordinate can be one
of the 3 values —1, 0 or 1, and (0, 0,0) is not a lattice vector);

e g5, integer: number of directions for the fluid lattice (18, if we use the
D3Q19 BGK model);

e c, real(—1:q¢—1,d): where (c(i,1),c(s,2),c(i,3)) (c(i,:) with Fortran 90
notation) is the i vector of the lattice; for a further easier and more
homogeneous use of these variables, it may be useful to stress the following
tricks, displayed for 2D and 3D cases in figure 4.1:

— vector —1 (c(—1,:)) is the 0 vector (corresponding to the “resting”
particles),

— vectors # 0 are labelled from 0, so that index (¢ mod q) is a always
meaningful direction,

— in 3D, directions 27 and 2: + 1 should be opposite to each other; both
these latest techniques facilitate “bounce back” features implementa-
tion (this technique can also be used, although it is easier to label the
direction clockwise or counterclockwise),
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— the first ¢y indexes (from 0 to ¢y — 1) point towards directions of the
fluid lattice (for example in the D3@Q19 fluid model, each node has 18
neighbors while the underlying 3D lattice offers 26 of them); therefore
all the local momentum and mass sums can be performed only on
those indexes (see equations 2.3 and s 2.4);

® Sing, integer(d, —1:1,3%71): where, for example the indexes {Sina(2, —1,%)},_; 341
are the labels of the vectors pointing, in dimension 2 (y—dimension), to-
wards direction —1; this list representation can be built automatically
(based only on c) at once, and will be useful for the streaming procedure;
once more, it may be clever to give the priority in the list order to the fluid
lattice indexes (in the D3Q19, only 5 fluid densities are to be streamed
along each direction);

® Shitmask, integer(d, —1:1): carries the same kind of information as S;,4, but
on a different manner: the iflh bit of Spitmask (74, 1s) = 1 < ¢(ig, 1) = is < Tk
with Sing(i4,%s, k) = i4; This representation turns out to be useful when
some information on the izh bit will be related with the direction iflh. For
example in 2D, with the labeling given in figure 4.1, indexes of vectors point
in the z+ direction (dimension 1) are 0, 4 and 6: S;q(1,1) = (0,4, 6) and
Sbitmask(3, 1) =204 924426 =871,

The module world contains several procedures:

e world_init allocate all the arrays according to the domain dimensions 7,
n, and n,, and compute Sind, Spitmask €tc. from informations contained in
the c;’s;

e and all-purpose utility functions and subroutines that can be called by any
of the following modules.

Fluid module (fluid)

Variables are split in computed fields over the lattice:

o f,real(—1:qr—1,n,, n, n,): fluid densities among each lattice link, where
f(ig, iz, 1y, iz) contains the value of f; ((is,%y,%,),t) from section 2.2.2 and
time t is the current simulation time step; we will see in section 4.3 the
reasons why we have chosen this index order, i.e. n, first (as, for example,
(ng,ny,ny, —1:qp — 1) can appear at the first glance more reasonable);

e u, real(d,n,,ny,ny): fluid velocity at each lattice node, which shall be
computed at each time step;

and user defined parameters:
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® Kuyentry, logical(d): set the sides from where to accelerate the fluid (Kuentry (1) =
fluid is accelerated from the =1 slice, Kyentry(2) = y=1 and y=n, slices,
Kuentry(3) = z=mn, slice); usually, fluid is accelerated from the entry side
(Kuentry(1) = .true.), but in some situations, it may become useful to accel-
erate it also on other borders;

® Uiy, Teal(d): velocity value to which the fluid must be forced to in the
dedicated areas defined by the previous variables (for example, to enter an
horizontal velocity with speed 0.1, we may set Uepy = (0.1,0,0));

® 7, Csmago, the relaxation time and subgrid parameters giving the fluid vis-
cosity , described in section 2.2.2.

The main procedures are:

e fluid_ init, to allocate the module arrays;

e compute_u_p, to get the local velocity vector and density for a cell, depend-
ing on the local f distribution;

e compute_f®? for the local equilibrium distribution;

e fluid stream to stream the fluid densities along the lattice links (this pro-
cedure is only several circular shift call base on the indexes defined in S;;,4
on a single process program version, but it will become more tricky on a
multi-process parallel version);

e and some utility functions, to check the total amount of particles, momen-
tum throughout the system.

Solid particles module (part)

In the same manner, we may also split the variables described in section 3.1
among runtime computed fields:

e p, integer(—1: ¢ — 1,n,,ny,n,): defined in the same manner as f array,
contains the integer number of particles travelling along each lattice link;

® D, integer(n,, ny,ng): the number of frozen particles per site (cf. sec-
tion 3.1.3);

and a long set of user defined (and possibly time evolving) parameters:

® Kp_cyclic, Logical(d): defines if the particle streaming is cyclic among each
dimensions (for example, if K, cyeic(2) = .true., the particles pointing
in the +y direction in the y = n, slice would re-enter the system at the
same position in slice y =1; this is useful to model a cyclic system in the
y—dimension);
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Ufqu, real(d): the particle falling velocity (cf. section 3.1.2); it is interesting
to prefer a d-dimensional vector to a single vertical component, as an a-
inclined tunnel can easily be modeled by letting the falling speed of module
uy be (uqsina, 0, —u; cos a);

8., integer: the number of frozen particle before solidifying the site (cf.
section 3.1.3);

Apl list of hexahedron (7:1,7:2) X (jl,jg) X (kl,kg) ({(Z,], k) - il < 1 < ’1:2,
J1<j<js and k; <k <ky}) corresponding to the solid particles launching
sites;

Pap, tnteger: amount of particles released at each time step in the launching
areas, which shall be 95% of 6y,, (i.e. the site is not filled but almost, as
if it was filled up to 60y,, the cell would solidify, thus modify the original
landscape);

€p, Teal: the factor to improve the particle transport efficiency (it should
be approximatively 1/maz(u), see section 3.1.2);

(p, Teal: probability for a deposited particle to get eroded, possibly multi-
plied the non-equilibrium momentum flux tensor (see section 3.1.4).

Some procedures are also stored in this module:

part_init, setting up the above variables;

part_transport, reshaping the particle distribution based on the local fluid
velocity and gravity (section 3.1.2), and freezing the particles pointing to-
wards a solidified cell (section 3.1.3);

part_erod, eroding particles according to the algorithm presented in sec-
tion 3.1.4, and calling the toppling mechanism (with some subtility, as
toppled particles should not be reinserted in the aeolian phase transported
by the fluid flow) whenever necessary;

part_launch, launching pp, particles from the sites contained in A, ele-
ments;

part_stream, streaming the particle densities along the lattice edges.

Solid shape information module (solid)

Each cell must know the information about whether it is solid or not, and which
cells are solid ones around. This is of critical importance to avoid stremaing a
flying particle inside a solid cell, or to make the fluid react correctly (bounce back
conditions). It may also be useful to record if a given site was solid because it
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is part of the initial landscape shape, or it has only grown to be solid under the
flying particles freezing process.

There is obviously several ways of dealing with this representation. The first
one would be to store logical in the same manner as solid particles are stored
in the previous paragraph. However, declaring ¢ + 2 logical fields, i.e. ¢ + 2 is
squandering, as each logical holds 1 memory word.

As each information can be handled by a single bit, it may become more
rational to store the whole information on a single word and to declare the array
Smap, integer(n,,ny,ny). For each lattice node the information is store in the
following manner:

e bit 0 is one < the site is solid;
e bit i is one, i € {1...q} < next site in direction 7 — 1 is solid;

e bit ¢ + 1 is one < the site is solid from the initial configuration; this
information is pertinent when for example, the user wishes to delete all the
deposited particle to restore the initial conditions;

e remaining bits can be used to store a short integer indicating the distance to
the nearest solid cell (this information have been used in some modification
of the Cymago constant nearby the ground, in the 2D model).

Several subroutines are called to manage these informations:

e Solid_stream, streams the information: the bit indicating if a cell is solid
(bit 0) is streamed to neighbor cells to build their local s,,,, configuration
map; it can be also useful to store in the end bits the distance to the
closer solid site (this distance is taken as the minimum one from any of the
surrounding cells +1, so the value is dynamically updated when the solid
configuration evolves);

e and several procedures to create the initial landscape, drawing simple ge-
ometrical object (cylinder, plate, hexahedron ... ). Among these subrou-
tines, the most useful ones from a practical point of view are the one which
spread a 2D complex profile along the third dimension, and the one which
takes as input a zy matrix where each element represents the altitude of the
ground (for the latter one, it may be useful to enter the landscape informa-
tion as a set of p given points {z;, y;, zi = 2(%i, ¥i) }i=1..p; then a Delaunay
triangulation can be computed and the altitude for a point inside a defined
triangle is straightforwardly interpolated).
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Rendering modules

To render the previous informations, fluid_render, part_render and solid_render
modules are designed. They contains procedures to save the information in sev-
eral manners for a later treatment: profiles (fluid velocity/vorticity, particle de-
posits) to be plot with gnuplot or zmgr, and Avs/express fields or UCD files (see
appendix C) for a 3D visualization.

Pilote device (cockpit)

To offer an efficient way of handling a program with many variables and features,
it is interesting to design both an interactive and a batch command interface (see
appendix B for more details). These procedures are grouped within the cockpit
module.

4.2.3 Modules organization

Altough the module philosophy is not a recent matter for computer scientist (it
appeared in the eighties and had its hour of glory with modula 2), it is rich enough
to build a structured program as in the one we had in this case. Even if it is far
from reaching all the possibilities offered by object oriented languages (Java or
C++), it is of a much simpler use in Fortran 90/95.

A module contains types, variables and procedures (functions or subroutines)
either private or public. Any entity (the main program, a procedure or a module)
using a given module has access to all its public features. Moreover, all the entities
using this module will share the values of its variables, thus ensuring consistency.

Therefore, a large program (at least up to a certain size), can be organized as
a graph (oriented by the dependence and obviously non-cyclic) of modules. Such
a graph for our application is displayed in figure 4.2.
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Figure 4.2: Module dependency graph; an arrow pointing from solid towards part
means that the module part uses solid; every module uses world and all of them
are used by cockpit. This graph can be directly translated in a makefile if each of
those modules are contained in separated files.
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Sharing efficiently the work load among ressources:
the essence of parallelism

4.3 Parallelizing the code

When time comes to run large simulations, 7.e. memory and time consumin
)

problems, the user’s patience can be severly tested. Several solutions can be

considered:

e go away and come back a week later to see the results;

e buy a new very powerful (and very expensive) machine to run the same
code in a shorter time;

e share the work among several process units linked together with an efficient
connexion network.

The first solution is often chosen in many scientist’s everydays life (and usually
when this scientist is not from a computer science background but has important
motivations in using numerical model for his research). When his budget is a
bit comfortable, the second solution can be adopted; however, the race for the
fastest machine soon becomes very expensive and performance is bounded by
technology.

However, if he needs fast computing times (for prediction purposes or when
too long simulations are incompatible with model exploration), the programmer
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can decide to choose the third solution. Thus, to conquer the results, he can
divide the problem among a set of machines and therefore parallelize his code.

4.3.1 Parallel programming models

Several parallel programming models dedicated to high performance computing
currently exist. Although the aim is always to share the working load among
different computing units (or nodes, PE), this division can be undertaken in
several ways:

e Data parallel, SIMD (Simple Instruction Multiple Data): every node
contains a part of the data, and all of them execute synchronously the
same instruction (either computations or communications) with their own
data. This programming model had its success but was proven to be efficient
only for a limited range of problems and no more general purpose computers
are built using this model. Meanwhile, the programming philosophy (one
instruction executed throughout a whole array) has been kept in Fortran 90,
and is even implemented on clusters of machine in a totally transparent way
(but often with disappointing performances) with HPF (High Performance
Fortran).

e Shared Memory: a set of processors work on the same problem (each one
executing its own code), but the information is stored in a shared memory
system, and therefore can be accessed by anyone at any time (to ensure
data consistency, some locking procedures must be implemented). Although
the shared memory programming model is intellectually very attractive (no
explicit communications), it is very dependant on the machine architecture,
hardly scalable (excepted on the Sun Entreprise 10000) and often quite
expensive.

e Message Passing: each process, associated with a process identifier, ex-
ecutes a copy of the main program (or even different programs) and com-
municate with the other nodes sending and receiving explicitely messages.

Once again, comparing extensively these three methods is far beyond the pur-
pose of the current work (see [Kumar et al. 1994] for a more complete discussion).
However, we may argue why we have chosen the Message Passing model for the
present program.

The message passing model can address a much wider range of problems than
the first two, but cellular automata models (local computations and synchronous
nearest neighbors communications) can be handled very efficiently and very el-
egantly by any of them. We have in fact implemented the 2D version of our
program on a Connexion Machine CM-200 (by Thinking Machine) using the
archetype of a SIMD architecture.
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However, the message passing model is very portable and is seen as a high
level, language independent, communication library upon any set of standard ma-
chines linked either with a standard TCP/IP or a dedicated network. Moreover,
even if commercial products exist (often provided with dedicated communication
devices), message passing libraries are provided for free on almost every operating
system.

In the past few years, two message passing standards have emerged:

e PVM (Parallel Virtual Machine): can be ran among a heterogeneous set
of machines, with dynamic process managment.

e MPI (Message Passing Interface): to be ran mainly on a homogeneous set
of computers, with a much richer set of communications procedures (either
point to point or collective).

Even if these features seem rather fundamental, the kernel of both libraries are
only send and receive procedures. Moreover, they both converge towards the
same “ultimate” message passing model (a new version of a library is mainly
achieved by picking up the best features of the other one), and MPI 2 (which is
currently only developed for a Hitachi architecture) seems to take the advantage.

We have choosen MPI to be the library in the current work, partly for the
richness of the available primitives, partly for the fact that the software can take
advantage of a good interconnecting network.

4.3.2 The Message Passing Interface (MPI) environment

The aim is to distribute the execution of a program over a set of processes (located
on different machines). Each of those tasks holds a copy of the initial program
(with its own variables), plus some local MPI information which can be gathered
during the MPI initialization stage:

e mp_size, integer: the number of launched tasks;

e mp_rank, integer: the rank of the calling process in the set, i.e. a number
between 0 and mp_size-1.

If the processes are to be organized (from a logical point of view) as a ring, it
can be useful to define the labels of the right and the left hand neighbors:

o mp_right=mp_rank-+1 modulo mp_size,

o mp_left=mp_rank—1+mp_size modulo mp_size.
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4.3.3 Some basic communication procedures

The communications procedures are presented in a simplified form, as standard
MPI ones requires several more parameters.

Point to point communications

As stated earlier, the kernel of MPI consists in send and receive procedures, called
mainly with the following parameters:

e send (buffer, size, type, dest, tag): the task invoking this procedure sends
buffer (size elements of type type - integer, real, user defined) to task num-
ber dest; the message is labeled with tag;

e mpi _recv(buffer, size, type, source, tag): in the same manner, the task
calling this procedure receives (it therefore had to be previously sent) the
buffer in a message labeled by tag.

A message therefore is built from data, source, destination, and a tag. This tag
can be used for message identification, but can also be always set to some value
if no verification is needed.

The most important idea in message passing programmation is a good orga-
nization of the communications: a message sent must be received; if a receive
procedure is posted, a corresponding message must have been sent, as shown in
the following example.

A simple example

Every task holds a real variable a, and wants to store in a variable a; the value
of a held by the left-hand neighboring process (the one with the precedent rank).
Once the initialization has been achieved, the communication part is simply these
two lines:

call send(a,1,real, mp_right,0)
call recv(a;,1,mp_left,0)

where the communication tag is 0.

Non-blocking communications

Of course, message passing can be costly: during the communication, the process
waits (software and hardware overhead, synchronization with the other process
invoved in the communication) in a non-constructive way. Indeed, during these
overheads, the CPU could be used to compute data independent from those
involved in the transfer. To overcome this problem, non-blocking send and receive
can be invoked:
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Figure 4.3: six MPI global communication primitives. For each of those, the data
distribution (spread among the local memory (horizontally) and the processors
(vertically)) is displayed before and after the call in the send and receiving buffers.

e mpi_isend (buffer, size, mpi_type, dest, tag, req): where i states for imme-
diate (non-blocking),

e mpi_irecv(buffer, size, mpi_type, source, tag, req),

e wait(req).

Once mpi_isend or mpi_irecv is called, the procedure exits without waiting for
the communication completion (which is achieved in background) and a request
id req is returned. However, a call to the wait procedure will force the program
to stop until the message pointed by req is achieved. An example of this feature
is given in section 4.3.5.

Although these communications are often more efficient, one should take some
precautions using them: as a send is not effectively completed when steping out
of the procedure, the buffer is not already sent; therefore, modifying it right after
the call may, in some situations, send corrupted data.

Global communications

Communications involving all the processes can also be useful as, for examples
(see figure 4.3):
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broadcast of an information held by one process to all the others,

gather of informations stored in all the processes onto one,

reduce with some operator (such as sum, maz, product) of informations
stored in all the processes onto one,

e and other more general variants.

But MPI is a lot more

If send and receive primitives are the kernel of the library together with collective
communications, there are many other features which can be used in efficient and
elegant progamming, such as:

e initialized communications: a message (buffer, tag, source or destination)
is prepared at once and associated to a request; invoking only this request
will later start a commnuication with the data stored in the buffer at that
moment; this method reduces a lot the software communication overhead;

e buffered, ready and synchronous communications offer different way of man-
aging the buffers, allowing a more efficient handling of large messages: in-
stead of relying blindly on the local MPI implementation to manage the
buffering of messages, the programmer can force the message to be fully
buffered, to exit the send procedure once a corresponding receive has been
posted or when the receiving process has started (such subtility are used
for the manging of large messages, when the pre-defined buffers are not
sufficient);

e wildcards: to receive message with unknown source or tags;

e inquiry primitives: to get informations about a message (is it yet arrived?
tag? source? type?);

e topology: processors can be arranged in subsets, and some global commu-
nications can be called only within these subsets;

e parallel I/0 (as I’O must currently be done sequentially, thus are a bottle-
neck for many applications), one sided communications (instead of posting
a receive to any corresponding send, a task can directly pickup data con-
tained by another one), and some more, are new features of MPI-2.
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4.3.4 Sharing (distributed) array with MPI
As stated earlier, each process has a copy of the program. If the aim is to manage
a big array, we can suppose that every task knows its size n x m (if only one task
has read these parameters, they can be broadcasted at once).

The idea of parallel processing is to divide the work, each process will only
allocate a part of the initial array. This share can be done in several manner:

e in strips, the easiest way;

e in rectangles, to lower the ratio between boundary length and domain
size; this method has been implemented in 2D with dynamic load bal-
ancing (i.e. the rectangle domains are continuously adjusted to equilibrate
the computation time between all the processes) in a very efficient way
by [Martin et chopard];

e in totally irregular shares by [Dupuis et Chopard 1999] (2D), where void
cells (inside solid for example) are not even allocated; however, this tech-
nique involves irregular boundaries and expensive communication and allo-
cation processes.

For our problem we have chosen the strip method as it is the simplest but
also efficient enough: the main drawback, 7.e. the ratio between boundary length
and domain size vanishes a bit in 3D, where communication overheads can be
overlapped by local computations as it will be shown later.

Therefore, if for example a 2D array of size n x m is to be shared among
mp_size tasks, each of those tasks has to allocate a local array of size n X my,.,
where my,. ~ m/mp_size.

Nevertheless, as mp_size does not always divide m, it is more precise to define:

if (mp_rank<mod (m,mp_size) ) then
Myoe=m/mp_size+1
Mof fset=mp-rank*(m/mp_size+1)
else
mloc=m/mp_37:Z€
Mo fser=mp-rank*(m/mp_size) +mod (m,mp_size)
end if

where msfq.: is a local variable storing the position offset of the slice allocated
on the current process within the global array; in fact, this information is not
compulsory for many computations such as a classic CA, but is needed when
irregular information is to be spread onto the whole array (such as a map read
in a file, where each process has to take only one slice of the data).

Moreover, the distribution shown here (and in figure 4.4) is balanced on ho-
mogeneous PE, but it could be done in other manners depending on the situation:
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~ N~ N~
Mioc Migc Mg Mioc

Figure 4.4: distributing an array of n x m (m = 22) among a set of mp_size = 4
processors. Each node has an array of n x my,., where my,. = 6 for the two first
tasks (mp_rank < (m mod mp_size)) and my,. = 5 for the two last ones.

e if the tasks 1 to 3 are known to run on CPU twice faster as the remaing
ones, it may be clever to allocate more data one them,;

e in the case of a master/slave design, one task can be reserved for other work
than parallel array computations, therefore the allocation should be made
only on the remaining nodes.

Once each processor has its own array (in fact a share of the global one), it can
execute whatever computations on its data. However, if there is a need for data
stored on another processor (i.e. elsewhere on the global array), communications
must be foreseen. The example of lattice models is described in more details in
the following subsection.

4.3.5 Lattice gas models and MPI

From their basic numerical scheme, CA, and more generally lattice gas models,
are ideally parallel as a time step consists in two stages:

e collisions, i.e. computations based on local variables;

e streaming, i.e. communications with the nearest neigbors.

As the domain is represented by a regular lattice, thus an array, it can be dis-
tributed as shown in the previous subsection. The first stage is naturally achieved
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as each node computes data contained in its array. In the second stage, communi-
cations inside the array (for inner columns according to figure 4.4) does not pose
any problem. However, border cells (outermost columns in figure 4.4) require
communications with the nearest processors.

Therefore, a computing step can be implemented as:
1. local computations according to the evolution rule
2. local communications with the nearest neighbors

send information to the right PE
send information to the left PE
. receive from left
. receive from right

D O b W

However, during the communication overhead, the CPU is unemployed (thus
some power wasted). To solve this problem, it is possible to overlap inter-
processors communications and computations [Luthi 1998]:

1. non-blocking send information to the right PE

2. non-blocking send information to the left PE

3. non-blocking receive from left

4. non-blocking receive from right

5. local computations in the inner domain
6. local communications in the inner domain

7. wait the completion of both receive
8. local computations on the outermost cells

From a practical point of view, it often not very easy to overlap communications
and the whole evolution process, as there are treated at different location (once
more, an object approach could be more flexible on that point). However, it has
been measured to be sufficient to overlap external communications with inner
ones, especially when the connecting network is fast enough .

4.3.6 Among which dimension sharing the array?

Problems addressed by lattice model concern 2D or 3D array (n, x n, or n, X
ny X n,). The question of which of the domain dimensions should be split is not
obvious and two factors must be taken into consideration.
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Sharing along the largest dimension

The dimension among which the array is split, as described in section 4.3.4,
should be the largest for two reasons:

e the imbalance between shares with +/— one slice will be less important,

e the size of communication buffers (the product of the remaining dimensions)
will be the smallest, optimizing the message transfer time, proportional to
the buffer size.

As practical applications of our model can be seen as a wind tunnel experiments,
it is natural to consider the z— dimension (the one along the flow stream) as the
largest.

Putting data in memory

However, a question remains about the declaration of an array a of size ng, x n,:
should it be declared as a(ng,n,) or a(ny, ny).

This question is language dependent and is based on the element order in
memory. In Fortran, contrary to C, the first indexes varies the most quickly, i.e.
an array a(2,3) is stored in memory (linearly of course) as:

[a(1,1) [a(2,1) [a(1,2) [ a(2,2) [ a(1,3) | a(2,3) |

To store the array in a way that subsets sent in messages are in contiguous
memory location, it is clever to distribute the array among the last dimension.
Thus, one should declare a(n,, n,).

These explanations are consistent with data declarations presented in sec-
tion 4.2.2, where it seemed at the first glance not evident to declare the fluid
array as real(—1: ¢y — 1,n,,ny,n,) instead of real(ng, ny,n,,—1:q; —1).

4.3.7 Load balancing

Working with a large set of computers confront the programmer to untraditionnal
problems: the load of these machines can be unbalanced (either because other
users are logged, or because some sub-domains require less computational effort:
if there is a lot of solid cells for example).

The load balancing presented in section 4.3.4 is static and the most regu-
lar possible. Far away from sophisticated methods consisting in managing time
dependent rectangular blocks [Martin et chopard], an simple algorithm can be
stated:

e time to compute a domain slice is measured (only the computations, not
the communications as they depend on the other tasks),
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e neighboring processes exchanged their effective computational times,

e if a process is really fastest, it can take a slice from a slower neighbor.

Although this method is rather simple, some precautions must be taken:

e time measurements should be done over several evolution steps, as the load
balancing process is expensive;

e a slice removal should be achieved according to a probabilistic rule, slowing
down the convergence to the most optimal ditribution, but lowering the
risk of oscillations;

e all data must be carefully moved, to ensure the model consistency.

Such a load balancing algorithm has been implemented with an early version
of our 3D program and proven to be efficient (a processor loaded with other time
consuming jobs was jettisoning domain slices to its neighbors. However, as most
of the computations were achieved on parallel cluster of machines in single user
mode, the priority was transfered on the implementation of the model itself and
loadbalancing module abandoned.

4.3.8 MPI implementations used

As Fortran 90 and MPI are recognized on almost all the platforms, our program
could be compiled and ran on several pararlel machines:

e 32 500Mhz Pentium, with the free MPICH library;
e 8 Sun Ultra 5, interconnected with the Scali sofware and hardware;

e 14 nodes IBM SP2, based on RS6000 processors, with a native MPI imple-
mentation;

e 12 nodes Sun Entreprise 10000, which is a shared memory machine, but
can be used with a native message passing library.

Although each of those machines have been extensively used, we have made
the largest part of the production simultations on the Pentium cluster. A bench-
mark, to compared MPI performance on different platforms, is presented in ap-
pendix D.
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Figure 4.5: scaling performances on a Pentium III cluster: the parallel time is
plotted versus the number of processors on which the program was run (domain
size is 200 x 3 x 10 and the time is plotted for 500 iterations). The inner graphe
show the efficiency, i.e. the sequential time / (parallel time X number of proces-
sor): a value of 1 indicates a perfectly scalable application. However, an efficiency
greater then 1 shows that our application is even superscalar (a better gestion of
cache memory is often the cause).

4.3.9 Is parallelization efficient?

It was claimed in the beginning of this section that the purpose of parallelism is
to get shorter computation times. In a perfect world, a program would run twice
faster on a two-node parallel machine than on a single processor (five time faster
on a five CPU one and so on).

Figure 4.5 shows how our application, on the Pentium III cluster, evolves. The
application is proven to be super scalable, 7.e. it runs more than p times faster
on p processes than on a single node. This super-scalability can be explained, as
sharing a large array among p processes reduces more or less by a factor p the
allocated memory on each PE. Therefore, all the data can fit inside the memory
cache and remain there, lowering the access time to it.
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4.3.10 Summary

In this chapter, we have presented the language we have used, Fortran 90, how we
have applied its module philosophy to our problem, and how we have parallelized
the code.

Although it is disclaimed par computer scientists, they often forget that For-
tran 90/95 has been designed to achieve fast computations on a restraint range
of applications (array computations, mathematics applications). It does not have
the “all-purpose” ambition (and often the over-weight) claimed by object oriented
languages (mainly C++ for high performance computing).

Finally, it has appeared to be a very efficient and easy to manage program-
mation language for our application. However, some limits were found, when we
thought about elegant style for programming load balancing for example, but the
global programming of a complex lattice gas model is very well suited to Fortran
90.

To parallelize the code, we have first ran a 2D code on a data parallel machine
(the Connection Machine CM-200). However, the 3D code was programmed on
cluster of nodes linked with a message passing library, namely MPI. The genericity
of Fortran 90 and the MPI library has allowed us to compile and run the very
same code on various architectures: IBM SP2 (14 RS/6000 processors), an eight
Ultra 5 cluster, and a 32 Pentium cluster. Parallelization was naturally suited to
the lattice gas model (the regular domain is shared in slices) and computations
times were super scalar (running on 30 node was more than 30 times faster than
running on a single node).

This experience show how the efficient parallelization of a code can change the
scientist’s life. For example, reducing on our PC cluster by a factor 30 simulations
times has opened the door to fast simulations (most of the results presented in
this work did not last more than 15 minutes), and therefore to really interactive
investigations.
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Chapter 5

Conclusion

The mesoscopic level of description, as described in this work, offers a totally
different approach to complex system simulations and has been applied to a
large panel of applications. This approach was therefore a natural one to model
snow transport by wind, as a description in term of microscopic rules is a very
attractive alternative to classical models based on the resolution of semi-empirical
equations. Instead of extracting complex governing equations and later modeling
them using complicated numerical schemes, it appears much easier to incorporate
directly the phenomenon ingredients in intuitive evolution rules. For example,
according to some authors, the ejection of particles might be provocated by the
landing of another one, directly or after a short delay: including this rule at a
macroscopic level can be hard to manage, whereas putting it in a microscopic
description of the model in trivial. As stated by Feynamn, the very details of
microscopic interactions are not important for the global system behavior, as
soon as the mesoscopic rule catch the main components.

In this work, modelling both a fluid and solid particles have shown how com-
plex behaviors can be caught, even if the fictitious world we have built seems too
simplistic:

e a non-steady turbulent flow was produced by a simple subgrid BGK model;

e this fluid is naturally defined for time evolving solid boundaries and recovers
many features found in the literature;

e snow deposits range over very different scales, from small ripples to full
Alpine crests, with very good agreement with outdoor results;

e eventhough different particle transport modes (creeping, saltation and sus-
pension) are not explicitely defined, the model naturally produces them;

e the very same approach have been used successfully for sand underwater
transport with very accurate results.

109
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Moreover, the parallel nature of lattice models makes their implementation
very easy (starting from scratch, a 2D fluid solver takes a couple of hours of
programmation) and very well suited to parallel computations. Instead of waiting
for days, a standard computations presented in this works takes between 15
minutes and a couple of hours on a 32 Pentium III cluster, a very inexpensive
parallel machine.

This model elegance, together with short computation times make such a
model a very interesting and comfortable simulation tool, with which testing new
scenarios, investigating new leads, does not catch the scientist into despairing
situations.

However, there is another side to the coin. As we have seen thoughout this
work, building a ficticious world induces the loss of an explicit spatial scale and
the use of parameters hardly connectable to field observation. In the particle
models, natural questions can arise: what is the size of a modelled snow flake?
how coherently can ¢, (the particle erosion probability) be related to reality?

As the only validation of a model cannot come only from results it produces,
its rules must be explicitely described and argued. This disconnection with the
real world may sometimes be seen as a weakness by some persons.

Nonetheless, we believe our model has caught interesting features, and has
taken up the challenge. However, much work can still be achieved, with the aim,
for example, to develop a more powerful forecasting tool (to build works, such as
fences or slanted screens, in complex situations).

Despite trying to incorporate more of the complex components coming up
in the blowing snow process (e.g. cristal modification, deposit evolution and
constraint), it may be more effective to concentrate at first on different lattice
model improvments:

e continuous (or off-lattice) solid definition; instead of having step defined
ground configurations, some investigations should be undertaken on a smoother
definition; this might be very important on all deposit with gentle slopes
(such as deposit around fences, some crests) [Chen et al. 1998];

e better subgrid model, not depending on a global and empirical parameter
such as Cypago|Chen 1999];

e non-uniform scale or unstructured lattice, with smaller cell size at ground
level for instance [Peng et al. 1999].



Appendix A

A multiparticle fluid model

A.1 In between CA and BGK models

Lattice gas automata (section 2.1.1) and BGK models (section 2.2) offers the
same kind of approach, dealing with particle travelling on a regular lattice, with
synchronous, relatively simple, and local collision rule. However, more than only
their discrete/continuous representation of the particles, they differ from several
points of view:

LGA BGK
Representation | discrete continuous
Collision term | exponential with the | linear with the number
complexity number of particles | of particle and the di-

(lattice links)

mension

Statistical noise

very high

low (initial conditions or
external noise)

Viscosity

determined by the colli-
sion rule and the density
(very narrow range)

tuned by an external pa-
rameter (can reach very
low values modulo the
subgrid model)

Navier Stokes

modulo a slight Galilean
invariance and a spuri-
ous pressure term

OK

numerical sta-

bility

ensured by the exact
computations

low viscosity makes the
system to blow up

N-body correla-
tions

taken into account (par-
ticle are indentified)

vanish with the Boltz-
mann molecular chaos
hypothesis

For the major problems addressed by fluid simulation, correlations between par-
ticles can be neglected and lattice Boltzamnn models are satisfying. However, for
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some questions, for example the ballistic annihilation problem (particle are an-
nihilated when they encounter) or reaction-diffusion systems (chimical reaction
where particle encounters are crucial) [Cornell et al. 1991], the density fluctua-
tions are crucial.

Meanwhile, those questions cannot be approached with LGA automata model,
as intrinsic spurious invariant due to the simplicity of the collision rule distort
the result. Therefore, the classical numerical approach is an extensive molecular
dynamics, computing exact position and intereaction between the particles, very
expensive from a computational point of view.

We will propose in this appendix a mix between LGA and BGK models, i.e. a
model where particles are discrete, but where the maximum number of particles
per cell is not fixed and which obeys BGK inspired collision rules.

In the following section, we will adapt our model to the 2D ballistic annihila-
tion problem and focus on the the decay law.

A.2 The multiparticle model

Our multiparticle microdynamics is described in terms of quantities Fj(r,t) €
{0,1,2,...,00}, giving the number of particles entering site r at time ¢ along
lattice direction i. Following the standard CA or LB approaches, the evolution
rule of our model reads

Fi(r +ci,t+ 1) = Fy(r,t) + %(F(r, 1)) (A.1)

where €2; the collision term.

The key idea of our model is to write a collision rule for the integer quan-
tities F;(r,t) so that, on average, they follow the standard BGK dynamics (see
section 2.2. We assume that the main effect of the interaction €2; is to restore a
local equilibrium distribution f;? along each lattice direction:

1+ CiqUy + 1 CiqUn 2 UyUn
cs? 2 cg? 2¢42

where p = ). F; and pu = ), F;c;. The above expression is the standard form of
the local equilibrium already desribed in equation 2.7. Note that F;’s are integers
whereas f;?’s are real numbers.

The relaxation of F; to the local equilibrium f;? is governed by a parameter
7. Thus, like in the LB case, we require that the number of particles F] leaving,
after collision, a given site along direction 7 be given by

fieq = ptp

E=3W+<LJ>E+AE (A.2)
T T
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where AF; is a random quantity accounting for the fact that, after collision, the
actual particle distribution may depart from its ideal value, due to the integer
nature of F}.

Algorithmically, F} is computed as follows. Let p = ). F; be the total number
of particle at the given site. We assign to each direction i a weight w;

w; = max (O, lffq + (1 - l) E) (A.3)
T T

From these weights, we define p;, the probability for a particle to leave the site
along direction 4, as p; = w;/M, where M = ). w; is a normalization constant.
When w; > 0 for all i, p = M. However, the right-hand side of equ. (A.2) may
become negative. This leads to numerical instabilities in standard BGK models.

To compute the collision output, we run through each of the p particles and
place them in direction ¢ with probability p;. This gives us a temporary particle
distribution F; which satisfy (when M = p)

< F;>= lffq + (1 - 1) F, (A.4)
T T

For large enough p, the particle distribution can be computed with a Gaussian
approximation[Chopard et al. 1994]. In this way, the algorithmic complexity of
the operation does not increase when p becomes large.

While the distribution F} of outgoing particles obviously conserves the number
of particles, equation (A.4) shows that it does only conserve momentum on aver-
age and some particles must be redirected to ensure exact local conservation. The
actual number of particles, F}, leaving the site after the multiparticle collision is
obtained from F} through a trial-and-error procedure which reorganizes particles
among the directions until the correct momentum is obtained.[Chopard et al. 1998b)].
From the way the particles are distributed, we expect that roughly ,/p of them
are misplaced. This gives an estimate of the number of iterations requested to
re-adjust the particles distribution.

According to the above discussion, the quantity AF; defined in equation (A.2)
vanishes on average. This fact is confirmed numerically.

Consequently, with F;(r +¢;,t + 1) = F/(r,t), we write

N

Fi(r+ci,t+1)~

o, 1) + (1 _ %) Fi(r, 1) (A5)

Equation (A.5) is identical to the usual BGK microdynamics[Qian et al. 1996b],
except that now it approximates a multiparticle dynamics in which F; are in-
teger quantities. Therefore, we expect the same hydrodynamical behavior to

emerge: equation (A.5) is equivalent to the Navier-Stokes equation with viscosity
v (1—1/2).
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However, the fact that AF; is only zero on average, produces an extra con-
tribution to v. It is known from kinetic theory that viscosity is proportional to
the particles mean-free path. In the multiparticle interaction, an amount AF;
of particles will be misplaced and this is equivalent to an effective collision pro-
cess, which reduces the mean-free path and modifies the above expression for the
viscosity. The next section quantifies this effect.

The present muliparticle scheme is intrinsically stable. No small fluctuation
will be amplified unphysically to make the arithmetic blow up when v — 0,
as happens with the LB model. Any value of the relaxation parameter 7 can
be considered without numerical problems. The behavior of our model when
7 — 1/2 is briefly studied in the next section.

A.3 Flow simulation and viscosity

This section presents the result of flow simulations obtained with our multiparticle
dynamics. A first test is to reproduce a Poiseuille flow in a channel. We assume
that the x coordinate is along the channel length. No-slip (bounce back) boundary
conditions are imposed at y = 4a, where 2a is the channel width. Fig. A.1 shows
the velocity profile measured in a laminar flow regime. We observe the expected
parabolic velocity profile[Tritton 1988]

<ugly) >= 2 (a? — ) (A.6)

2pv
where G is the external force per lattice site (or the pressure gradient). In our
case, G is produced by moving with probability ps each particle from lattice
direction 7 such that ¢;; < 0, to direction 7", where 3" is the direction symmetrical
to ¢ with respect to the y-axis. We have G  ppg.
From equation (A.6) one can obtain the viscosity v as

G
v =

" 2PUmaz

(A7)

where U4, is the velocity at the middle of the channel, i.e. where y = 0. The
viscosity is assumed to vary as 7 — (1/2). Thus, by varying 7, we should observe a
corresponding variation of ,,,,. However, if the viscosity becomes small enough,
we may reach a turbulent regime with a different velocity profile[Tritton 1988|.
To avoid this difficulty, we vary G proportionaly to (7 —1/2), which should yield
a constant u,,., value.

Fig. A.2 gives the results for u,,,, obtained for various values of 7. There
is a region where u,,,; is constant, as expected. However, when 7 < 0.65, tqz
decreases, as an indication that the actual value of v departs from the 7 — 1/2
behavior and does no longer decreases. Thus, there is a minimal built-in visosity
in the model. From the numerical point of view, a value 7 close to 1/2 may
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Figure A.1: Velocity profile in a multiparticle Poiseuille low. The plot shows
the horizontal average velocity < u,(y) > as a function of y the vertical position
between the upper and lower boundaries. The solid line corresponds to the best

parabola fit.
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Figure A.2: Measured value of 4., as a function of 7 for G o [ — (1/2)]. The
classic BGK result fits exactly the theoritical prediction, where 7 > 0.57 (for
7 < 0.57, numerical instabilities occur). The integer particles model is stable,
but when 7 decrease, probabilities p; may become negative; forcing them to 0 (see
equ. (A.3)) increases the effective relaxation time. Note that the more particles
there are, the closer the simulation is to BGK values.
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Figure A.3: Measured value of u,,,, as a function of 7 for G constant. According
to (A.7), :;1/ 2 should be constant. This is the case for simulations with 100 and
10000 parti"éal%s per direction. However the range of validity is larger as more
particles are present. This is explained by the emerging importance of the term

AF; in equation (A.2), varying as /p.

cause the probability p; for a particle to leave the site along direction ¢ to become
negative. In this case, F; is zero and only the procedure of momentum tuning
will populate this direction. This results in an effective viscosity. In order to
make this point more quantitative, we compare, in figure A.2, the values of u;q,
obtained with both our multiparticle model and a standard D2Q9 lattice BGK
model. On the other hand, the stochastic nature of our algorithm does not allow
a correct behavior with high relaxation time. The range of correct behavior can
be enlarged, see fig. A.3, by using more particles (thus lowering the statistical
noise)

Finally, as a last example of flow, we present in fig. A.4 a simulation of a 2D
von Karman street.

A.4 Ballistic annihilation

This section presents another application of our multiparticle model: the bal-
listic annihilation problem. Ballistically controlled reactions provide simple ex-

Figure A.4: snapshot, in a multiparticle simulation of a von Karman street.
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amples of non-equilibrium systems with complex kinetics[Elskens et Frisch 1985,
BN et al. 1993, Rey et al. 1995, Rey et al. 1998]. They consist of a system of
particles moving freely with given velocities until they experience a collision.
When two particles meet, they instantaneously annihilate each other and disap-
pear from the system. In this problem, N-body correlations are expected to play
a role on N(t), the particle number decay. The behavior of N(t) is assumed to
be described by a power law N (t) ~ ¢t~¢, in the long time regime.

In one dimension, systems with only two possible velocities +v or —v have
been studied by Elskens and Frisch[Elskens et Frisch 1985] and yield o = 1/2.
The case of a general velocity distribution has been treated analytically by Droz
et al.[Rey et al. 1995]. It was shown that different dynamical behaviors can occur
depending on the initial velocity distribution and that fluctuations play a very
important role, invalidating the predictions of a mean-field approach.

Beyond one dimension, the situation is much more complex. For a continuous
space time system, a numerical integration of the Boltzmann equation for the
time evolution of the velocity distribution with a uniform initial condition leads
to the value a = 0.91.[BN et al. 1993]

A recent two-dimensional molecular dynamics study (with up to 10° particles)
by [Trizac] gives a decay exponent o whose value is affected by finite size effects
and varies between (.86 and 0.89 depending on the size of the sample. Moreover,
it is observed that the kinetic energy distribution function evolves in time towards
a Maxwellian, although the results of the simulations are very noisy.

Due to the way our multiparticle is defined, intrinsic fluctuations are present
in the dynamics and ballistic annihilation can be used as a test to check whether
the particle correlations are dealt with in a physical way. It is easy to add
to the previously defined rules a new mechanism implementing the annihilation
of each pair of particles arriving simultaneously at the same site with oppo-
site velocities. More precisely, the annihilation rule we use is the following:
F; — max(F; — Fy,0), where, i’ is the direction opposite to i. Note that an
annihilation probability less than 1 can also be implemented with a more compli-
cated rule.[Chopard et al. 1994]. However the results are found identical up to a
rescaling of time.

Simulations have been made for various systems sizes and an initial number of
particles per site equals 10, on average. The results of the decay process are given
in figure A.5. As one sees, all systems with size larger than 64 x 64 give the same
decay exponent a = 0.875 £ 0.005. This value is in very good agreement with
the value obtained by standard molecular dynamic simulations. Moreover, our
algorithm is very efficient since the CPU time for the system of size 1024 x 1024
with initially 107 particles is about 58 seconds on a IBM-SP2 parallel computer
with 10 processors. This is several order of magnitude faster than the molecular
dynamics computation.

It is interesting to compare this results with those obtained with standard
CA or LB simulation. A two-dimensional FHP[Chopard et Droz 1998] cellular
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Figure A.5: Decay laws for the ballistic annihilation simulations, using the mul-
tiparticle lattice gas model. The various plots correspond to the lattice sizes
indicated in the box. The decay exponent « is given by the slopes of the lines
which are all within z = 0.875 £ 0.005, except for the smallest lattice.

automata model with annihilaton gives an exponent ow = 1/2. This is the 1D ex-
ponent, which can be explained by the fact that, in this case, particle annihilation
takes place before collisions can couple the two spatial dimensions.

For the standard, real-valued LB approach in 2D, annihilation is modeled by
adding the terms —F;F} to the collision operation, where, again, ¢’ denotes the
direction opposite to . Numerical simualtions then yield @ = 1, corresponding
to the naive rate equation approach p ~ —p?.

Therefore, the multiparticle model clearly captures an subtle behavior of bal-
listic annihilation. Tt can be noticed in fig. A.6 that, despite the fast particle
decay, multiparticle collisions are present all along the dynamics.

A.5 Conclusion

We have proposed a multiparticle algorithm that conciliates the advantage of
both the CA and LB approaches: numerical stability, presence of fluctuations,
little statistical noise, due to the large number of particles per site, and flex-
ibility to tune model parameters. Although significantly slower than its LB
counterpart, our dynamics can be implemented in an efficient way on parallel
computers and is much simpler and more flexible than the other multiparti-
cle models|Chatagny et Chopard 1993, Boghosian et al. 1997] proposed so far to
extend the CA dynamics without an exclusion principle. In a slightly differ-
ent spirit, we may also mention the recent multiparticle models by Masselot et
al [Masselot et Chopard 1998a] and Malevanets et al[Malevanets et Kapral 1998].

Our model gives a remarkably good prediction for the ballistic annihilation
problem and exhibits the expected hydrodynamical behaviors in the Poiseuille
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Figure A.6: Multiparticle collision frequencies during the ballistic annihilation
simulation (256 x 256 cells). One can observe that even if there are a small number
of particles in the whole system, rich collisions still occur and the multiparticle
aspect (INV; > 1) remains. The scale is logarithmic for the early part of the
simulation, and linear for the zoomed inset (as some experimental value may
have become 0 for time step > 750).

and von Karman flows. A complete analytical derivation of the expression for
the viscosity, taking into account the stochastic part of our algorithm is still
needed.
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Appendix B

Interactive experiments: a key to
an efficient parameter space
exploration

B.1 Why developing an interactive simulation
tool

Exploring a vast multi-dimensional parameter space can be a formidable task (for
the current work, the number of parameters has once reached 30, even if most of
them have been thrown away since then). This task can even become toughest
if some parameters are not direclty linked with physical quantities, or for which
the experimentalist does not have a prior: idea of the range where to look for
something interesting to happen.

For example, once he has the idea of randomly erode solid particle with a
probility ¢, (cf. section 3.1.4), the experimentalist does not have the faintest idea
of the values he should give to ¢, (O(1)? O(0.1)7 O(.01)? O(0.001)?). A too
low ¢, will involve fastidious computing times, wether a too high one will make
all the particles move at the same time and therefore a steady state cannot be
reached.

Parallel computers, offering large CPU resources thus short computing times,
provides the basic tool for an extensive exploration. However, batch mode or off-
line simulations return either post-mortem results or, more frustratingly perhaps,
step-by-step states of a simulation that appears to be unperfect (but might be
corrected tuning some parameters). Changing one parameter will anyway involve
re-runing the simulation from scratch, thus waiting impatiently for the end of the
overhead part of the simulation (for the fluid to get established ... ), and will
finally make the experimentalist have a new idea and re-run everything ...
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B.2 Building simply an interactive simulation
device

An on-line interactive simulation tool appears to be the solution. The purpose
is to offer the user the opportunity to tune any parameter or performed some
operations (extracting a fluid velocity profile, modifying the solid particles entry
zone, saving the current results ... ) during the simulation execution.

However, the simulation program (in Fortran 90, C, C++ ... ) often already
works, all the expected run-time modifications are only calls to procedures, and
the programmer does not want to deeply modify his code to incorporate some
heavy user-friendly interface. Moreover, defining such a user friendly interface
would raise serious problems if the same code is to be compiled and ran on
different machines. Last, but not least, the programmer shall spend his energy
in developping his basic model rather than getting stucked in tedious imported
library problems.

The solution we have adopted in the present work is the folowing: to send
orders, the user simply type on-line some predefined commands (for example
’set_tau 0.504° to set the relaxation time to 0.504, ’save_velocity_profile 3 20 4’
to save a vertical (dim=3) velocity profile at x = 20, y = 4 ... ). At every
iteration, the program verify if there is something on the standard input, and
call the related subroutine if any. To save time, some frequent orders may be also
called by a shortcut: ’set_tau 0.504° can be replaced by ’t 0.504’. A list of the
available commands is presented in table B.1.

B.2.1 The code

The only problem is to check if there is anything to be read on the standard
input. Fortran 90 does not offer this feature in its standard. The solution is
therefore found with a small ¢ program:

#tinclude <stdio.h>
#include <sys/ioctl.h>

void nbbytestoget (1)
int *1;

{

ioct1(0, FIONREAD,1);
}

The subroutine nbbytestoget(l) can be called directly from fortran, [ returns the
number of bytes to be read on the standard input (I = 0 therefore means that
nothing is to be read).

With some compilers, it can be requested to add the _ symbol after the C
procedure to be called from fortran.
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NB: if the simulation program is to be ran in parallel on remote machine
(MPI, PVM), the standard input may be filtered by some daemon and not sent
directly to the programmer task. It can therefore be necessary to implement a
socket device, or a flag system for the front end process to broadcast the infor-
mation.

B.3 Adding a user-friendly interface

An on-line command interface may appear obsolete to some user, even if it is
comfortable to use it on a remote machine via a telnet connection. However, it
is very simple to add a user-friendly interface without modifying one line of the
above program.

A GUI interface may be designed using for example TCL/TK, as the one
proposed to manage the 2D code running on the Connezion Machine CM-200 in
figure B.1. The interface starts the execution of the program and its output is
piped onto the standard input of the slave program. Each button corresponds to
a command and writes the appropriate line onto its output. The slave program
does not even see that it obeys to this GUI rather than to directly the prompt.

In fact, the TCL/Tk interface we have developped can easily be adapted
to any other program piloted by the same on-line command system. The list
of command, their type (integer, character string ... ) are stored in a pilot
description file. Therefore, the adapting of the pilot interface to new commands
is very simple. Moreover, the interface keep trace of all actions in a log file:
therefore, the same expermients can be rerun, modifying only few parameters.

One inconvenient of the TCL/Tk interface is that it handles very slowly data
flows (if the pilot asks the simulation program to return data for plotting a graphe,
and if these data are to be sent to an external viewer -xmgr, gnuplot-, it should
be avoided to make them transit by TCL/tk (as they would jam it): they should
better be stored in a file by the simulation program, then a viewer should be
launched opening this data file).

To build a more powerful interface, one could build the same device using a
modern language, such as Java.

B.4 An all-purpose tool

Beside the main program of this current work, this interactive way of dealing with
parameters have been used in many other applications where the investigation of
the parameter space is important to find some interesting results: prey-predators,
forest fire, sociological ... models.

For any of these codes, the only modifications was to link with the small pre-
cited C program, and to write a small procedure reading the input line command
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Figure B.1: user friendly interface to pilot the 2D code running on the CM-
200. This part is written in TCL/Tk, starts the main program and sends on
its standard input the order corresponding to the button pushed. The list of all
the features of this interface is stored in a file, thus offering an easy way to use
the same TCL/Tk program for many different applications. However, the lack of
compatibility between TCL/Tk versions can be a challenge in itself to produce
a fully generic product. A pilot interface was only developped for the 2D code,
as its purpose was to offer the programmer the opportunity of testing many
parameters combinations interactively, and to explore a totally unknown space.
In 3D, as the world has already been partially explored by the 2D experiments,
it was much more easy to rely only on batch procedures.

and executing the related action (for example, if it reads set_tau 0.5, it should
execute tau=0.5).

B.5 Turning to an off-line script mode

As stated before, the off-line script mode does not offer the possibility of mod-
ifying interactively the execution. However, for production computations, it is
important to have a way of launching larger scale experiments. These experi-
ments will consists in several phases:

1. initializing the domain size, the base landscape,

2. setting the fluid parameters,



126 APPENDIX B. AN INTERACTIVE EXPERIMENT TOOL

3. running the fluid model long enough to let the flow beeing established, as
stated in section 2.3.1 (if high Reynold numbers are to be reached, it may
be requested to run the experiment during some time steps with a higher
viscosity before lowering it),

4. setting the solid particles parameters,
5. running the fluid and particle model,

6. at some time steps, saving the simulation state (deposit shape, fluid velocity

All the command can therefore be stored in a file, preceded by the at com-
mand:

at 0 ’set_plate 0. 1. 0. 1. 0. 0.’ ! set a flat ground from z=1 to T = nTyy,
! y=1 to y=ny, z=1
at 0 ’set_tau 1.’

at 500 ’set_erod_eff 0.01° ! set €p to 0.01
at 10000 ’save_deposit_profile’

at 20000 stop

The at t ’com’ command consist only in interpreting the command com at
time step t. This command will be interpreted exactly as if it was typed in the
interactive mode. The above file can simply be directed towards the standard
input of the program (i.e. a.out -batch < cmd.file).

To store the command lines, the chosen technique was to make a linear dy-
namic list (in Fortran 90!) of the commands, containing the time step when to be
executed and the command line. A variable stores the time step when the next
command is to be executed; once this step is reached, the top command of the
list is executed and removed from the list. Several commands may be executed
during the same time step.

Another advantage of this off-line batch mode is to offer a very simple way of
keeping trace of an experiment history and to replay it, or slightly modify it.
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Visualizing the 3D model output:
Avs/Express

Visualizing computations output can be a complex problem. In the case of solid
particles transported by a flow, one may want to see the flow field (fluid velocity
intensity, streamlines, streaklines, vorticity ... ) and the solid particle distribu-
tion (either deposited or transported). Moreover, a time dependent representa-
tion of data appears to be important to capture the evolution of the system or
to get a better feeling of its behavior.

For 2D simulations, displaying the information is simple as it can be spread
among different windows on a computer screen. There isn’t any dilemna about
the choice of the point of view and the only problem can be to find a good
colormap to clearly present the results. The coding of the display interface
does not usually offer a great challenge, as it is only the mapping of 2D ar-
rays onto a 2D screen (however, this may be a little more tricky with a paral-
lel distributed execution, when all the processes, from remote machines, want
to display their own data inside the same window in a coherent manner - see
http://cuiwww.unige. ch/~luthi/clk /clk. html).

The situation is more complicated with 3D simulation domains, as computers
can, for the time being, only display their data through a 2D screen or sheets of
paper. Moreover, writing the code to present decently 3D data soon becomes a
tedious work. For these reasons, we have chosen to use a commercial software,
AVS/Ezpress (Advanced Visual System hitp://www.avs.com). However, even if it
is higly interactive, this software is tremendously complex as it has been designed
to fullfill a very wide spectra of applications and adapting it to a given problem
can request large amounts of time and patience.

We therefore present here a short introduction to AVS/Express! , and how to
visualize through it the ouput of our 3D model. The aim of this chapter is only

the version we have used is AVS/Express Visualization Edition, Version: 4.2 running on a
Sun Ultra 1 under Solaris 5.6, but the features presented here are more or less generic.
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to make a further user of this software (for the same kind of problems) save time
and energy. As very little (if any) literature exists, despite lecture notes from
some expensive courses, this appendix should not be totally unuseful to some
academic users.

We will present the use of basic data structures (uniform (multistep) fields and
UCD), how to write them from the simulation program and tools to represent
them (slicers, streamlines, isosurfaces ... ) with the AVS/Express software, in
the way they have shown to be useful for our application. The topics of this
section are more extensively developed in the user guide Visualizing your data
with AVS/Ezpress.

C.1 A simple example

AVS/Ezxpress reads different file formats and allows the user to display the data in
a viewer through a network of modules. For example, the chain Read_Field—0rthogonal_Slicer—1Is
reads a field contained in a file, takes a slice, computes the isolines and displays
the results on a graphic window. Every module has its own parameters (a file
name for Read Field, a plane dimension and an offset for Orthogonal _Slicer
. ) and this example is contained in an application (format *.v, which is a text
file interpreted by AVS/Express, but can easily be understood in its main lines
by the programmer) as shown in figure C.1.

The data is saved in a file by the simulation program and later read by
AVS/Ezpress. To be more efficient, files can be saved during the simulation
and read at regular time intervals by the application. This method is even more
easier if the file system is shared by the simulation computer system and the
workstation running AVS/Erpress®

C.2 The field format

The field files are the main channel between an application and AVS/Erpress®.
As every feature of this software, this data structure can become complex but,
once again, we will restrict us to demonstrate how it can be used to store data
from our application, i.e. from a uniform 3D domain.

A field file is split in two entities:

e the header,

e the data.

2NB: the byte representation of real and integer are inversed in Linux compared to Unix.
Therefore, if the simulation is ran on a Linux platform and AVS/Ezpress on a Unix one, the
data file must be treated.

3For further information about the field format, read the chapter Field data type in the user
guide Data visualization kit
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Figure C.1: A snapshot of a simple application in the AVSS/Ezpress environment.
The network editor in the righ hand side, containing libraries of modules and the
graph of modules linked together; the left hand side contains informations about
the enlighted module; the black graphic window corresponds to the UViewer
module of the network (the point of view can be modified using the tools - zoom,
translation, rotation - displayed on the extreme left of the figure).

C.2.1 A practical example

To illustrate this format, we can take a practical case. Let’s consider a 3D domain
ng X Ny X n, (where n, = 100, n, = 30 and n, = 50). Throughout this domain, a
variable containing the 3 components of the fluid velocity is defined. In Fortran
90, it could be defined as:

real ,dimension(3,50,30,100) ::vel

where the dimension are inversed in prevision of the parallel distribution of the
workload, where the domain is split among the x—dimension (which is often the
largest) as explained in section 4.3.2.

The field data file ( *.fld.dat)

The data file contains the values of the stored field, its storing order is not unique
and has to be explicited in the header file. However, when reading an array, the
first index varies most quickly (fortran style).

In the current example, the variable vel is saved in an unformatted file (writ-

ing on disk directly the byte representation of the data, to save space) in the
following manner:
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open(10, file=’ex-1.fld.dat’,form="unformatted’)
do 1=1,3

write(10) (((vel(1,k,j,1),i=1,100), j=1,30) ,k=1,50)
enddo

It could have been saved in some other ways, but this one will store the values
of vel in the following order:

@00Q@ vel(1,1,1,1) vel(1,1,1,2) vel(1,1,1,3)

. vel(1,1,1,100) vel(1,1,2,1) ... vel(1,50,30,100)0@@QQ
@eee vel(2,1,1,1) vel(2,1,1,2) vel(2,1,1,3)

. vel(2,1,1,100) vel(2,1,2,1) ... vel(2,50,30,100)@0Q@
@eee vel(3,1,1,1) vel(3,1,1,2) vel(3,1,1,3)

. vel(3,1,1,100) vel(3,1,2,1) ... vel(3,50,30,100)@@@@

where there is neither space or return characters in this file, as the values are
stored unformatted by their byte representation (4 bytes as vel is declared as
real).

The loop inside the above write statement is performed to inverse the indice
order (we could have saved vel directly through write(10) vel(l,:,:,:) if vel
had been defined in the classic way as real,dimension(3,100,30,50) ::vel).
Moreover, the chains @@@@ are four bytes blocks which appear before and after
any written data in the Fortran unformatted mode (there is no such features in
C). We will have to take into account this strings when reading the data from
AVS/Ezpress.

The field header file ( *.fld)

The header contains information about the field, i.e. the number of dimensions,
the kind of data and its location ... It is a short ASCII file, such as, for the
current example, shown in table C.1

Multi-steps fields

As getting only a snapshot of a simulation is often not enough to catch the
behavior of a system, the experimentalist often needs to see its evolution. A
solution is therefore to save regularly the system state in a field. Instead of
tediously opening by hand a list of field files, AVSS/Exprees offers the possibility
of building multi-steps fields.

Let’s modify the previous example, saving the system every 1000 steps in 500
files labeled ex-1.001.f1d.dat, ex-1.002.fld.dat ... ex-1.500.f1ld.dat. We
therefore need to write a more complete header file in the following manner:

# AVS field
# wind velocity every 1000 steps
ndim = 3
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diml = 100
dim2 = 30
dim3 = 50

nspace = 3

veclen = 1

data = float

field =uniform

nstep = 500

DO

time value = step_1000

variable 1 file=ex-1.001.fld.dat filetype=binary skip=4 stride=1
variable 2 file=ex-1.001.fld.dat filetype=binary skip= 72012 stride=1
variable 3 file=ex-1.001.fld.dat filetype=binary skip= 144020 stride=1
EOT

time value = step_2000

variable 1 file=ex-1.002.fld.dat filetype=binary skip=4 stride=1
variable 2 file=ex-1.002.fld.dat filetype=binary skip= 72012 stride=1
variable 3 file=ex-1.002.fld.dat filetype=binary skip= 144020 stride=1
EOT

repeated (incrementally) 500 times

time value = step_500000

variable 1 file=ex-1.500.fld.dat filetype=binary skip=4 stride=1
variable 2 file=ex-1.500.fld.dat filetype=binary skip= 72012 stride=1
variable 3 file=ex-1.500.fld.dat filetype=binary skip= 144020 stride=1
EOT

The AVS/Ezpress read field menu is therefore slightly modified when opening such a file,
as options concerning the time steps are proposed (running once the whole simulation,
displaying directly the step = ... ). Note that, for conveniency, all the data files can
be appended in one big file (the skip options should consequently be adapted).

C.3 The Unstructured Cell Data format ( *.inp)

Beside the computed data, there are often surrounding a static configuration. For
example, in the case of the flow around a fence, one would like to see the fluid flow,
but also the solid structure.

It is possible to render such a solid configuration via a hierarchical field file, as this
solid has once been defined as a set of simple geometrical elements. However, the UCD
(Unstructured cell data file format proposes a much simpler way for such definitions.
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As we did with the field file format, we won’t propose here an extensive overview of te
UCD format, but rather an introduction with enough informations to reproduce our
results.

C.3.1 Description
A UCD file contains:

1. a list of nodes (3D space points);
2. a list of cells (build with nodes);
3. informations associated with each node (temperature, pressure...);

4. informations associated with each cell.

C.3.2 Example

A

Figure C.2: This picture can be considered as 6 quadrilaterals to build the cube,
plus 2 more quadrilaterals and 2 triangles to build the prism (this second part
could also have been considered as a whole cell). The file describing this object
is given in table C.2.

Further examples can be found in the AVS/Ezxpress directory /avsdir/data/UCD (where
even multistep UCD can be built).

C.4 Building an application from modules

In section C.1, we have briefly shown how AVS/Ezpress works, assembling a chain, or
more generally an oriented non-cyclic graph of modules. This network is stored into an
application (*.v file), interpreted by the AVS/Ezpress software. This application can
be hacked via a text editor or more simply interactively built via the network editor,
already presented in figure C.1.

Therefore, a user may build an application dedicated to his specific needs. We will
present here several short examples, focusing on problems we have faced visualizing
our results.
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14 10 0 2 the object contains 14 nodes, 10 cells
no information per nodes, 2 per cells

1000 nodes are labelled, spatial coordinates are given

2001

3010

4011

5100

6101

7110

8111

9001.2

1001 1.2

1110 1.2

121 11.2

13 0 .56 1.7

141 .5 1.7

1 0quad 1 2 4 3 cells are labelled and described

20quad 1 2 65 cell # is a quadrilateral,

built from nodes 1, 2, 6 and 5

SR oo
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[eH
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~

tri 9 10 13 cell #7 2s a triangle,
built from nodes 9, 10 and 13
8 0 tri 11 12 14
9 0 quad 9 11 14 13
10 0 quad 10 12 14 13

211 for each cell, there are two informations (in this ezample)
either one or the other can be displayed via a colormap

temperature, t first a temperature

porosity, phi second a porosity

1 .1.7 for cell #1, temp=.1, porosity=.7

2 .2 .8

3 .3 .4

4 .4 .2

5 .5 .6

6 .6 .2

71. .3

81. .3

91. .3

10 1. .3

Table C.2: a simple UCD file, to build the object displayed in figure C.2 (italic
comments should be removed in the effective file). The informations attached
to the cells (or to the nodes) can be individually extracted through the module
Extract_Cell _Component (see section C.4.2. The second number, in the cell
description lines, can be used to group the cells into cell sets.
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C.4.1 Modules

4.2.2 Modules are pieces of codes with external parameters, input and output ports. For
example, the Orthogonal_Slicer module displayed in the example of figure C.1 takes
for input a 3D field, for parameters the orientation and the position of the slice, and
outputs a new field containing the extracted slice.

Modules are linked to each other: the output port of a module can therefore be
related to the input port of another one, assuming that their types are coherent (an
integer can be sent to a port querying a real scalar, but a field output cannot be sent
directly to a viewer). When building an application with the network editor, the color
of a port indicates its type.

There are several ways of modifying the parameters of a module:

1. beside the network editor, an application window allows us to see and to modify
them (with a user friendly interface).

2. Inside the network editor, the icon of a module can be extended by double-clicking
on it; each parameter can therefore be edited by hand.

3. In a more powerful manner: using the network editor, instead of editing it,
a parameter can be ezported to an input/output port. This port can there-
fore be linked to an other one*. For example, when visualizing two multi-steps
fields (fluid velocity and solid particle deposit), the current_step of the first
field can be attached to an output port, exported and linked to the second
field current_step, itself attached to an input port; therefore, modifying the
current step of the first parameter will automatically synchronize the second
one.?

4. Further on, the user may notice that linking two parameters replaces the desti-
nation one by an expression, more or less tedious, pointing to the source. This
expression can be edited and arithmetically modified (two Orthogonal Slicer’s
on the same direction but at a constant distance ... ).

C.4.2 Several useful modules

Once again, this appendix does not want to figure as a complete guide of AVS/Ezpress,
and we will present here a panel of the most important modules we have met.
Modules are stored within libraries such as Data I0, Filters, Mappers, Graphics
... A module can be searched for among these libraries using the menu Objects/Search
in all libraries.
UViewer, UViewer2D, UViewer3D: related to a graphic window, this module is
usually the end of a network.

4Before linking, the destination parameter should be erased, showing a 7 in place of its
value.

5In version 4.2, a bug does not allow us to link these two current_step field directly; the
user must put a copy-on_change module between both.
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Read Field: reads a file containing a field (the file name can be browsed). The out-
put can either be a field or directly sent to a viewer. For multi—step fields, parameters
such as current_step, total_steps are available.

Combine _vect, Extract_Component, Magnitude: when, as in the example of sec-
tion C.1, a field contains a vector information about each grid point, it can be necessary
either to extract one of those components or to combine them and to extract the mag-
nitude of this local information.

Read _UCD: reads a file containing a UCD structure (described in section C.3) and
output either a field or a scene to be connected to a viewer. An image can be mapped
onto the so generated mesh via the module Read_Image and Texture_ Mesh.

Isosurface, Isovolume, Isolines: as indicated by their names, these modules
take a field as input and output a new one containing only an isosurface, isovolume
or isolines. Their parameter are therefore the level the iso-value for the two first ones,
and the number and range of the iso-values for the last one.

Image Capture: linked to a viewer, records every display. This module is used
to build mpeg movie files from the views. Moreover, the module Animator allows to
interpolate a film between given views (for example, giving a first orthoslice at z = 1
and a second one at z = 100, it can build 30 transition images for the intermediary
slices) and later build mpeg file.

Many other modules exist, and a good gallery to try them is to explore the Examples
library distributed with the software.

C.4.3 Two examples

The modules presented in the previous subsection are exploited in two short examples
displayed in figure C.3 and C.4. These networks can of course be enlarged or merged
to build a complex application.

Conclusion

AVS /Ezpress is definitely a very powerful tool for 3D visualization. The price to pay is a
good workstation with memory, and some patience to get inside its “way of thinking”.
Bugs or disfunctions are not rare but have always been solved in our case with the
distributor’s hotline.
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Frozen and flying particles are stored in two fields. The first one

is directly sent to the viewer while an isosurface of the second is extracted. A
module Read_UCD is employed to read a UCD representation of the basic solid
configuration, and a texture is mapped onto it. The position of the modules is
not important, and should be arranged in order to facilitate the reading. Every
modules parameters can be interactively tuned via a dedicated window (left hand
side on figure C.1), or more explicitely programmed by the user (see section 4.2.2).

La r rr rr Ry

Read velocity Field

Figure C.4: Solid configuration is represented by a UCD field, but this application
is dedicated to display an orthoslice of isolines of the norm of a field such as that

decribed in section C.1.
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Appendix D
A MPI benchmark

The Message Passing Interface (MPI) presented in section 4.3.2 is available on the
majority of platforms as a high level library. Therefore, it is natural to make some
comparisons between those hardware/software packages, to get a more precise opinion
about their parallel performances.

We will present in this appendix several small MPI applications, each of them
focusing on a special communication aspect, termed: a) ping-pong; b) shifting data; c)
meli-melo; d) burning token; e) TLM code (simple lattice model for wave propagation).

These benchmarks have been ran on four different machines, with the following char-
acteristics:

Entreprise Pentium II | Pentium IIT | Sun Ultra 5
10000 Sun Cluster Cluster Cluster

Processor | Ultra Pentium II Pentium II1 Ultra 5

Frequency | 400Mhz 266Mhz 500Mhz 270Mhz

# nodes 12 32 377128M 128M

Data 8M 1M ™ 512K

cache

network Shared Fast Ethernet | Fast FEthernet | Scali Double
mem.(crossbar) (Extrem 48) (Extrem 48) ring

Price expensive affordable affordable medium

Compiler | Nag f95 + Sun | NAG 195 + | NAG {95 + | Apogee 190 +
mpi mpich mpich Scali MPI li-

braries

For each of those machines, the fastest compiler available was used, i.e. NAG Fortran
95 version 4.0 (except for the Ultra 5 cluster, for some incompatiblity with the Scali

MPI implementation).

D.1 Ping-pong

Packets of growing sizes are bouncing between two tasks, and the aim of this test is to

measure the maximum bandwidth minimum latency for each architecture.

139
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Figure D.1: ping-pong. Time displayed for a one way trip. The time ¢(n) to
transfer n bytes obeys well the law ¢(n) = an + b, where b is the latency and
1/a the bandwidth. However, the behavior for short buffers is not so linear (two
regimes). On the other extrem, the Sun Entreprise 10000 can transfer decently
up to 500 Mbytes buffers, when the other machines have dramatically long times
for the values of n not plotted in this graphe. The inset figure shows a zoom of
the global graphe at the origin, i.e. the communication times for small packets.

Figure D.1 exhibits a performance order: Entreprise 10000, Ultra cluster and Pen-
tium cluster. It also shows how, with the same ranking, machine are able to manage
in a efficient way larger and larger messages.

D.2 Shifting data

Contrary to the precedent experiment where only two nodes were involved, packets
of growing sizes are sent between neighboring processes. The aim of this simulation
(figure D.2) is to get the latency and bandwidth when all the tasks are communicating
in a regular manner (conflict should easily be managed).

The same ranking as for the precedent experiment is respected. However, the agp
between the machine performances decreases, as Entreprise’s bandwidth is worsen by
a factor 6, Ultra 2 cluster, by 4, and the Pentium’s only by a factor 2. Latencies are
also damaged.

D.3 Meli-melo

In this experiment, every node sends 100 messages (1 integer) to random destinations,
and every node receives all its intended messages. The topic is to saturate the network
with a massive load of small and unstructured (no route can be privilieged) messages

The sending and receiving times are measured separately and a barrier is set be-
tween the two parts to avoid spurious effects. Each experiment is repeated a hundred
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Figure D.2: shifting data. Packets of growing sizes are shifted. The time ¢(n)
to transfer n bytes still obeys well a law t(n) = an + b. a and b are different as
the network is totally loaded (all processors are participating). Comparing with
ping-pong performances, Entreprise’s bandwidth is worsen by a factor 6, Ultra 2
cluster, by 4, and the Pentium’s by 2. Casualities on the latency are even worse.

times and the results are averaged in figure D.3.

This expermient is very demanding for the network, and a switch (such as with
the Pentium cluster) acts as a serious bottleneck and produces very noisy results. On
the opposite, the double ring interconnecting network of the Ultra cluster and the
crossbar switch of the Entreprise 10000 handle this situation much more efficiently.
The hierarchy between the four machines is still respected.

D.4 Burning token

A token (integer) is initialised to 1000 by task 0. Every task who get the token decre-
ments it by 1 and sends it to a random task. The game ends by a global communication
when the token reaches 0.

The goal is to build irregular communications (as the token as a random path)
without saturating the bandwidth (figure D.4).

D.5 TLM

A classic Boltzmann model to model radio wave propagation [Luthi 1998]. Its sim-
plicity (few floating operations and synchronous communications to neighbours on a
2D matrix) have made this model the simplest one for real life applications, and a
recognized benchmarking application as it focused on Mflop/s and network bandwidth
performances.
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Figure D.3: meli-melo. Time is displayed for the averaged (one byte) message
emission/reception. The previous hierarchy among the machine is respected.
The Pentium clusters produces very noisy results, as a switch acts as a serious
bottleneck on this irregular problem. As message passing are only memove on
the shared memory Entreprise, and thanks to the fast switch between CPU and
memory, it is natural to get there very high performances.
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Figure D.4: burning token. Time is displayed for the averaged (one byte) mes-
sage emission /reception. The previous hierarchy among the machine is respected.
Even if the is one message travelling at once, the communication is slower has
they are done sequentially (in the previous experiment, all the messages were sent

at the same stage)
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Figure D.5: TLM. n is the size of the side of the square domain on which
the model is computed. There are n? cells, computed for n time steps on p
processors. For each processor, each time steps is n?/p cell computations + n
data comunication (only boundary layers are sent to the neighboring tasks). We
can write the simulation time as T,/n = an?/p+bn = T,/n* = an/p+b, where a
measure the flop/s and b the network bandwidth. It is interessant to note that the
Pentium III cluster exhibits two strongly different regimes, for small and larger
domain per node (it sticks to the ultra 5 cluster for n/p < 64), certainly because
of some high performance cache management.

The experiment is ran for different times and numbers of processors and results are
displayed in figure D.5. From this experiment, it is possible to fit the performances
and to extract the Flop/s and the network bandwith for each machine and therefore
to compare them according these two crucial parameters.

Even if, for the same number of processors, it can be seen how the hierarchy is
observed. However, it can also be observe how a Pentium III cluster with three times
more CPU can be faster than an Entreprise on this problem (and more generally, on
many scalable problems).

D.6 Conclusions

Benchmarking machines can soon become a very complex task, as many factor are
involved in the process [Hockney 1996]. However, in this appendix, our aim was to
focus on different MPI performances on “working configurations”, i.e. with classical
programming and neither fancy nor non-portable hacking tricks.

Figure D.6 shows how different compilers (or even programming method, such as
indexed Fortran 77 or array Fortran 90 notations) can influence the results.

Meanwhile, if the best compiler is chosen, a clear hierarchy emerge from these
benchmarks: 1) Entreprise 1000, 2) Ultra 5 Cluster, 3) Pentium IIT cluster and 4)
Pentium II cluster. This ranking is not surprising: it is coherent with theoritical
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Figure D.6: the TLM benchmark on the Sun Entreprise 10000, with different
F90 compilers and programming styles. The Sunpro compiler should definitely
be avoided. It is interesting to note that we gain a factor 2, with NAG, by writing
array operation a = b+ c and not i = 1..n,j = 1..n,a(i, j) = b(3, ) + c(i, 7)

performances of the hardware (CPU’s and interconnecting networks), but also with
the price of the machine.

A much more interesting observation is how a cluster of Pentium with a fast-ethernet
switch (i.e. a rather cheap parallel computer) can beat a very expensive one (for
example the Entreprise 10000, but results were the same with an IBM SP2) by getting
more CPU.

The main requirement in this case is to have an efficiently parallelized code, no to
be limitated by the poor network. Another major advantage of Pentium cluster in a
world where high performance computing resources are always overloaded, is that its
price allows smaller research groups to acquire one for their own purpose and to have
it dedicated to their own needs.



Appendix E

Publications

A list of the main publications, in the domain of snow transport by wind, but also in
other topics:

Chopard B., Luthi P. and Masselot A., submitted, 1998. Cellular automata and
lattice boltzmann techniques: an approach to model and simulate complex systems.
Advances in Physics.

Chopard Bastien, Masselot Alexandre and Droz Michel, 1998. A multiparticle
lattice gas model for a fluid. Application to ballistic annihilation. Phys. Rev. Lett.,
81, 1845-1848.

Chopard Bastien, Masselot Alexandre and Droz Michel, 1998. Kinetic of the two-
dimensional ballistic annihilation: a multiparticle lattice gas study. Computer Physics
Communications.

Galam S., Chopard B., Masselot A. and Droz M., 1998. Competing species dy-
namics: Qualitative advantage versus geography. Fur. Phys. J. B, 4, 529-531.

Masselot A. and Chopard B., 1998. A lattice Boltzmann model for particle trans-
port and deposition. Furophys. Lett., 42, 259-264.

Masselot A. and Chopard B., 1998. A lattice boltzmann model for snow transport
and deposition. Europhysics Letters, 42(3).

A. Masselot and B. Chopard,1996 Cellular automata modeling of snow transport
by wind. In J. Dongarra, K. Madsen, and J. Wasniewski, editors, Lecture Notes in
Computer Science, Vol. 1041, pages 429-435. Springer, 1996.

Masselot A., March 1995. A massively parallel approach to model snow transport
by wind. Technical report, University of Geneva.

Participations to several international conferences, where the publications were only
proceedings: Para95 (Copenhagen), Fluid and Particle Interactions (Davos, 1996),
VecPar98 (Porto), LGA’98 (Oxford), Fluid and Particles Interactions (Santa Fe, 1999).
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